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0. Introduction

(2m, m)—groups are considered and examined in more details in [2]. Here we recall the ne-
cessary definitions, notations and known results.

Let Q be a nonempty set. The elements (a;, a5, . . ., a,) eQ" will be denoted by a8y .. 24

or shortly by atl, Acording to this notation we can identify the Cartesian power Q' with the
subset Q{ = { ay ay. . .4 | ajeQ} of the free semigroup Q+ with basis Q. The free monoid

with basis Q will be denoted by Q*, and its unit will be denoted by 1. We consider Q™ as a
subset of Q*. The subset {l} will be denoted by Q.. We say that an element ueQ has di-
mension t, and write dimu=t, if ute, The set of nonnegative integers will be denoted by N.
and theset {1.2,.. .t} by N,.
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A (2m, m)—operation on a nonempty set G is a map [ |: G>™ — G™. We say that the
pair (G, [ ])isa(2m, m) semigroup if for each ieN ,and each xuvweG>™, xu,uveG2M
[x[uvlw] =[ [ xu ] vw] (0.1)
A (2m, m)—group is a (2m, m)—semigroup (G, [ ]) such that for each a,beG™ the equati-
ons
[ax]=b=[ya] (0.2)
have solutions x and y in G™.

The existence of a (2m, m)—operation [ ] on a set G is equivalent to the existence of m

2m—operations, [ 1y [ 1p.---[ Iy on G defined by:

foreachieN [a];=b;if and onlyif [ a] = btln' (0.3)
To each (2m,m)—semigroup (G. [ ]) we associate a semigroup (G™. *) where x - y=[ xy ].
It is shown in [2] that a (2Zm,m)—semigroup is a (2m.m)—group if and only if the associated
semigroup ((;m‘ *) is a group. The unit of the associated group is of the form e=eM=ee. ..
ceG™, for a fixed eeG, and for each xyeG™. [xey] = xy. We say that e is the unit of the
(2m,m)—group (G, [ ]).
The existence of the unit e with its properties, allows us to give the following characteriza-
tion of (2m,m)—groups, as algebras with one (2m.m)—operation, one nullary and m unary
6perations.
Proposition 0.1. A (2m.m)-—semigroup (G, [ ]) is a (2m,m)—group if and only if there exist
e€G and maps f; : GG, ieN_, such that, for each xeG, xeG™M, 1, keN,.:
() [xe] = [ex] =x;
(i) [f ()fp4q(x). . .fm(x)em_]xf[(x)fz(x). A1) ]1=e=
[e" ! xfy (Of(x). . £, (x)e™ T ]

Moreover, for each uveGM ! xeG. ieN,, and e'=em—1:

(iii) l”m is injective;
(iv) [ uxfy(x). . f,(x)v ] = uev;
(v) [fj+1(x)- - .fm(x)e’xfl(x).“fi_l(x)e J= (I‘S(fi(x)), sney fm(fi(x))).

Proof. Suppose that (G, [ ]) is a (2m,m)—group. As we have already mentioned, in [2] it is
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shown that (i) is satisfied. Let aeG. Then, there exists a uniquely determined a’ln = aeG™,
such that [e’aa] = e. We define fi:G’G by f;(a)=a;. For shorter notations we denote by Fk(a)
and Fj(a) the elements fy(a). . . fk(a)eGk and fi(a). . .fm(a)eGm_kH. respectively. Then,
the condition [e’aF, (a)]=e, implies that for each reN_, [cr[e’aFm(a)]em“‘Fe, ie. [er—l
aF (a)e™ "]=e. Now, for r=1, we have [aF (a)e’]=e, and so, [FL(a)e’[aFm(a)e‘]eFk_l(a)]=
= [F‘k (a)e’aF)_(a)F}(a)eF) _((a)] =[F}(a)eF} _(a)].i.e. foreach keN,, [Fi((a)e‘aFk_l
(a)]=e. Hence, (ii) is satisfied.

