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Abstract. In this paper a construction of a
free fully commutative vector valued group
is given. For this purpose a more general
construction of fully commutative vector
valued groups, starting from a commutative
group with some special properties, is given.
As an application of this more general con-
struction, a corresponding Post theorem for
fully commutative vector valued groups is
obtained.

Deskriptorji: prost komutativen monoid,
grupa z vektorskimi vrednostmi. Postov izrek

Izvleéek. V ¢lanku konstruiramo prosto po-
polnoma komutativno grupo z vektorskimi
vrednostmi. Uporabljena je posplosena kon-
strukcija popolnoma komutativne grupe z
vektorskimi vrednostmi, ki izhaja iz komu-
tativnih grup s posebnimi lastnostmi. Kot
primer uporabe te konstrukcije je izpeljan
ustrezni Postov izrek za popolnoma komu-
tativne grupe z vektorskimi vrednostmi.

V. pred. mag. Biljana Janeva, PMF Univerziteta u Skopju, Gazi Baba b.b. 91000 SKOPJE.

0. Preliminaries.

Let Q be a nonempty set. Denote by Q(+) the free abelian semigroup with a basis Q. If

p is a positive integer, let Q(p) be the subset {al. -y la€eQ }of Q(+), where a;. . an is
the product of a;. . a, in Q(+). Instead ofa;.. a, we will use the notation aﬁ’, keeping in
mind that alf = bil, in Q(P) iff by.. .bp is a permutation of a;. . ap- Also, the p—th Cartesian
product QP could be considered as a subset of the free semigroup Q+ ‘with a basis Q,

identifying it with the subset {al. - ay ] aveQ}of Q" where aj. . @, is the product of

P
@y - .ap in Q+

Let n,m,n—m=k be positive integers. A map f:Q(")—> Q(m) is called a fully commutati-
ve (shortly f.c.) (n,m)—operation on Q, and the ordered pair (Q) a f.c. (n,m)—groupoid.
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A mHk (m+k)
A f.c. (n.m)—groupoid (Q:f) is called f.c. (n,m)—semigroup if for each x | €Q

RECDRTR) = £ x07K x)) ©.1)

The following results (given in [2]) are valid for f.c. (n,m)—semigroups:

Theorem 0.1. (The general fully commutative associative law: GALFC) Let (Qf) be a
f.c. (n,m)—semigroup, n,m;n—m = 1, and for each s > 1, f(s):Q(mﬂk) - Q(m) be defined

by
(D)=g, 541) (qmisk )= f(HS) (@K bK). (0.2)

Then:

(i) Foreachs =1, (Q;i(s)) is a f.c. (m+sk,m)—semigroup;

(ii) For eachs,t = 1, a,, by €Q.

{0 (15) (@Kt = ((5+0) (qmoskl )

If (Qif) is a f.c.(n,m)—semigroup, then we say that the f.c. (m+sk,m)—semigroup
(Q;f(s)) is derived from (Q;f).

Because of the GALFC, we use the notation [ ]:Q() - Q(M instead of £:Q(™) - (M),
and [T K] instead of [ 1®) (@T5K).

Theorem 0.2. (Post theorem for f.c. v.v. semigroups) If (Qi[]) is a f.c.(m+sk,m)—semi-

group, then there exists a f.c. (m+k,m)—semigroup (P;[ ]’ ), such that Q€P, and for every
xr{l"'sk EQ( m+3k)_

[xl'llﬁ‘sk] = [xrll'H‘Sk I'=

We say that a f.c. (n,m)—semigroup is f.c. (n,m)—group if for each a.eQ(k), beQ(m), the
equation [ax] = b has a solution er(m).

Since f.c. (n,1)—groups are commutative n—groups, we will always assume that m = 2.

and by a f.c. vector valued group (shortly f.c.v.v. group) we will mean a f.c.(n,m)—group for

m=2.

