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TRANSFORMATIONS OF BOOLEANS

G. Cupona, N. Celakoski

Abstract. We say that (M;f) is}a Boolean unar iff f is a
mapping from a subset éaf of @(M)'"’ into ¢»(M). Subunars, homo-
morphisms and free objects are defined in a usual way. The main
subject of the paper is the problem of existence of free objects
in several classes of Boolean unars. Almost everywhere one ob-
tains the following "unusual" property: there are more than one
endomorphisms in a free Boolean unar which induce the identity
transformation of the basis (as it is well-known, free algebras
have not this property ([1])).

§1. BOOLEAN UNARS AND SUBUNARS

Let M be a nonempty set, o9 < (M) and £: Q > > (M) a
mapping from of) into (3(M). Then we say that M = (M;f) is a Boo-

We note (once more) that the carrier M of a unar M is not
empty, but we allow the domain &9M to be empty. In the case when
&5M =@, we say that M is a zero unar.

If M is a given set, then the family 6Lh of all unars withn

the carrier M can be ordered in a natural way. Namely, if M=(M;f),
M’ =(M;£"), then: :

M <M <=>o), Sa), and f=f'lo%M’]. (1.1)

It is clear that:

") M (M) is the Boolean of the set M, i.e. the family of
all subsets of M.

2) The term "unar" is usually used for an algebra with one
unary operation ([2]). However this fact will not make any misun-

derstanding.
) f’[éﬁm is the restriction of £’ on ﬁaM' i.e.

tvxeosm} £(X) = £/ (X).
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Proposition 1.1. The zero unar with the carrier M is the
least member of (U,. A unar M =(M;f) is a maximal member of U,
iff Dy = dm). x

the following conditions are satisfied:
NEM, a'&)g = aaﬂ N wy, qsf!c@ﬂ. (1.2)

The following proposition shows that the family of subunars
of a given unar (M;f) can be characterized by the family of- the-
ir carriers (as in the case of the "usual" unars).

Proposition 1.2. If M= (M;f) is a unar and N a nonempty sub-
set of M, then there exists at most one unar N = (N;g) which is a
subunar of M. Such a unar N do exists iff the following condition
is satisfied:

xed, N dh (N) => £(X)e B(N). (1.3)

Proof. Let N’ =(N;g’) and N" = (N;g") be subunars of M. By
(1.2) we have:

GON' - 03M M ﬁ(N} ’Uaun and g' - gl"r
i.e. N' = N",

Now, let N =(N;g) be a subunar of M and X€ M (N) . Then

£(X) =g(X)€ (N), i.e. the condition (1.3) is satisfied.
Conversely, if (1.3) holds, then putting
Dy =00y N BN and (X&) g(X) = £(X),

one obt;ins a_subunar N =(N;g) of QT X

According to this proposition, whenever we consider a sub-
unar of a given unar M = (M;f), we will think of a nonempty sub-
set N of M which satisfies the condition (1.3); in that case we
will write N < M.

The following proposition gives a description of the unars
whose all the nonempty subsetsare subunars.
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Proposition 1.3. Every nonempty subset N of a set M is a
subunar of the unar M= (M;f) iff the following condition is sa-
tisfied:

(¥x, Y€ H(M)) (XeD, N > (¥Y) => £(X)eMA(¥)). X (1.4)

It is clear that every zero unar and, more generally, every
inclusive unar satisfies the condition (1.4). (We say that a

The following property will bring us to the concept of a
subunar which is generated by a given nonempty subset.

Proposition 1.4. Let M = (M;£f) be a unar and Ni' ier, a fa-

mily of subunars of M. If N= /1IN, # §, then N s M. X
iel
Proposition 1.5. Let M= (M;f) be a unar and B a nonempty

subset of M. Then there exists a unigue subunar <B> of M with

the following properties:
' (1) BC<B>;
(ii) N = M and BEN => <B> c N.

Proof. Namely, <B> is the intersection of the family of
subunars N of M such that BSN. X

We say that <B> is a subunar generated by the set B.

Remark. If the family of subunars of a unar has the least
element, say P, then every subset of P generates P and so does
the empty set @. Further on, the notation <f§> will make sense
only in this case.

Below we will give a more convenient description of <B>,
assuming that M = (M;f) is a given unar and B is a nonempty sub-
set of M.

Let B,=B and let
c, = u{vyep(M) | Y=£(X) for some ey N d5(B,)}. (1.5)

Then we set
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B =B, U € (1.6)
It is easy to show that.

<B> = U (B, |a 2 0}. (1.7)

ve integer o such that ceBB. And, if deM\<B>, then we say that
the B-hierarchy of 4 is infinite.