Let x, yeG and let fm(x)=fm(y). Then, the condition (ii) for k=m, i.e. [fm(x)e‘me*](x)F
=e=[f,(v)e’yF, ()] implies that x=y.

The condition (iv) follows directly from (i) and (ii).

Let xeG and let ieN .. Then. [F'iﬂ(x)e‘ xFi_l(x)e] = [Fi_,_l(x)e’xFi_l(x)[fi(x)Fm(fi(x))e‘]
el= (6, (5., [y ()

Conversely, let (G, [ ]) be a (2m,m)—semigroup, with an eeG and maps f,:G~G satisfying
the conditions (i) and (ii). Then, e is the unit in the semigroup (G™, ), and the inverse for
an element x“l‘eGm is [F (X p)e'F (X )€’ - Fpi(xq)e’] eG™. m

The above characterization of (2m,m)—groups, was the inspiration for the combinatorial
description of free (2m,m)—groups given here. It is analogous to the combinatorial descrip-

tion of free (m+1,m)—groups given in [3]

1. A combinatorial description of free (2m,m)—groups

Let A be a nonempty set, and m > 2, a positive integer. We will construct a free (2m,m)—

—group with basis A. For each aeA, let D(a)= {a(i), alD)ivas a(m)} be a new set, disjoint

from A, such that D(a)ND(b)= ¢ for a #b. Let A’ be the union of all the sets D(a), lete be a

new element which is not in AUA’, and let Bﬁe}UAUA‘. By induction on « we will define

a sequence of sets B(0), B(1), . . ., B(a), .. ..Let B(0)=B. Suppose that the set B(a) is defi-

ned. Then, B(er+1)=B(@)U(C(@)xN_), where C(a) € B ()" is defined by C(a)= {x|

= €B ()" n >2. At the end, let D= U B(a).

a=0

Remark. Using, if necessary, different notations for the elements of B, we can achieve that

for each @, (C(a) x Nm)ﬁB=¢, and (B(B+1) \B(B)N(B(y +1) \ B(y ))=¢ for § . With this
31
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remark, ueD if and only if ueB(0), or u=(x.i) for ieN,,, and xeD'™ n>7.

Next, by induction, we define a map | [: D=N, called length, as follows: | bl=1 for beB:

nm
]

called reduction, as follows:

and | (x"" 1) |= Ixy I+ ...+ Ix, |. By induction on the length, we define a map ¢:LD,
(A) Let w(u)=u for each ueB.
(B) Suppose that for each ueD with | ul <K KeN, ¢(u) is well defined, and that:
o(u) #uif and only if | g(u)! < lu |; and (1.1)
P (w)=Alw))=u.
Remark. For simpler notation, we denote ¢((u,i)) by ¢(u, i), and although (vn;‘ i)f‘D,
we denote o(v;) by oV, i).
(C) Let u=(x,i) with Ix = K. Then ¢(u) is defined by the first possible application of one of
the following steps:
(1 Ifx=unlm .and “"(uj) - Uj for somejENnm. then du)=d@l(x)j),
where .pl(z)=\al(zlt) is only a notation for ((z). . .Az,).

(2) Il’:t=w::"11 w, where cj=(z,j), and v has the smallest such dimension, then

wlu)=p(vzw, i).

(3) If x=vew, and v has the smallest such dimension, then

olu)=p(vw,i).

(4) If x=vaa(1). . .a(m)w, aeA, and v has the smallest such dimension. then

olu)=g(vew, i).

(5) If x=va(k)a(k+1). . .a(m)e’aa(1)a(2). . .a(k—1)w, aeA, and v has the smallest such di-
mension, then

olu)=p(vew,i).
(6) If x=vcf:_‘ ycr—ll z, 122, cj=(wg'), p(wy.j)=e foreach jeN v has the smallest such

dimension, and y has the smallest such dimension for this v, then
w(u)=¢(vez, i).
(7) o(u)=u.
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The well definedness and the essential properties of the map ¢ are given by the follo-
wing three propositions, which will be proven later.

