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RECTANGULAR 2-BANDS

B. Trpenovski

Abstract. In this note we generalize the notion of the rec-
tangular band from binary to ternary operation giving two struc-
ture descriptions for the generalized case: first in terms of a
ternary groupoid and afterwards in terms of a semigroup.

l. Let S be a 2-groupoid, i.e. a non-empty set S with a ter-

upoid iff: (xyz) = (yzx) = (2xy) => x =y = z,

Let u be an equivalence relation on S. We call S a weak asso-

((xyz)uv) = (x(yzu)lv) <=> zuu, (A1)
((xyz)uv) = (xy(zuv)) <=> yuu, (A2)
(x(yzu)v) = (xy(zuv)) <=> yuz. (A3)

Lemma 1. Every anticyclic weak associative 2-groupoid S is
an idempotent 2-groupoid.

Proof. For every a€S we have that

( (aaa) aa) (a(aaa)a) = (aalaaa)),

which implies that (aaa) a. |l
Let us define the equivalence relation u on S as follows:
Xuy <=> (V¥a,bes) (axb) = (ayb).

An anticyclic weak associative 2-groupoid S is said to be a
rectangular 2-band if the equivalence relation u is defined as

above. From now on § will stand for a rectangular 2-band.
From the definition of u and Lemma 1 it follows that:

Lemma 2. If xuy, x,y€S, then (xyx) = x. ||
39
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Example. Let A, B and C be non-empty sets and let us define
a ternary operation [...] on S = AxBxC by

[ta,/b,,c,)(a, /b, c,) (ay,bs,6,)] = (a,,by,0,),
a.ep, b.eB, c.eC. It is easily seen that S is a rectangular 2-band;
we shall denote this rectangular 2~band by § = [A,B,C]pr.

Lemma 3. Each equivalence class of S (mod u) is an anticom-

mutative 2-semigroup.

Proof. Let S’ be an equivalence class of S modulo u and let
X,y,265’. Let u,veéS. Then we have that:

((uxy)zv) = ((uyy)zv) = (uy(yzv)) = (uy(yyv)) =
(ul(yyy)v) = (uyv)

(u(xyz)v)

I

which shows that (xyz)uy, i.e. (xyz)€S’ meaning that 8§’ is a
2~subgroupoid of S.

Since S' is, obviously associative, i.e. 2-semigroup, it
remains to prove the anticommutativity of S’: if for some ye€s’,
(xyz) = (zyx), then x = z (see [2]). Really, we have that

x = (xxx) = (xyx) = (x(yzy)x) = ((xyz)yx) = ((zyx)yx) =
= (zy(xyx)) = (zyx) = (z(yzy)x) = (zy(zyx)) =
= (zy(xyz)) = (z(yxy)z) = (zyz) = z. ||

Lemma 4. For every X,y,2€S, (xyz)uy.

Proof. Let (xxz) = u; then,

(xxu) = (xx(xxz)) = ((xxx)xz) = (xxz) = u,

and from (x(xxu)x) = (xux) = ((xxx)ux), accroding to (Al), it
follows that uux, i.e. (xxz)px. Similarly we get that (xyy)uy.

I1f vuy, because of (yyz)uy, from
(vyz) = (v(yyy)z) = (vyl(yyz))

if tollows that (vyz)uy since v,y and (yyz) all belong to the
same equivalence class (Lemma 3).
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Finally,
(xyz) = (x(yyy)z) = ((xyylyz) = (vyz)uy,
since (xyy) = wvuy. Il

Theorem 1. Every two equivalence classes of S (mod u) are

isomorphic.

proof. Let S and SP be two equivalence classes with aes?,
bes®, If we put £, (x) = (xbx), xes?, we have that £, (x)€s®

(Lemma 4), and, so, fab is a mapping from s? to Sb.