Now, by the above considerations, we obtain the following

Proposition 1.6. If M= (M;f) is a unar and § #B< M, then

<B> = {x€M | x has a finite B-hierarchy}. X

52, HOMOMORPHISMS

If M=(M;f) and M’ = (M';f’) are unars, then a mapping
$:M + M’ is called a homomorphism from M into M’ iff the follo-
wing conditions are fulfilled:

¢ (D) € By, and (VX€Dy) ¢ (£(X)) =£'(4(X)). (2.1)

Here, for X<M, ¢(X) S {¢(x) | x€X}, and, in the same sence:

“°6E) = {$(X) ixe@l!}.

1, i
is also a homomorphism.

morphism such that ¢~
It is easy to show that:

Proposition 2.1. A bijective homomorphism ¢:M + M’ is an
isomorphism from M=(M;£) into M'=(M';£’) iff ¢(ad)=0,,. X

We note that there are bijective homomorphisms which are
not isomorphisms. For example, if M = (M;f) and M’ =(M;f") are
such that @, < &9, .,
is a bijective homomorphism, but it is not an isomorphism.

then the identity transformation of M

Proposition 2.2. Let M,=(M;f,) and M, =(M;f,) be two unars
with the same carrier .M and let M, < M,. If ¢:M + M’ is a ho-
momorphism from !'—!a into M’ =(M’';f’), then ¢ is a homomorphism
from M, into M’ too. X
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Proposition 2.3. Let M= (M;f) be a unar, # # NcM, and let
7y be the family of all the unars (N;g) with the carrier N such
that the inclusion mapping“) ¢ from N into M is a homomorphism
from (N;g) into M. Then, the unar N =(N;h), defined by

By =By N A M) and h=£[dy,

is the greatest member of f}%. In the case when N £ M, the unar
(N;h) coincides with the unar induced by N, by the agreement ma-
de afther P.1.2. X

Proposition 2.4. Let ¢ be a homomorphism from a unar M=(M;f)
into a unar M'=(M";f"). If N’ < M’ is such that ¢-‘{N'} =N#§,
then N = M.

Proof. Let X€ad, N (O(N). Then 0(X)€9(B,) € B ,, and
¢(X)S N'. Therefore, ¢(X)€s8,, N ¢D(N’) which implies that
6 (£(X))=£'($(X))C N’, i.e. £(X)c ¢ '(N') = N. X

Note that a homomorphic image of a subunar is not necessa-
rily a subunar. For example, let M be the zero unar with the
carrier M, and M’ = (M;f) a unar with the same carrier, such that
there exists at least one nonempty subset N of M which is not a
‘subunar of M'. Then N = M, 1y:x ¥ x is a homomorphism from M
into M’, 1,(N) =N, but N is not a subunar of M’.

It is also natural to ask the following guestion: Is it
possible to exist distinct homomorphisms ¢,¥: (M;£) =~ (M";£")
such that their restrictions on some generating set B of (M;f)
are equal? It is easy to show that the answer is yes, as the
following example shows.

Example 2.5. Let M={a,b,c,d}=M’,
od; = {{a,b}}, £({a,b}) =M = £’ ({a,b}).

Then.B={a,b} is a generating set of M=M’, and there are
exactly 16 hamomorphisms from M into M’ (i.e. endomorphisms of
M) which are extensions of the inclusion ( = (: g) from B into M.
There are two distinct isomorphisms between them.

“) (uxeN) ((x) =x.
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§3. FREE UNARS

Let £ be a class of unars. We say that a unar M=(M;f) is

are fulfilled:
(i) B is a generating set of M,

(ii) For every unar M’ =(M’';£’) and every mapping A:B + M’
there exists a homomorphism ¢:M + M’ which is an extension of ),
i.e. (¥beB) ¢(b) = aA(b).

The fact that every mapping from a zero unar into another
one is a homomorphism implies that the following proposition is
true.

Proposition 3.1. If M= (M;f) is the zero unar with the car-
rier M, then M is a free unar with the basis M, in every class
of unars ¥ such that ME®. x

Now we will show that the zero unars are the only free ob-
jects in the class of all unars.

Proposition 3.2. If M =(M;£f) is a nonzero unar, then M is
not a free object in the class of all unars.

Proof. Let M =(M;f) be a nonzero unar and P be a set dis-
joint with M, but of greater cardinality than M. We set M’'=MuUP
and define a unar M' = (M';f’) with:

Bys = oy and (VX€dy,) £'(X) = £(X)UP.

We will show that there is no homomorphism from M into M'. Name-

ly, if such a homomorphism ¢:M -+ M’ exists, then for any xecam

we would have -
$(E(X)) = £7(6(X)) = £(¢(X))uUP,

But this is not possible since the left hand side has strictly

smaller cardinality than the right hand side. X

The proposition 3.2 suggests to consider "smaller" classes
of unars and to search free objects there.
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One of the "simpler" classes of unars in which free objects
do not exist is the class of constant unars, which we denote by

zero unar and there exists A<M, such that Nxeeam] f(X) =A.