Proposition 1.1. (a) The map g is well defined, satisfies (1.1) and (1.2), and w(b)=b for
each beB.

(b) l g(u) | < lu | for each ueD. (1.3)

Proposition 1.2. For each u=(vxw, i)eD,

(a) e(u)=lipy (VW) ). (14)
(b) p(u)=e(ve(x)w.i). (1.5)
Proposition 1.3. Let ieN . Then:

(a) g(uc"] wii) =g(uvw,) for ¢=(v); (1.6)
(b) (uev.i)=p(uv,i); (1.7)
(¢) ¢(uaa(l). . .a(m)vi)=g(uev.i); (1.8)
(d) p(ua(k). . .a(m)e’aa(1). . .a(k—1),v.i)=¢(uevi): (1.9)
(e) eucT yel ! vi)=pluev.i, (1.10)
for cj=(w,j), and p(wy, j)=e for each jeN

(f) ¢(xu,i)= e implies p(ux.j)=e; (1.11)
(g) p(uyv,i)=p(uev.i), when oy j)=e foreach je N .. (1.12)
Let Q=¢(D) and [ ]: Q™+ Q™ be defined, for each ieN,,, by

[u]; = w(u, i). (1.13)

The following theorem is the main result of this paper.

Theorem 1.4.(Q, [ ])is a free (2m,m)—group with basis A.

Proof. (a) The proof that (Q,[ ])is a (2m,m)—semigroup, follows directly from the de-
finition of [ ] and the conditions (1.5) and (1.6). Moreover, the condition (1.7) implies that
e is the unit of (Q,[ ).

(b) We will show that there exist mapsfj :Q-Q,jeN,,, satisfying the condition (ii)
from Proposition 0.1. We define the maps t} by induction on the length as follows:

t:i(a)=a for each aeA;

fj(a(r))=[a(r+l). ..a(m)e’aa(1). . .a(r—l)e]j. for each reN_;

fj(e)=e; and
33
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F=[ertD). . (xm)GE)x,1). . (xr—1e];, where Gx)=G(x"" )=

= Fm(xnm)e’Fm(xnm__l)e’. . .Fm(xl)e’.

Above, Ft(x)=f1(x)f2(x). : .ft(x), and with this notation, Fm(x,:)=[(x,r+l). . {x,m)
G(x)(x,1). . (x,—1)e]. (1.14)

As a consequence of the inductive hypothesis and the conditions (1.12) and (1.7), we
have:

@(xG(x),i)=e for each ieN . (1.15)

Next, the definition of [ ], and the conditions (1.11) and (1.14), imply that o((x,r)
Fm(x,r)e‘,i)=e, for each ieN, ie. the maps t:l satisfy the condition (ii) from Proposition
0.1.

(¢) Since ¢(b)=b for each beB, and A CB, it follows that A C Q. Let u=(xn1m , 1)eQ
with "lje <A>, where <A> denotes the (2m,m) — subgroup of (Q,[ ]), generated by A.
Then, [x"|" J=2"1e<A>™, and so, u=g(u)=e(x"™ 1) = [ XM ] =z, € <A>. Hence, Q=
=<A>.

(d) Let (G[ ") be a (2m,m)—group and X\:A-G a given map. We define a map h:D-G,
by induction, as follows:

h(a)=A(a), for each acA;

h(e)=s, where s is the unitin (G| );

h(a(r))=gr(h(a)), for each reN ., where g1, g5, ..., 8m: GG are the maps with the pro-
perty [sm_lxgl(x). . 8 (x)]’ =s" for each xeG; and

h(x“lm D=[h(xh(x,). . h(xp D]}

If F™ , )=(y4™ ,j) in D, then i=j, p=q and x_ = y_ for each reN,.. Hence, h is well
defined.

