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FULLY COMMUTATIVE VECTOR VALUED GROUPOIDS

G.Cupona, A.SamardZiski, N.Celakoski

Abstract. The notion of "commutative vector valued ope~-
ration" is modified in this paper such that the range of
the operation is factorized under commutativity. Namely,
if 9 is a nonempty set and r is a positive inceger, then

O{r)ﬂor/=, where

a,beg"” =>(a =~ b <=> b is a permutation of a).

Every mapping f: orni_+ o(m) is called a fully commuta-

tive (n,m)-operation and Q=(Q;f) is called a fully commu-
tative (n,m)-groupoid (shortly: f.c.g.).

A description of the free generated f.c.g. is given and
a result different from the usual algebras is obtained he-
re. Namely, if Q is a free f.c. (n,m)-groupoid (m=22) with
a basis B, then the identity mapping on B can be extended
to infinitely many automorphisms on Q. We discuss the no=-

" tion of fully commutative'(n,m)-guasigroups (shortly: E.Cugs)
and we give a description of the free f.c.g. by using the
notion of partial f.c.q. Finally, finite f.c.q. are consi-
dered and some examples of finite f.c.gq. are given.

1. FULLY COMMUTATIVE (n,m)-OPERATIONS

If Q0 is a nonempty set and n,m are positive integers, then
any mapping £: Q"— Q™ is called an (n,m)~operation or a vector
valued operation. (Here, of is the r-th Cartesian power, i.e.

Qf = ((a,sa,,--+,a,) | 2, €Q);

+
the elements of QF will be denoted also by as+f, where a €Q,

a 20 and sometimes by a single letter a.)

An (n,m)-operation f is said to be commutative ([4], §2)

iff for every permutation ¢ of the set Hn = {1,2,...,n} the fol-
lowing identity holds:

This paper is in final form and no version of it will be
submited for publication elsewhere.
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n n ; 3
f(a)) " f(o(a])), where o(ay) = a a8,y 35"
More generally, f is said to be weakly commutative iff for every
a?son and a permutation b? of a?, the following implication is
true:

f(a?) - CT' f(be = 4 => 4 is a permutation of =y

Here we will consider another kind of vector valued opera-
tions which we call "fully commutative (n,m)-operations".

Namely, let r21 and let = be a relation in Qr defined by:

r

a® = bY 1£f b¥ is a permutation of al.

It is clear that = is an equivalence in Qr. The factor set Q%/s,
denoted by Q'F', will be called "the commutative r-th power of

Q". The elements of Q{r) will be denoted again by a::f. whe
a €Q and a 2 0, but now: > it
a+r B4+r g+ - e T, a+r
e Bgyy h’+f «s a permutation of a ,..

Te nﬂwii:‘then every mapping f: Qtn’-» Q(m) will be called
a fully commutative (n,m)-operation.

Let £: Q"— Q™ be a given (n,m)-operation. It is natural
to ask the following question:

Under what conditions there exists a fully commutative (n,m)=
operation f’: Q{“}—¢ Q{m) ("induced by £") such that the follo-

wing diagram is commutative:

£
® — Q"

1 natn' l natm=

Q(n) £ (m).

—— )

Diagram 1
where nat = is the canonical mapping from Qr into Q(r)?

Conversely, if £': anl + Q(ml is a given fully commutative
(n,m)-operation, one can ask the guestion of existence of (n,m)-
operation f: Q" » g™, such that the above diagram is commutative.

Consider a more general situation, i.e. the diagrhm
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Diagram 2
where Hi' Hi (i=1,2) are sets. It is easy to show the following:
PROPOSITION 1.1. Let w,: M, + M be a surjeetion for i=1,2.

(t) If f: M, + M, is a mapping, then there exista at most
one mapping f°: M +~ M; such that Diagram 2 is commutative, t.e.
= fn,.
Sueh a@ mapping f° do exzist iff the following condition ta
satisfied:

(Vx,yéM )(x (z)=w (y) =>w,(f(z)) = n (f(y))). (1.1)

(ii) If f°: M + M] is a mapping, then there extsts a map-

ping f: M, ~ M, such that = f = f'r_.
In general, there are more than one such mappings f, defi-
ned in the following way:
r= U fp - where fx.:x‘-1{x'J - 12-1(f‘f:’)J
zeM;
ig arbitrary. [

In the special case when £:Q" » Qm is an (n,m)-operation,
the condition (1.1) has the following meaning: if y is a per-
mutation of x, then f(y) is a permutation of £(x). Thus, we
have the following:

PRCPOSITION 1.2. Let f: Q" - Qm be an (n,m)-operation on a
nonempty set Q. There exists at moet one fully commutative (n,m)-
operation f°: O(“} + Q(m} on Q such that the diagram 1 is commu-
tative. Such an operation f° exists iff f is weakly commutative.