If M is a constant unar in the proof of the previocus propo-
sition, then the obtained unar M’ will be also constant, and so
the following is true:

Proposition 3.3. There are no free objects in Con. X

As a contrast of Con is the class &/ of unars defined in
the following way:

M= (ME)eV iff Dy = B(M) and (¥X<M) £(X) = X.

Proposition 3.4. Every object M = (M;f)€2is free in% with
the basis M. X

Now we will consider a family of subclasses of Con, every-
one of which has free objects., Let o be a cardinal and let

Con(a) = {MECon |0y, = M) A (excM) |£(x)| < a3,

The class Con(a) can be described as a class of ordered
pairs (M,A), where A<M and |A| < a. Namely, the pair (M,3)
will represent the unar M = (M;f)eCon(a), such that

(¢Xc M) £(X) = A,
Specially,

Con(0) = {M&Con |3, = B (M) A (YXEM) £(X) = g},
Now we have:

Proposition 3.5. (i) Be M is a generating set of (M,A) iff
M\A €B.

(ii) A mapping ¢:M + M’ is a homomorphism from (M,A) into
(M,A") iff ¢(A) = A'. X

By P.3.5, we easily come to the following description of
the free objects in Con(a).

) |¢| is the cardinal number of the set Y.
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Proposition 3.6. (M,A) is a free object in Con(a) iff
@« = |A|. In this case, B=M\A is a basis of (M,A). X

Assuming that «=|A|, in the following statements we descri-
be all the basis of the free object (M,A) in Con(a).

Proposition 3.7. If A is a proper subset of M, then M\A is
the unique basis of (M,A). X

Proposition 3.8. If |M|=a, then Bc M is a basis of (M,M) iff
[M\B|=a. X

Proposition 3.9. If o is finite, then § is the unique basis
of (M,M). X

Proposition 3.10. If o is infinite, then there exist infi-
nitely many nonequivalent basis of (M,M). X

At the end of the paper, we will consider one more class
of unars without free objects and one subclass of it with free
objects.

Let £ be the class of unars M = (M;£f) such that
o@u = {XsM:12[X] <5} and (¥X€d,) 1 S|EX)| < S5
First we will show that:

Proposition 3.11. There are no free objects in 52:

Proof. Let M = (M;f), M’ =(M’,£')e ¥ and a€M, a’€M’ be such
that |£({a})| < |£7({a’})|. Then there is no homomorphism ¢:M +M'
such that ¢(a)=a’, since if such a homomorphism ¢ would exist,
then ¢ (£f({a}))=f’({a’}) and this would imply |[£’({a’})| s|£({a}l)].

Now suppose that M= (M;f)e £ with the basis B and a€B is
such that |f({a})|=m. Let M’ be a finite set with m+l1 elements
and put £’ (X’)=M’ for every subset X’ of M’. Then we obtain the
unar M’ -{M';f')e\pt By the above considerations it follows that
there is no homomorphism ¢:M + M'. X

Now we will consider a subclass .ﬁ; of £, defined in the
following way:
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ve £ <=> Me < and (vxeBy) 15 [£(X)] < m
(where m is a finite cardinal).

Proposition 3.12. Every nonempty set B is a basis of a free
unar Me 7 .

Proof. Let us set CD=B and let

oy = cuuwmx{x;ca: 1 < |%| <5t

where Nm = {1,2,...,m}. Then we put
C = u{cal |a 2 0}.

We will define a unar Q=(C;f)e\§; as follows. If X<cC is a
finite nonempty subset of C, then there exists an a« 2 0 such that
xc_:ca and then {l,x},(2,XJ,...,{m,X}GCa+1CC, i.e. ¥=
={(1,X),(2,X),+..,(m,X)} is a subset of C with m elements. The-
refore we can define f by:

£(X) = {(1,X),(2,X),.0.,(m,X)}.
If is easy to show that B is a generating set of C.

Clearly, the B-hierarchy of u€C is a+l iff ueCu+1\C =D

a a+t1’
Also, uep_ iff u has the form u=(i,X), where 1eNm, x=C, and
XruDa#G. This implies that Du is a disjoint union of the fami-

ly of sets

+1

{((1,x),(2,X),...,(m,X)}, (3.1)
where X is a finite nonempty subset of C, such that xf!Du#G.