Proposition 0.3. There does not exist finite fully commutative vector valued group

with more then two elements®
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Let G = (G; ') be a commutative group and QG a nonempty subset. We define a fami-
ly {Qg &> 1} of subsets of G by:

Q;=Q,Qu,1Q,-Q 0.3)
where M - N = {x y IxeM yeN} , for M\NSG. For t, a positive integer, we denote by 7, the
canonical map Q(t) - Q, defined by:

"'t(a‘lt)=al'“2""'at' (04)

Theorem 0.4. Let (G;-) be a commutative group, and Q be a nonempty subset of G such
that the following conditions are satisfied:

(i) The map 7 : Q(m) - Qpy is bijective:

(ii) For each xeQy , Q, = x - Qm (= x Qm):

(i) F0<i<j andQp 4y NQuy;7 ¢ thenisj:

(iv)(;ifnfrjk_I Q-

a=m

Then (Q{]), where

[ =pT ¢ @1 =7 (6. (0.5)
is a f.c. (n,m)—group. Moreover, for each f.c.(n,m)—group (Q:;[ )
there exists a commutative group G = (G; -) such that Q €G, and the conditions (i)—(iv)
are satisfied for Q, and [] defined by (0.5) coincides with [[ . =

If (Q;:[]) is a f.c.(n,m)—group, and G=(G; - ) is a commutative group such that Q<G,
and (i)—(iv) are satisfied we say that G is a commutative universal covering group for (Q;[]),
and denote it by Q(v). In fact. Q(v) is the group given by the presentation <Q;A> in the
class of all commutative groups, where A= {al coelpye=by... bm | {anil+k] = b“i'} If
G is a commutative group and Q a subset of G such that (i) holds, we say that Q is m—free
in G. If, moreover, Q satisfies (ii). then we say that Q is f.c.(n,m)—subgroup of G, or (n,m)—

subgroup of the commutative group G.

1. Fully commutative vector valued groups induced by commutative groups.

We will give here a construction of a f.c.(m+k,m)—group, starting with the given com-

77

1399



Znanstv Rev 1 (1990) 75—-86

mutative group, by constructing inductively a chain of sets B, and a chain of groups Gd’
a€eN, .

Let G=(G; -) be a commutative group generated by a nonempty set A, A be m—free in
G, and n,m, n—m=k be positive integers.

We take G to be the given group G.

The norm of an element xeG;, denoted by | II,is defined by I x | =0,ie.itis the zero
homomorphism from G ; into N.

We will give only the first step of the inductive procedure.

We define B, and T  by:

Bo:=A, T0:=G0.

Then

E ={xeG,, [(Is=1)( u{{‘ﬂke(Bo)mﬂk) X=7 (ur]n+5k )} \ (BO)(m}.
and

By:==B, U(N, xE ), T : =G, U Ny, x EQ),

i.e. T is the free product of commutative monoids and (N, x EO)(*)
is the free commutative monoid with a basis (Nm‘xEo).

Next, we define a norm on the elements of T, to be the unique homomorphique ex-
tension of the norm defined on T and the unique homomorphic extension of the mapping
(i,x)= 1+ x|l from (N, x Eo)(*) into N.

We say that an element xeT, is reducible if the canonical form of x is y(1,2). .. (m, 2),
otherwise we say that x is reduced. The set of all reduced elements of T, is denoted by G T

By induction on the norm of the elements of T, we define a reduction, i.e. a mapping
‘p:Tl - G]' Namely,

(0) ¢(x):=x, for xesGl .

Let ¢(y) be well defined for each y such that ly <l x I.
and

e Fy=le@y) I<lyl (*)

Ifx=y(l,zl) .. .(m,zl) o .(I,zr) . ‘.(m‘zr). where y is reduced and r = 1, then
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(1) ex): =0 (yz)2, . ..2,).
The mapping ¢ has good properties. Their proof is by induction on the norm of the ele-

ments ofT].

Proposition 1.1. (a) ¢ is a well defined mapping such that for each xeT | the condition
(*) is fulfilled.

(b) ¢(y(1,2) ...(m,2) ) = Ky2).

(c) elyz) = plely)z).

Proof: (a) As |l YZi2y i o 2y < x II.ap(yzlzg ...z, ) is defined, and so is ¢(x). Mo-
reover,

lo(x) I=1ly(yziz, ...z ) I<UxI

(b) Let y be reducible, and

y=t(1,z7).- .(m,zl)‘..(l,zr) .. .(m,zr),
where t is reduced. Then, by the definition of ¢ and the inductive hypothesis.

e(t(1zq) ... (m,zq) .. ‘(l.zr)‘. Am,z.)(1,2)...(m,z2))=

e(tz21zy... 2, 2) =9 (((12y) ... (m,21)...(m,z ) 2) = ¢ (y2).