Convergely, any fully commutative (n,m)-operation f’ ig
induced by a set of weakly commutative (n,m)-operations, between
which there are commutative ones.
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If £ Q(n) - Q{m’ is a fully commutative (n,m)-operation,
then Q=(Q;£) will be called a fully commutative (n,m)~-groupoid.
Further on, we will consider fully commutative (n,m)~groupoids
{or -operations) only. Therefore we will usually omit the words
"fully commutative"; also, the integers n,m will be usually
considered as fixed andso we will often say simply "groupoid"
(or "operation") instead of "fully commutative (n,m)-groupoid"
(or "fully commutative (n,m)-operation”) .

We will introduce here several concepts which will be used
later.

Let Q=(Q;f) be a groupoid and H a nonempty subset of Q. H

aten™ —> f(aMyen'™.

Clearly, the following proposition is true:

PROPOSITION 1.3. If (H_ |a6A} is a nonempty family of sub-
groupotdes of a groupotid @ and if H =N Ha is a nonempy set, then
H i8 a subgroupoid of @. | %

A subgroupoid H of a groupoid Q is said to be generated by
a nonempty subset B of Q 1ff

(i) B€Q, (ii) K<Q & BEK => H =K.

Proposition 1.3 implies that:

PROPOSITION 1.4. If @ is a groupoid and B 18 a nonempty
subset of Q, then there exists a uniquely determined subgroupoid
of Q which is generated by B. 1

A description of the subgroupoid of Q generated by a set
BEQ can be given in the following way. Let B, ,B ,B,,... be a
sequence of subsets of Q defined as follows:

go g Bp+1 = Bpljcp+1'

where C_, = (bea\B, | (aeBg™ )£(a]) = bb]) . Then the set
<B> = U Bp is the subgroupoid of Q generated by B.

pz0
To every element cE€<B> we assign a number xB{c). called

xgle) = min{p ]ceBp).

1375



33

The notion of homomorphism can be introduced in a usual way.
Namely, let Q=(Q;f) and Q’'=(Q’;f’) be groupoids and ¢ a mapping

F from Q into Q’. We say that ¢ is a homomorphism from Q into Q'
iff
3 £(a}) = by => £7(a}) = by,

where ¢=¢ (¢), c€Q. If, in addition, ¢ is bijective, then ¢ is
B called an isomorphism. It is easy to show that:

PROPOSITION 1.5. ¢: @ + Q° i8 an isomorphiem iff ¢ : @ @

t8 an isomorphiem. |

The notions of an endomorphism and automorphism have the

usual meanings.
2. FREE FULLY COMMUTATIVE (n,m)-GROUPOIDS

We will give here a description of free fully commutative
(n,m)-groupoids which we will call, shortly again, free groupo-
ids.

the following conditions are satisfied:
(i) B is a generating set for Q;

(ii) if Q'=(Q’;f’) is a groupoid and ¢: B + Q', then there
exists a homomorphism ¢: Q + Q' which is an extension of .

In order to give a description of free groupoids,'let B be
a nonempty set and let {Bp | p20) be a sequence of sets defined
as follows:

3 = (n)
Br =i, B BPU men

2 o p+1 pac”
where Nm denotes the set {1,2,...,m}. If ueBp+‘\Bp, then we say
that u has the hierarchy p+l and we write x(u)=p+l; if bEB,
then we set X(b) = 0.

Let [B]= LJBP and define an (n,m)-operation f:[B](n) -
p2o
o [B] (m) by:
£(u]) = (1,u7)(2,u])...(mul). (2.1)

So we cbtain a groupoid [B]=([B];f) with a generating set
B. Here, the notion of hierarchy of u€[B] coincides with the
g notion of the hierarchy relative to B introduced in 1.

1376



- 34

Suppose now that Q’'=(Q‘;f) is a groupoid and y: B + Q' an
arbitrary mapping from B into Q’. We will show that there exists
a homomorphism ¢: [B] + @’ which is an extension of ¥.

First, for beB, we set ¢ (b)=¢ (b). Suppose that ¢ (u)=u€Q’ is
a well defined element of Q° if u€Q has a hierarchy <p. If
ve[B] has a hierarchy p+l, then v has the form v-(i,u?l. where
ieN ., u Te(B] "}, X(u)) <p and X(u ) =p for some a. Then, set-
ting v,= (3w, ), we obtain that x(vj)-p+1 for every jeﬂ . Since .