Let £, (x) =£,, (y), x,y€s?; let (xbx) =c = (yby). We have
that

(exc) = ((xbx)xc) = (x(bxx)c) = (xxc) =
= (xx(xbx)) = (x(xxb)x) = (xxx) =X,
since (bxx), (xxb)ux. So,
(cxc) = x, and similarily, (ycy) =y (1)
Since buc, we have that
(yey) = ¢, (xcx) = c. (2)

‘Now, taking into account (1) and (2) we get:

x = (cxe) = ((yecy)xe) = (ylecyx)e) = (yye) = (yylycy)) =
= (ylyyely) = (yyy) = y.
Thus, fab is an injection.

b

If zes™ and if we put x = (zaz) then x€s? and

fab(x) = (xbx) = ((zaz)bx) = (z(azb)x) = (zzx) =
= (zz(zaz)) = (z(zza)z) = (zzz) = z

which shows that fab is a surjection, also.
Finally, let x,y,z€S%. Then,
( (xbx) (yby) (zbz)) = ((xbx)b(zbz) -

(£,p (%) €0 () £ (2))

(xb(xb(zbz)))
(x(b(xbz)b)z)

(xb((xbz)bz)) =
(x(bbb)z) = (xbz).
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On the other hand if we put (xbx) = u, (zbz) = v, then according
to (1) and (2) we have that x = (uxu), z = (vzv) where u,vesb
which, according to Lemma 4, implies (zvb),(buv),(yvb) and (buy)
all belong to sP, Thus,

((xyz)b(xyz)) = ((xy(vzv))b(xyz) =
(((xyv)zv)b(xyz)) = ((xyv)(zvb) (xyz)) =
((xyv)b(xyz)) = ((xyv)b((uxu)yz))
((xyv) (byx) (uyz)) = ((xyv)b(uyz))
(xb(uyz)) = (x(buy)z) = (xbz).

fab(xyz)

((xyv)b(ux(uyz))) =
(x(yvb) (uyz)) =

]

So, fab(xyz) = (fab(xlfably)fab(ZJ). 1

b 2es®. Then,

Lemma 5. Let xesa, yes
(xyz) = [fab(x]yfcb(z)).

Proof. Since (xyz)ub and buy,

I
]

( (xbx)y{zbz))
(x(b(xyz)b)z)

(£ p () ¥E 4 (2)) (xb(xy(zbz))) = (xb((xyz)bz) =

(x(bbb)z) = (xbz) = (xyz). Il

]
[

Theorem 2. A 2-groupoid S is a rectangular 2-band iff there

exist non-empty sets, A,B and C such that § = [A,B,C]pr.

Proof. For every anticommutative 2-semigroup G there exists
a rectangular band G(o) such that for every x,y,z€G, (xyz) = xoy
(see [2]). On the other hand (see, for example [1]), every rec-
tangular band is isomorphic to a direct product AxC of a left-
zero semigroup A and a right-zero semigroup C. Thus, every anti-
commutative 2-semigroup G is 2-isomorphic to a rectangular band
AXC, i.e. there is a bijection g: G - AxXC such that, for every
X,Y:28G, gl(xyz) = g(x)og(z) = g(x)og(ylog(z).

b,

Let us return, now, to the rectangular 2~bana S; Let S and

sz be two equivalence classes of S (Sb1 and Sb3 are anticommuta-
tive 2-semigroups according to Lemma 3). Hence, there is a 2-iso-
morphism h_: gb1 - AxC, where A and C are, respectively, a left-

zero and a right-zero semigroups. Let f ,: Sb1 S sz be the iso-
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morphism of Theorem 1. Then h, = h,f:;:sba ~ AXC will be a 2-iso-

morphism such that: if xesb‘, h,(x) =(a,c) and if y=£f_,(x),

ha(y) = h,(£72(y)) = h,(x) = (a,c).

Let B be the index set for the family of all equivalence
classes of S (mod u):

s = U{sP | bes} ‘

and let us define a ternary operation [...] on § = AxBxC as in
the Example. Let ¢: S = § be a mapping defined in the following
way: if xes®1 and h,(x) = (a,c), then ¢(x) = (a,b,,c). It is ob-
vious that ¢ is a bijection. If x,y,z€8, where xesb', yesbﬂ,
zesPs ana h,(x) = (a,,c,), h(y) = (a,,by), hy(2) = (a,,c;),

then ¢(x) = (a,,b,,c,), ¢(y) = (a,,b,,c,), ¢(2) = (a,,b,,c,) and,

in §, we get

[e(x)e(y)e(2)] = [(a,,b,,c,) (as,b,,c,) (ag,by,c,)] =
= (a,,b;,c5).