If ¢(x) = x, then (c) is obviously true. Let ¢ (x) # x,i.e. x =t(1,2) . . . (m, z). Then, by
(b), we have

exy)=¢(t(12)...(m,2) y) = ¢ (ty(1.2) ...(m,2z)) = ¢ (tzy).
Now, using the inductive hypothesis, we obtain

wltzy)= olp(tz)y) = of@x)y). »

Using the mapping ¢, we can define a binary operation * on G |- Namely,

x*y:=p(xy).

Proposition 1.2. G;=(G;*) is a commutative group generated by B, and B, is m—free
in G.

Proof: It is obvious that Gl = (Gl; *) is a commutative monoid, and that Gl is genera-
ted by B. Let (i, x) €By. Then

(i) P =x"1 (1% .. (i-1%) (+1x) ... (mx).

79

1401



Znanstv Rev 1 (1990) 75-86

By the construction of Gl, it follows that G0 < Gl . It remains to prove that Bl is m—
free in Gj.

Let x,, yveB], and &g® . T 0 g Gy Y,€B, for each veN ,
then the claim is true, as bo is m—free in GoéGl.
Ifbothxy ...x,andy; ...y, are reducible, then x,, = (A x), y;(u,y). and we have

(1x)*...*(mx)=(Ly)*...*(m,y),
ie. p(x)=e(y), ie. x=y in Gy Also, if X] .o Xy 8 reduced and Y1i - -« ¥Ypy is not, we obtain
that x; . .. x,€E, which contradicts the definition of E ;.

It remains to consider the case when both sides of the equation are reduced, but at least
one of themisin G \Go, (thus, both of them are in G \Go)'

Let:Zs .o X M5 o ¥ €O \Go,where 2<i,j<m,and x| ...%_1.X,-- 'xj—l
€G,,. Then

xi*‘..*xm=yj*.‘.*ym,

Xy* M= "‘yj_i.

But x> .. . *x =y.* .. "‘ym imply that i=j, and, then, considering the fact that if a

m “]
set is m—free in a commutative group then it is r—free forany | <r<m, Yj- - ¥m is a per-
mutation of Xjs + + os Xy andyy, ... Yi=i is a permutation of x; .. ., xj—l .=

Continuing in this way, we obtain a chain of sets B, and a chain of groups G,. such
that Ba generates G, and B ,is m—free in G, Finally.

C:=UB0” G:=UG,. :
o =0 a=0

Proposition 1.3. G is a commutative group generated by C, and C is m—free in G. m

Using the fact that C is m—free in G, a fully commutative (m+k,m)—operation [] could
be defined on C,ie.

Iulln+k]=v"11*"ul*‘..*um+k=v]*...*vm. (1.1)

Theorem 1.4. C = (C;[]) is a fully commutative (m+k, m)—group.

Proof: It is sufficient to prove that C is an (m+k, m)—subgroup of the commutative

group G. As C is m—free in G, we need only to prove that the condition (ii) of Theorem 0.4
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is valid for C. Let weug* .*uk, v=vl*. e *vm be such that u,, vleC. Then uveC = {cl*
cq* .. Mg, lc;\eC}. Conversely, if u and v are given as above, then there is an element weG,
such that uw=v. One can easily prove that weC _.®

Let Q = (Q: [ ]) be a given f.c. (m+k,m)—group. Using the given construction for obtai-
ning a f.c. (m+1,m)—group, and choosing the group G, to be the commutative covering
group Q(V) of the given f.c. (n,m)—group Q, we obtain a f.c. (m+1,m)—group C=(C: []).

It is obvious that Q<C, and

[ D=0 e ay® . tapy =by*.. oy = K =T,
forany aj, ... a,4.€Q.

Thus, we have the following

Theorem 1.5. (The Post Theorem for f.c.v.v.groups). Let Q = (Q; [ ]) be a f.c. (m+k,m)—
group. Then there exists a f.c. (m+1, m)—group P=(P{]), such that Q<P, and

[a"*k ) = 2y,
for every a,eQ.=
2. Free fully commutative vector valued groups

Using the construction given in sect. 1 we will give a construction of a free f.c.v.v. group
generated by a nonempty set A.

First we define, in the usual way, the notions of subgroups and subgroups generated by
a given nonempty subset of the given f.c.v.v. group. Namely, if Q = (Q;[]) is a f.c. (n.m)—
group, then the, nonempty subset P 4 Q is called a subgroup of Q iff the following conditi-

ons hold:
(i) ar?+keP(m+k) = [a'in+k] eplm).