By induction on the length, using the properties of the map v and the properties of
(2m,m)—groups, it can be shown that for each (xP{™, i) €D with x €Q,

h(g?(xplm, i)) = [h(x}) h(x,) . .. h(xpm) Ii- (1.16)

So, the restriction £ of h on Q is a (2m,m)—homomorphism from (Q,[ ])into
(G,[ 1),such that £(a)=)\(a) for acA.

The steps (a) through (d) show that (Q, [ ])is a free (2m,m)—group with basis A. =
34
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2. Proofs of Propositions 1.1,1.2 and 1.3

Proof of Proposition 1.1. (a) The right hand side of (1) to (6) in the definition of ¢,
is of the form ¢(v), where | v | <K (see (B) from the definition of ), and so, the inductive
hypothesis implies that ¢(u) is well defined, satisfies (1 1) and (1.2), and @(b)=b for each
beB. (b) follows from (a). =

Proof of Proposition 1.2. (a) Let vxw=u"1m If (u)=u, for each reN, ., then the pro-
position is obvious. If there is some reNnm, such that lAur) #u,, then (a) follows from (1).
The condition (b) follows from (a) and the condition (1.2). =

Proof of Proposition 1.3. The proof is long, so, it will be divided into six lemmas. The
proofs of the lemmas are by induction on the length. If, on the element in consideration in
thé first five lemmas, we can apply (1), the conclusion follows from Proposition 1.2 and the
inductive hypothesis. So, in their proofs we assume that (1) is not applicable on the element
in consideration. ‘

Lemma. 2.1. If x=uc"} w, for cj=(v.j) and sp(cj)zcj, then g(x.i)=g(uvw j).

Proof. Since, by assumption, p;(x)=x, it follows that (2) is applicable on (x.i).

(i) If u has the smallest such dimension, then the conclusion follows directly from (2).

(ii) If u does not have the smallest such dimension, then u=u'd"} u”, for d =(z.r).
Then, (2) and the inductive hypothesis imply that ¢(xj)=p(u'zu”c’] w, i)=p(u'zu”vw )=
=p(uvw,i). =

Remark. If (2) is applicable on (x,i)eD, we will write g5(x) # X, and (p5(x).i) will
denote the element obtained from (x,i) by one application of step (2).

Lemma 2.2. If x=uev, then @(x.i)=g(uv,i).

Proof. (a) If \,92()() #x, then ¢2(u) # u or gy(v) # v, and the conclusion follows from
Lemma 2.1 and the inductive hypothesis.

(b) Let py(x)=x. Then (3) is applicable on (x.i).

(b.1) If u has the smallest such dimension, then the conclusion follows directly from
(3).

(b.2) If u does not have the smallest such dimension, then two cases are possible:
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(b.2.1) u=u'e’, reN . |- Then, o(xj)=p(u’e vi)=e(uvii).

(b.2.2) u=u'eu”. Then g(x.i)=p(u'u"evi)=p(u'uvi) = p(u’eu”vi)=p(uv,i). o

Remark. If (3) is applicable on (x.i)eD, we will write p3(x) # X, and (cps(x),i) will
denote the element obtained from (x,i) by one application of step (3).

Lemma. 2.3. If x=uaa(1). . .a(m)v, acA, then ¢(x,i)=(uev.i).

Proof. (a) If zpj(x) # x for some j= {2,3}, then .pj(u) #u or ‘Pj(") #v, and the conclu-
sion follows from Lemma 2. (j—1) and the inductive hypothesis.

(b) Let gaj(x)=x for j=2,3. Then (4) is applicable on (x.i).

(b.1) If u has the smallest such dimension, then the conclusion follows directly from
(4).

(b.2) If u does not have the smallest such dimension, then u=u’bb(1). . .b(m)u”, and .thc
conclusion follows from (4) and the inductive hypothesis. 0

Remark. If (4) is applicable on (x,i)eD, we will write g4(x) # x, and (g4(x),) will
denote the element obtained from (x.,i) by one application of step (4).

Lemma 2.4. If x=va(k). . .a(m)e’aa(1). . .a(k—1)v, aeA, then (X ,i)=g(uev.i).