ﬁ?eo"“’, there exists cmeq’(m] such that £’(u,)=c]. Then, if
we put @(vj}-cj, we obtain that ¢(vj)eq' is a well-defined ele-
ment for every jENm.

(Note that, in general, there are many ways of defining
¢lv,),0(v,)yeu.,d(vy), but not more than m!)

Thus, by induction on hierarchy, we defined a mapping
[B] » Q' which is an extension of .

By the definitions of f: [Bj{n} > {B](m) and ¢: [B] = Q’,
it is clear that ¢: [B] + Q' is a homomorphism. Thus, we proved
the following:

PROPOSITION 2.1. [B) is a free groupoid with a basis B.

Now we will prove that:

PROPOSITION 2.2. If & is an endomorphism on [B]such that
(vbeéB) &(b) = b, (2.2)

then £ i8 an automorphism on [B].

Proof. If p=20, then we denote by Sp the set {(u€[B]] x(u)=p}.

By the above assumption, E induces the identity bijection from
S, into 8 . Suppose that ¢ induces a bijection from the set Sp

into S _. Let vesp+1. Then v has the form v=(i.u?) for some

iEN and u“es;“’, where there exists vGNm. such that x{uv) =p.

Put v =(c,u ). Then £(uf)=v], and thus ffﬁnjsﬁm, where

E(u, )-u esp, v o )=g(v). Now, E(v)=(j,u" 1)+ where g(u )-u and
jeNm. Therefore, using the hypothesis that E£(S )-Sp, we have
€(v)€s . . This implies that if £(v)=¢(w), then w=(s,u u?) for so-
me seN . Setting v =(a,u ), we obtain that etv =, ,u ), where
ant is a permutatiun of Nm' and this implies that
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E(v) = E(w) => v =w,

Thus the restriction of ¢ on § . is an injection. It re-
mains to show that this restriction is a surjection. Let
ﬁ-(l,u?}esp+1. Then u“es , and thus there exist vuesp such that
z[vu)-(u“). If we put wa-{s,v?), then we obtain that there exists
yeﬂm such that g(wY)iu. This completes the proof that £ is a bi-
jection and thus an automorphism.

(Note that the set of automorphisms £ on [B], with (2.2)
is infinite.) 1

If Q=(Q;f) is an another free (n,m)-groupoid with a basis
B, then there exist homomorphisms t: [B] + Q, n: Q - [B], such
that

(vbeB) ¢(b) = n(b) = b. (2.3)

Clearly, £=n¢ is an endomorphism on [B] with the property (2.2).
Thus £ is an automorphism on [B], which implies that ¢ is an
injective homomorphism. '

By induction on hierarchy of elements of Q=<B> we will
show that ; is surjective as well. Let c€Q has the hierarchy

p+l (relative to B). Then there exist cTeQ(M) such that c.=c
for some i€N , and d?eo‘n) such that g(d])=c] and d?ETén), where

Tp={d€Q |xB{d1 <p}. These assumptions imply that there exists
ufe[8] () such that t(u,)=q,. 1f £(u7)=vT, then £(a])=V], where

v =t(v ). Thus c=V], i.e. c=V =¢(v ) for some a, which proves
that ¢ is surjective.

We will restate the above results (P.2.1, P.2.2 and the
last one) as the following:

THEOREM 2.3. (i) Every nonempty set B is a basis of a free
fully commutative (n,m)-groupoid.

(ii) If B is a basie of a free fully commutative (n,m)=
groupoid, then the set of itse automorphisms which fiz the all
elements of B is infintte.

(iii) Free groupoids with a same basis are isomorphic. |

(We note that (ii) is something different from the usual
algebras.)
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3. FULLY COMMUTATIVE VECTOR VALUED QUASIGROUPS

In this section we will assume that n-m = k21 and m22.

A groupoid Q=(Q;f) is said to be gggggllgg;gg'iff for every

aeoﬁk’, x,yEQ(m} the following implication is true:.
f(ax) = flay) => x = y. (3.1)

A groupoid Q is called a fully commutative (n,m)-quasigroup or,
shortly, a quasigroup iff for every aeq‘k), bEQ{m) the equation

f(ax) = b

is uniquely solvable on x in g™,

Clearly, every quasigroup is a cancellative groupoid, and
every finite cancellative groupoid is a gquasigroup.

We will show below that every cancellative groupoid is a
subgroupoid of a guasigroup.

First we will consider a more general concept of fully
commutative partial (n,m)-groupoid. Namely, if Q##, Jeq™
and f£: od +-Q{m), then we call (Q;e;£)=Q a fully commuta-
tive partial (n,m)-groupoid. As in §1 we will omit the words
"fully commutative" and "f(n,m)-".