On the other hand, according to Lemma 5, we have that

(xyz) = (£,,(x)yf,,(z)esP2, ana

h, (xyz) (haf,,) (x)oh,(y)o(h,£,,) (2) =

(h,£,5) (x)o(hyfs,) (2) in AxC.

Since h, = h,f:;, or h, = h,f,,, as we proved above, and simila-
rly h, = h,f,,, we have that

(hf,,)(x) = h,(x) = (a,,c,), (h£,,)(2) = h,(z) = (a,,c,),
and, then,
h,(xyz) = (a,,c,)o(a,,c,) = (a,,c,),
which, according to the definition of ¢ means that
¢ (xyz) = (a,,b,,c;),

and, therefore, ¢(xyz) = [¢(x)é(y)é(z)] which proves that
¢: S = § is an isomorphism. The converse is obvious. ||
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2. Here we shall give another structure description for a

rectangular 2-band S.

Lemma 6. Let £,,: S°1 - s°2 and £,,: §°2 = s®3 be the iso-

morphisms defined in Theorem 1. Then f_,.f,, = £ ,, and £, £ =¢ b,*

Proof. Let £,,(x) = (xbx) = y, x€s>', b,yesP2, £,.(y)

= (yey) = z, c,zesba. Then (xbx) = y implies (yxy) = x, (xyx) =y,

and (ycy) = z implies (zyz) = y, (yzy) = z (Theorem 1). Now,
faaf,,(x) = (yoy) = ((xbx)cy) = ((xb(yxy))ey) = ((x(byx)y)cy) =

= ((xyy)ey) = ((xy(zyz))ey) = (((xyz)yzlcy) =

= ((xyz)(yze)y) = ((xyz)cy) = (x(yzc)y) = (xcy) =

(xc(xbx)) = (xe((yxy)bx) = (xc(y(xyb)x)) =

= (xc(yyx)) = (xc((zyz)yx)) = (xclzy(zyx))) =

= (x(czy) (zyx)) = (xc(zyx)) = (x(czy)x) = (xcx) =f, ,(x),
i.e. £, f, , = £,,. From this is follows that £, f, (y) = (yby) = vy,
ice. £,,£,, =¢ . |l

2

Let us observe that the isomorphisms fij: Si -89, i,jesB,

between the anticommutative 2-semigroups can be considered as
isomorphisms between the corresponding rectangular bands Si(oi)
and Sj{oj} (see proof of Theorem 2): if X,y,z€st,

fij{xoiy) = fijlxyz) = {fij(x]fij(y)fij(z)) =

fij(x)ojfij{z).

Thus, for every rectangular 2-band S there exist a family of
rectangular bands R = {SJ(O ) | jéB} and a family F = {fijz

st . g3 | i,jeB} of isomorphisms such that £, kf = £y
- J

fijf]i Ej (e] identity on S-) and, according to Lemma 5,
(xyz) = (f »{X}yfkj z) (x}o fkj(zJ

Conversely, let R = {53{0 ) | jeB} be a family of mutually
isomorphic rectangular bands and F = {fij gt gd ]i,JeB} a fa-

J

mily of isomorphisms such that fgkfi] = fik and fi] Ji €.. Let
LJ{SJ | B} and define a ternary operation on S as follows:
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if xesi, yesj, zesk then (xyz) = fij(x)o.fk (z). We .ii 1 denote
this algebraic structure on S by § = [R,F,(...)]. Let u be the
equivalence in S which corresponds to the partition R of S. Now,

i k

(1) Let xesl, yes?, z,ues®, ves™ (hence zuu). Then

((xyz)uv) = ({fij(x)ojfkj{z))uvl = fjk(fij(x)ojfkj(zi}okfmk(v) =
(fjkfij(x)okfjkfkj(z)lokfmk(v} =
= (Eik[x)okz]okfmk[v) B fik(x)okzokfmk(v) =fik(xjokfmk(v),
and, from the other hand,
(x(yzu)v) = (x(fjk(y}oku]v) = fik{xlokfmk(v), hence
((xyz)uv) = (x(yzu)v).

r
Conversely, if ((xyz)uv) = (x(yzu)v) and zesk, ues® (the
other elements as before), repeating the above calculations we

get that

((xyz)uv) =£,,, (x)o , Eyer (VIESK, (xlyzu)v) = £, (x)oy £y (vIes”
which implies k’'=k, i.e. zuu.