(ii) (YaeP®) | bePM) (ax] = b = xeP(™),

Note that a nonempty intersection of subgroups of a f.c. v.v. group is also a subgroup.
Thus, we have a natural definition of a f.c.v.v. group generated by a given nonempty set A.
We will give a description of the subgroup of a f.c.v.v. group generated by a given subset.
Namely, let Q =(Q;[]) be a f.c. (m+k.m)—group, and A be a nonempty subset of Q. We will,

first, define a sequence H,, (A) of subsets of Q in the following way:
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(i) Hy(A)=A
(ii) A’ =H,, (A) U{aeQ I [x}]= ayD, x eH_ (A)} ;
A” = U{{xl ) xmkl [a]'l: x“l1 1= b“i', 2, b]\EHo(A}} ]
H; (AFA’UA™:
(iii) Hyy ) (A) = Hy (H, (A)).
Denote by H(A) the uniondlgo Hy (A).
Proposition 2.1. Let Q = (Q:[]) be a f.c.(n,m)—group, and A a nonempty subset of Q.
(a) aeQ is generated by A S Q iff aeH (A).
(b) Q is generated by A iff Q=H(A). =
Let Q =(Q:[Dand Q" =(Q" :[]" ), be two f.c.n,m)—groups, and ¢:Q = Q’ a map-
ping. We say that ¢ is a homomorphism iff the following condition holds:
[@*K)=b™ = [0(a)) . .. Agmud] =elb)) .. .0 (by) (2.1)
We say that a f.c.(mtk,m)—group Q = (Q; []) is free with a basis A, if Q is generated by
A, and, moreover, every map from A into an arbitrary f.c.(m+k,m)—group P=(P;[ ]]) has a
homomorphic extension ¢:Q = P.

Let us choose, in the construction given in 1 . G, to be the free gommutative group

0
generated by A. Then

Theorem 2.2. C=(C;[])is a free f.c.(m+k,m)—group with a basis A.

Proof: Let P be a f.c.(m+k,m)—group generated by A. It is clear that each element of
G, is generated by A. Then

(1, XKy L (m, xPHR) = xR,
ie. (i,x)eP, where erDE Go_ Thus BIE P. Let BaE P, and era. Then there exist u,,, Vy€P,

such that x=u; . .. uﬁv_ll ...l Letsbea positive integer such that § + f= m(mod

¥ i
k). Then

&

[u‘s\r1 B .v,yy]=(1,u5u] ..‘uﬁ)...(m,u uy ...uﬁ)

has a solutiony =(1,x) ...(m,x),and u, u Vo (X, uﬁuI ari uﬁ)eP. Thus (i,x)eP.ie.

v‘
B4+ 1= P, which imply C<P.

Let Q = (Q; [ ]) be a f.c. (m*tk,m)—group and A: A = Q a mapping. As G, is the free
commutative group with a basis A, there exists a unique homomorphic extension &
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Gy ™ Q(v) of \. Let £ oGy Q(V) be a homomorphic extension of A. As Taﬂis the free

product of the commutative monoids G, and (Nm X Ea)(*), there exists a unique homo-

morphic extension Eéﬂ of both ¢, and the homomorphic extension £: (N, x Ea)(*) -
Q(V) of the mapping u : N xE = Q(V), defined by:

p ug* o Fup ) =g (uy) .. &, (u ) I

Let us note that if (ix) eN, x Ea’ then there exist Vi - ‘Jvm+keBa’ such that x =
V]* R A

Denote by £, the restriction of Ec:ﬂ on G, ;. To prove that £ ., is a homomorp-
hism, it is sufficient to prove that for every xeT 4. Er;_,_] (x)= Ec;+l (w(x)).

Let x=x" (1)) ... (m)y). By the properties of the commutative covering group Q(v]
and the definition of E(;ﬂ’ it follows that:

Ear1 (0= Egpy  (Ly) o (m,¥)) =804 () gy (LY) - gy (my) =

=E g OOV L8 D 1y L8y ) Iy = £l 7 ).

Define a mapping £:G — QW) by

XeGg = £(x) = £,(x).

Then £ is a homomorphic extension of A. If we denote the restriction E,’C by n, then

n:C = Q is an (m+k,m)—homomorphism. Namely, let By e umﬂ(eC, and let [uT"l‘+k] -
= v”il. Then
ul* . *um-f-k: vl* S *vm.