Proof. (a) If 4{(x) # x for some je {23}, then ¢y(u) #uor ¢¥) # v, and if gy(x) #
X, then
¢4(w) # u, or @a(v) # v, or np4(ua(k). . .a(m)) # uva(k). . .a(m), i.e. u=u'aa(l). . .a(k—1), or
(¢p4 (aa(1). . .a(k—1)v) # aa(1). . .a(k—1)v, i.e. v=a(k). . .a(m)v’, So, the conclusion follows
from Lemma 2. (j—1), the inductive hypothesis and Lemma 2.2.

(b) Let ‘pj(x}=x for 2 <j <4. Then (5) is applicable on (x.i).

(b.1) If u has the smallest such dimension, then the conclusion follows directly from
(5)

(b.2) If u does not have the smallest such dimension, then two cases are possible:

(b.2.1) If u=u’a(r). . .a(k—1), r = 2, then by (5) and Lemma 2.2 p(x,i)=g(u’ea(r). . .
a(k—1)vi)=p(u’a(r). . a(k—1)vi)= ¢luvev,i).

(b.2.2) If u=wb(t). . .b(m)e’bb(1). . .b(t—1)u”, then, the conclusion follows from (5)

and the inductive hypothesis. ©
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Remark. If (5) is applicable on (x,i)eD, we will write ¢5(x) # x, and (¢5(x)J) will
denote the element obtained from (x,i) by one application of step (5).

Lemma 2.5. (I) If x=ucnr1 ycr_ll\', where cj=(w‘j)‘ H"(chcj’ r=>2, and ¢ (wy,t)=e for each
teN,.., then p(x.i)=p(uevi).

(IT) If x=uyv, and (y,t)=e for each teNm, then ¢(x.i)=p(uev,i)

(III) If x=uv and @(uv,i)=e, then ¢(vu,i)=e.

Proof. (I) (a) If .pj(x) # x forsome 2 <j < 5, then the conclusion follows from Lemma 2.
(j~1), Lemma 2.2, the inductive hypothesis, and the fact that o(wy,t)=e=p(yw,t) for each
teN,, which follows from Lemma 2. (j—1) and Lemma 2.5. (III), inductively.

(b) Let qoj(x)=x for 2<j<5. Then (6) is applicable on (x.i).

(b.1) If u has the smallest such dimension, and y has the smallest such dimension for
the given u, then the conclusion follows directly from (6).

(b.2) If u has the smallest such dimension, and y does not have the smallest such dimen-
sion for the given u, i.e. y=y’c1i_1 y”, and p(wy’,t)=e for each teN , then Lemma 2.5 (II)
and (I11) inductively and Lemma 2.2, imply that for each teN . e=ga(wy,t)=ga(ecli_] y’ .=
=-p(y"ecrl'l .t)=.,a(ey”cr]_1 ,1), and so, by (6) and Lemma 2.5 (II) inductively, o(x,i)=o(uev j).

Remark. If (6) is applicable on (x,)eD, we will write gg(x) # x, and (pg(x).i) will
denote the element obtained from (x.i) by one application of step (6).

(b.3) If u does not have the smallest such dimension, then the following four cases are
possible.

(b.3.1) q;'é('ll) # u. Then the conclusion follows directly from (6) and the inductive
hypothesis. If pg(u)=u, then since p,(uc? )=uc'?, it follows that ¢g(uc’?)=uc'}.

(b.3.2) -,c»é(nr:r:’)=ncr¥l and \pﬁ(ucnrly) 9’=ucnl:ly‘ Then two cases are possible.

(b.3.2. 1) u=u'cf<"l 2 & k<r, y=y’ck"l‘1 y”, and o(wy’, j)=e for each jeN . Then
Lemma 2.5 (II), (III) inductively, and Lemma 2.2, imply that for each teN,,, e=p(wy t)=
=¢(eckl_l y' )= go(y”eckl_l , 1), and so, by (6), Lemma 2.5 (II) inductively, and Lemma
2.2,\o(x,i)=lp(u‘ey”cr]_l v,i)=¢p(u’ecrk‘1 v,i);p(u’crlc_lev,i)=¢(uev,i).