(i1) 1f xesl, y,uesd, zes¥, ves™, we get

((xyz)uv) (tfij(x)ojfkj(z))uv) = fij(fij(x)ojfkj(Z)JO»f (v) =

3 mj
(v) = fij[x)ojfmj{v}, and

]

jmj

(xy(zuv)) = fij(x]oj[fkj(z)ojfmj(v]) - fij(x)ojfmj(v)

fij{x)ojfkj(Z)c-f

so that ((xyz)uv) = (xy(zuv)). .
i j 3’ k m

For the converse part, if x€S~, ye€s-, ue€s- , z€5 , vE€S we
have that ((xyz)uv) = fij,(x}oj,fmj,(v). (xy (zuv)) = fij[x}ojfmj(v)
and ((xyz)uv) = (xy(zuv)) implies j=j’, i.e. yuu.

k

(iii) Let xest, y,zesd, ues®, ves™; then,

(x(yzu)v) = (x(fjj[y)cjfkj(u))v) = fij(xlojfmj(v).

(xy(zuv)) = (xy(fjk(z}okfmk(vll = fij{x)ojfkj(fjk(z)okfmk(v}) =

fij{x}oj(fkjfjk(z}ojfkjfmk(v)) =

]

= fij{x}oj(fjj(z)ojfmj{v}! = Eij[x)ojfmj(vl;

so that, (x(yzu)v) = (xy(zuv)).
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i k

On the other hand, if x€s5™, yesj, zesj', ues™, vesm, then
(x(yzu)v) = fij,(xloj,fm-,[v)r (xy(zuv)) = fij{x)ojfijV) and
j=j’, or yuz, if (x(yzu)v) = (xy(zuv)).

Now we shall prove that § = [R,F,(...)] is anticyclic. Let
xes—, yesj, zesk and (xyz) = (yzx) = (zxy). This means that
Eij(x)ojfkj(z] - fjk(y}okfik[x) = fki(z)oifji(y) which is possib-
le only if i=j=k and we have that X0, Z=Yy0, X=20,¥. From xo0,2z=yo;X

i

it follows that X0,20,X = YO, X0 X, i.e. X=YO X, and, since

YO ¥=Z0,Y, X=20;¥ and then, X0, y=20,y0;y=20,Y- Since zo,y=yo,X
we finally get X0, y=yo,X which, because of the anticommutativity
of st implies x=y. Similarly, we can conclude that y=z.

From the above considerations we have that:

Theorem 3. i) Let S be a rectangular 2-band. Then there
exist a family R = {81 | j€B} of anticommutative, disjoint and
mutually isomorphic semigroups and a family F = {fij: st - Sj

i,jeB}, of iiomorpﬁisms ﬁhere fijfkj = fkj' fijfji = ej. such
that: if xes®, yesJ, zes™, then
(xyz) = fij(x)ojf]_ijw}' (3)

where “oj" is the operation in s3,

Conversely, let R={Sj(oj} | 4B} be a family of disjoint and
mutually isomorphic anticommutative semigroups (rectangular bands),
and Fa{fij: sl < gl |i,5eB} a family of isomorphisms such that
£4%ki = Fxye F13f91 = <5 If we define in 8 = ' /{s? | jeB} a ter-
nary operation with (3), then S will turn out to be a rectangular
2-band. |1
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NPABOATOJIHH 2-JIEHTH
B. TpneHOBCKH
Pesume

I'naBHHOT pes3ynTaT Ha paboTasa € CcoapkaH BO TeopeMuTe 2 W 3
CO KOH Ce HaBa OMHC Ha CTPYKTYpaTa Ha NpaBoarosiHHTe 2-JIeHTH, BO-
BelleHH Kako oGonuTyRame Ha MpaBOarofIHHTEe JIeHTH (aHTHKOMYTaTHBHM=—
Te MNONYyTPpyNnH o MOSMIOTEHTH) .
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