But,asn = E/C’ and £ is a homomorphism from G into Q(v), we have that
nuy) - -on(up ) =E Q). B ) =EQ* . fup ) =
=HV* ) S EYY) - ) = 0(v) ).
Thus
[nCuy) .. nCup ) T=n0vy) .. n(vy,).»
In the construction of the homomoprhism n we could have defined that
™ Mugad = [ E Q) o Boge) ]]j, for any 1 <j < m. Thus the homo-
morphic extension with the wanted property is not uniquely defined. This result differes

from the results about free algebras. In fact, the following result is true:
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Proposition 2.3. Let £ be an endomorphism of C such that £(a)=a for each aeA. Then
£ is an automorphism, and there exist infinitely many such autimorphisms.

Proof: We will prove this proposition by induction on the hierarchy, which is naturaly
defined on the elements of the free f.c(m+k,m)—group C with a basis A, defined in the
preivous property. Namely, if ueB \Ba. then the hierarchy x(u) is a+1.

We define two subsets C, and D, of B ;| in the following way:

im0l €C, ©day, . .. A peB, )[a!+k] am
miy—m
ty - tm - (3al,_..,ak,bl,...,bmsBa)[alt]]—bl.
Let us note that if djeCa\ Ba‘ then each d?\ ,A=1,2, ... .m,Iissuch that d)\eCa\Ba.

Also, considering the construction of C, we obtain that if tjeDa \ (B, 0] Cp), then each
t,uEDa \ (Ba v Ca), u=1,...,m,as well. To prove the proposition we need to show that
£ is a permutation on C.
It is clear that £ is a permutation on B, Let ¢ be a permutation on Ba and let (1,x)
% (m,x)eCa\ B,,. Then
(&(a)). .. Eap) 1= E(1X) . . . E(mx).

Using the definition of the (mtk,m)—operation we obtain [&(a;) . . . Ea4) 1=
=(1,¢(a)) ... Hap ) ... (m Eay) . .. E(ag4) ).

But, then, £ (1,x), ..., (m, x) is a permutation of

(1,E(ap) .. - E(apeg) )s - - - (m, E(ap) . . AE(ﬂm“}k) ).

IE b5 oontog €D \ (B, UC,), then t; ...t is a solution of the equation [dk X 1]—

=b"]. Forsome a,, , byeB , and
to b = Y ] By b
Then & (t}) ... &(t,))) is a solution of the equation [£(a)) . . . &ay) y”ll] =ED - o
E(byp)-
On the other hand, it has a solution
(LEar!) B HEG) .5y ...
-‘(m,E(all ).k EG) L ED)).

As Q(v) is a commutative group, it follows that
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(LE@ ) 5@ e k)
.‘.(m,E(o{“l}...z(ail}E(bli---ﬁ(bm”

is a permutation of £ (t;). ..., £(t,). Thus, £ is a permutation of By+1 =B,V C,UD, =

Lemma 2.4. Let Q and Q" be (m+k,m)—groups and £ : Q = Q" a homomorphism. Then
£(Q)isaf.c. (mtk,m)—subgroup of Q* .=

Proposition 2.5. Let C = (C; []) be the free f.c. (m+k,m)—group constructed in 2.2.,
and Q = (Q; [ | ) be a free f.c{m+k,m)—group for which A is a basis. Then there exists an
isomorphism ¢ from C onto Q.

Proof: Using the definition of a free f.c(m+k,m)~group with a basis A, it follows that
the identity mapping from A to A could be extended into a homomorphism £ from Cinto
Q, and into a homomorphism 7 from Q into C, and n£ (a) = a, for every aeA. By 2.3.,
then, it follows that £ is injection. Then, by Lemma 2.4., £ (C) is subgroup of Q generated

by A. Thus £ (C) = Q. and £ is surjective. m
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Povzetek

V prvem delu ¢lanka navajamo osnovne definicije in izreke o popolnoma komutativnih pol-
grupah z vektorskimi vrednostmi: splo$no popolnoma komutativno asociativno pravilo (Iz-
rek 0.1) in Postov izrek (1zrek 0.2).

V nadaljevanju, izhajajo¢ iz komutativne grupe z dodatnimi lastnostmi, konstruiramo po-
polnoma komutativno grupo z vektorskimi vrednostmi (Izrek 1.4) in dokazemo Postov iz-
rek za tovrstno strukturo (Izrek 1.5).

V zadnjem delu ¢lanka, kot poseben primer prejsnje splosne konstrukcije, dobimo prosto
popolnoma komutativiio grupo z vektorskimi vrednostmi (Izrek 2.2).

Prejeto dne 15. 11. 1989
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