(b.3.2i) u=w’d™ u”, 3.’=3,r’dﬂ"i“I y”, p=>2, dq=(z, q) and gza(zu”r:nr'l y’, t) = e for each

P
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teN,, - Then, Lemma 2.5 (III) inductively, implies that e=¢:(cmr y'zu”, t).and e=g(wy, t) =
=p(wy'dPT1 y”, =e(y”wy’dB ™! | 1) for each teN_, and so, (6), Lemma 2.2, Lemma 2.5
(IT) inductively, and Lemma 2.1, imply that ¢(xi)=¢(u’ ey”cy -1 v, i)=Fp(u’y” r 1 ev,i)=

= owy”c 1' 1 "? yzu'vi) = o0’y wy’zu”vi) = o(u’ y” wy’ dI u”v,i)=¢(u‘ed"§ u’vi)=

=o(u’ dg‘ uev,i) = o(uev, i).

(b.3.3) pg(ucT y)=uc™, y and pg(uc? ycrl_1 ) #uc'? ycr?l . Then two cases are pos-
sible.

(b.3.31) u=u‘c'1_{1 , 2 < k <r. Then the conclusion follows directly from (6) and Lem-
ma 2.2.

(b3.3.i) u=w'c} v”, 2 <k <rand g(wuc My, t) = e for each teN, . Then, Lemma
2.5 (I1T) inductively, implies that e=p(wy, t) = o(yw, t) ande = ¢ (wuc™ b ty=
=p(ywu”c'y M, t) for each teN_,, and so, Lemma 2.5 (II), (II) inductively implies that e=
=pleu”c} m o= dcr::l eu”t) for each teN, . Next, (6), Lemma 2.2 and Lemma 2.5 (II)
inductively, imply that np(xJFgo(u‘ecril v, i)=¢:(u‘c’£l ev,) =
= \p(u‘cr I em ey )= g(u P KU ev,l)-—\o(uev,l)

(b.3.4) ¢6(uc ye'y )=uc : ye! I . and q')6(I.I.CT v)#-"nc yc 1y Then two
cases are possible.

(b3.44) w=weT ! | 2 <k <r,v=v K1 v, Then e=p(wyc™[ ! v'.t) for each teN, .
Since p(wy,t)=e for each teN,,, Lemma 2.5 (II), (Il) inductively, and Lemma 2.2 imply
that c=‘.a(ecr_] v t)=\a(cr_l ev'ck‘l t) for each te N,,,- Next, (6) and Lemma 2.5 (II)
inductively, 1mply that o(x,i)=p(w'ev” i) = p(u'cy I—lgy k ly» i)=eluev.i).

(b.3.41i) x=u‘d'g u’cTyc]™ Ly dpl_l v, p =2, dq=(z.q) and p(zu”c! ycrrlv’,t)=e
for each teN_ .. Then the inductive hypothesis and Lemma 2.5 (III) inductively, imply that
e=cp(zu”ev’,t)=;p(d’g u”ev’dri_] . t) for each teN,, and so, (6) and Lemma 2.5 (II) inductive-
ly, imply that @(x,i)=e( u'ev"j)=¢(u'drg u’evdf~ Ly iy=o(uev,).

(TI) Since -,o](x)=x and e=¢(y,t) for each teN_ ., it follows that ¢j(31) #y for some je
{2,3,4,5 6 } . Then, Lemma 2. (j—1) implies that e"-‘gp(\oj(y),t} for each teN_, and the con-
clusion follows from Lemma 2. (j—1) and the inductive hypothesis. Here, for j=6, Lemma

2. (j—1) stands for Lemma 2.5 (I).
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(TIT) (a) If ¢,(¥) # v for some je {23456}, then Lemma 2. (j—1) and e=g(x,i) imply
that e=\o(ugoj(v),i), and so, by Lemma 2. (j—1) and the inductive hypothesis, e=ﬂ¢j(vmjk
=g( vu,j). Here, for j=6, Lemma 2. (j—1) stands for Lemma 2.5 (I).