Let (M;g}e‘g; and let ) be an arbitrary mapping from B in-
to M. Suppose that, for every y £ o, a mapping ¢Y:CY + M is well
defined with the following properties:

(1) ¢, = 1,
(ii) ¢Y+‘ is an extension of ¢Y (v € a),
(iii) if X is a finite nonempty subset of CY (y < a), then

b4 (LX), (2,0, ey (mX) D) = glo, (X)) (3.2)
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We will define T e D Fi;st, we assume that b
is an extension of ¢a. Upon that, we consider a subset of D‘:‘+1
of the form (3.1). Then x'=¢u(x} is a finite nonempty subset of
M, and 1 £ |g(X’)| < m. By this it follows that there exists a

surjective mapping
¢x:{(1,x),...,(m,x)} > g(x") = gls_(X)). (3.3)

Let ¢a+1=Du+1 + M be the extension of all ¢x, and ¢u+1:

Cu+1 + M the extension of Qa and ¢ﬂ+1. So we obtain a sequence
of mappings {¢Y=CT + M | y 2 0} which satisfies (i), (ii) and
(iii) for every y. Assuming ¢ to be the extension of this sequ-
ence on C, we obtain that ¢ is a homomorphism from C into M

which is an extension of 2. X

" Below we will denote by C=(C;f) the free object in ﬂ;lwith
the basis B, constructed in the proof of P.3.12.

Proposition 3.13. If ¢ is an endomorphism of C such that
(¢b€B) ¢ (b)=b, then ¢ is an automorphism of C.

Proof. Suppose that ¢(Cm}=cu and that the corresponding
transformation ¢a induced by ¢ on Cu is a permutation and also
¢(Da)=Du. Consider a subset of Du_._1 of the form (3.1). Since X
is a finite nonempty subset of Cu, we have:

$({(1,X) ..., (m,X)}) = ¢(£(X)) = £(8(X)) =
= {{1:¢‘x)):---;(mr¢{x)) B .

\ a+1
The fact that xrﬂnu # § and the hypothesis ¢ (D )=D_ imply that
¢{X}r1D“ # @ and thus

{(lr¢{x)):-oof(m;¢{x))!CD“+1.

Therefore, ¢ induces a bijection from {(1,X),...,(m,X)} into
{(1,6(X))peue,(mo(X))].

By all this one easily comes to the asked final conclusion
that ¢ is a permutation of C. X
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Remark. We note that if « is infinite and if M is a free
object in Con(a) with a basis B, then there exist infinitely ma-
ny endomorphisms ¢ on M, such that (Ybe€B) ¢(b)=b, but they are
not automorphisms.

Now we will complete the description of free objects in jah.

Proposition 3.14. Any two free objects in g;lwith the same
basis B are isomorphic.

Proof. It suffices to show that an arbitrary free object
M= (M;g)e ﬂ; with the basis B is isomorphic with the free object
C, constructed above.

Let ¢:C = M, ¥:M + C be homomorphisms with the property
(¢b€B) ¢ (b)=y(b)=b. Then £=¢¢:C + C is an endomorphism of C such
that (¥beB) £(b)=b, and thus £ is an automorphism. Therefore ¢
is an injective homomorphism; and thus it suffices to show that
% is surjective.

Namely, it can be easily shown that, in 52;, homomorphic
images of subunars are subunars. Therefore, E=¢(C) is a subunar
of M such that BSE, and this implies that E=M, for B is a gene-
rating set of M. X
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TPAHCOOPMAIIMM HA BVIIEAHH

f.UynoHa, H.llenakoCKH

Pezume

Hexa M e Hempa3sHO MHOXeCTBO, [<(M) e GyneaHor (T.e.
NMapTHTHBHOTO MHOXECTBO) Ha M, ;Z‘-ggg{m n f:9+A(M) e npecnukysame.
Toram senume mexa (M;f) e 6BynoB yHap co HocHTen M, mejcrtmo f
¥ pgomex J). MoumuTe mOOyHAP, xommp¢n§an H cno6oneH o6jexT, BO
TPYHOOT Ce BOBenyBaaT Ha BOOGHYaey HauMH. [JIaBHHOT npeaMeT Ha
paBoTaBa € HCNHTyBakme Ha MPOGIeMOT 3a ersHCTeHUHja Ha CJIO600HH
O6jeKTH BO HEKOJIKY KJjacH opn 6ynoBM yHapH. CKOpPO BO CHTe THe Cly-
yaH ce HOGHBA CJIeNHOBO "HeoGHMYHO" CBOJCTBO: mMocTojaT mnoseke
eHOoMopdhHM3IMH BO CIOGOOHHOT GYJIOB YHAP KOHWTO ja MHAYUHPaaT HIEeH-
THYHaTa TpaHcbopmauuja Ha GasaTra (a moG6po e MOSHATO Oexka CIOGOmHH-
Te anreSpH ro HeMaaT Toa CBOJCTEBO).
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