(b) Let wj(v)=v for each jeN.

(b.1) If vz(x) # X, then x=c"l1 v, cq=(w,q), and by Lemma 2.1, e=p(wy,i). By Lemma
2.5 (1) inductively, e=¢(c'S yc . i)=¢(vu j).

(b.2) Let ;,az(xe. If .,a_;(x) #* x, then ¢3(v}=v implies that x=ey, and so, by Lemma 2.2,
e=¢(y i) which contradicts the assumption of (b).

(b.3) Let g(x)=x for je {1.23} . If g4(x) # x, then x=aa(1). . .a(m)y, and Lemma 2.3
implies that e=y(ey.i). Since, by (b), ¢j(y}=y for each je{2,3,4,5,6} , it follows that y=e’.
Hence, @(a(1). . .a(m)e’a,i)=e.

(b.4) Let \a}(x}fx for each jeNy. If ¢5(x) # x, then x=a(k). . .a(m)e’aa(l). . .a(k—1)y,
and Lemma 2.4 implies that e=¢(ey.i). Since, by (b), apj(y)=y for each je {2,3,4,5,6} L it
follows that x=a(k). . .a(m)e’aa(1). . .a(k—1). Hence, e=¢(vu,).

(b.5) Let .pj(x}=x for each jeNg. Then pg(x) # x, which implies that x=cn;‘ ycrl_lz for
cq=(w.q) and p(wy,t)=e for each teN . Then, Lemma 2.5 (I) inductively, implies that
e=y(ez,i), and so, glez,i) # (ez,). Since, by (b), tpj(z)=z for each je {2,3,4,5 ,6} , it follows
that x=c“r’yc'_]1. and by Lemma 2.5. (I) inductively, .p(vu.i)=¢(cr13},_1yc{ ,i)=e.O

Lemma 2.6. Let u=(x,i), cq=(w.q). u,chD, qeN .. Then:

(D) If x=vc'} z, then p(u)=p(vwz,j).

(1) If x-—*vc’ﬁyc]f‘lz. and ¢(wy ,t)=e for each teNm. then g(u)=y(vez.i).

Proof. If gp(cq)=cq, the conclusion follows from Lemma 2.1 for (I), and Lemma 2.5.
for (II). If ;,o(cq) # Cq for some qeN . then \o(cq} # °q for each qeN,,. Hence, {,oj(w) #*
w for some jeN.

(I) If ¢;(w) # w, then by Proposition 1.2 and the induction, plu) = @(thl(cnil)z.i) =
= (vl (W),1). . @y (W),m)z i) = pvpy (W)z,i) = plvwz ).

Let ¢;(w)=w. Then gaj(w) # w for some jeNg \{1}, and so, by Proposition 1.2 (b), Lem-
ma 2. (j—1) and the induction, ¢(u) = w(vey (c"f)z,i) = \a(v:p(upj(w),l). . .\a(-pj(w),m)z,i) =
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= w(wj(W)z,i) = so((vsaj(W)zJ) = plvwz ).
(1) The proof is analogous to the proof of (I), where we use the additional fact that

e=|,o(wy,t}=.p(\pj(w)y,t) for each teN,, and for each jeNg Om
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Povzetek

Nas cilj je zgraditi prosto (2m, m)—grupo na podlagi opisa (2m, m)—grupe G = (G:[ ])z
binarno grupo (G",]c-), kjer je operacija o definirana s predpisom: x ©y =[x y].

Prvi del ¢lanka je posvecen opisu navedene konstrukcije.

V drugem delu je zgrajena prosta (2m, m)—grupa, ki jo poraja neprazna mnozica A.

V tretjem delu posredujemo dokaze nekaterih trditev, uporabljenih pri navedeni konstruk-
ciji.
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