A partial groupoid Q=(Q;<) ;f) is said to be cancellative

— e e e o e

iff for every aeg'®’, x,v60‘™ such that ax,ay€sd, the following

implication is true:
flax) = flay) => x = y.

In this case we say also that Q is a partial quasigroup, i.e. a
partial groupoid Q is a partial quasigroup iff Q is cancellati-
ve. In particular: every cancellative groupoid is a partial qu-

asigroup.

We will prove first the following more general result:
every partial quasigroup is a partial subgroupoid of a gquasi-
group. (Note that (Q;o9:;f) is a partial subgroupoid of a partial
groupoid (Q’;od’;£f’) iEf

QcQ’, o) €o0’ and ajesd => f(a)) = £'(a}).)

For this purpose we will consider first two kinds of ex-
tensions of partial groupoids.
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Let Q=(0;09;f) be a partial groupoid with the domain <0,
Define two partial groupoids, _g%(Qa:aOﬁ;fA) and _Q_.=‘Q.E°a.if.}r
in the following way:

1 o* = qui,ah) |eN , a"ea™\ D1, 9% =™,
- ajed => £t = £(aM),
ateq ™N\D —=> £4a?) = (1,a7) (2,a")...(m,a"N);
* 2) Q* =QUR, d°* = QUE , where:
R = ((isa,b) | teN_, aea‘k), peg!™,
(txe0 ™ fax@Dd or (ax€m and £(ax)#b)),
E = {all;a,b)(2;a,b)...(m;a,b) | (i;a,b)€ER},
ajed => £°(a}) = £(a}),
f*(a(l;a,b)...(m;a,b)) = b, for every (ij;a,b)ER.

It is easy to show that, if Q is a partial quasigroup, then
Q" and Q* are partial quasigroups as well.

Now suppose that g,,g,,...,_“,_ﬁ+1
partial groupoids such that Q, is a partial subgroupoid of

Q.44+ Setting

++++« 18 a sequence of

Q= Ua, D = \Usd
a1

azq

and
£(a]) = b} &> (Fa)(afed, & £ (a]) = b]),
we obtain a partial groupoid (Q;d& ;£)=Q where Q, is a partial
. subgroupoid of Q for every a = 1. It is clear also that, if Q_
is a partial quasigroup, then Q is a partial quasigroup too.
(In general, Q0 may not be a quasigroup, even in the case when
all of Q, are cancellative groupoids.)

Now suppose that Q is a given partial quasigroup and that
the sequence of partial groupoids Qo rQyreverQiQ qreen is for-
med in the following way:

’ AR A
Q = Qv g;a-ﬂ o gzu' Qa | SR
Then the union S(Q) of the obtained sequence is a quasigroup.

A complete proof of this one can obtain easily by the
assumption that.Q is a partial quasigroup and by the definition
of the functors A and *. We note that a similar construction in
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the case of (usual) binary quasigroups is known. (See, for examp-
le, [2] ch. I1.)

If B is a given set and if we put <0 =§, then we obtain a
partial quasigroup (B;@;f)=B. The quasigroup which in this case
one obtainesby B is the free quasigroup with a basis B.

It is natural to ask the question for existence of quasi-
groups with a given carrier Q. By the construction of Q* and Q‘s
it is clear that: if Q is an infinite set, then Q is eguivalent
with the both sets Q* and Q. Therefore, if (Q:;cD;f)=Q is a par-
tial quasigroup and S(Q) is the quasigroup obtained above, then
Q and S(Q) has the same cardinal number. This implies the fol-~
lowing result:

THEOREM 3.1. Every infinite set is a carrier of a quasi-
group. [ :

Note that if one starts by a partial groupoid Q=(Q; Q;f)
and forms the sequence of partial groupoids (Qp | p20) such that
Q,=Q, gp+1§g;, then one obtains that the union S(Q) of this
sequence is a groupoid which is a free extension of Q. (Here,
it is not necessary to assume that n >m.) In particular, if we
assume that o=@, then we obtain that S(Q) is the free groupoid
with a basis Q.

Now let Q be a nonempty set and let ¢ be the family defi-
ned by

¢ = ((Q;D:f) | (Q;.0;:f) is a partial quasigroup].
It is natural to define a partial ordering < in & by:
(Q3eD ;) < (Q;Q’3£") iff DESD’ and £ is a restriction of f'.

It is clear that the conditions of Zorn’s lemma are satis-
fied. Therefore:

PROPOSITION 3.2. Every partial quasigroup on a set @ i8 a

partial subgroupoid of a mazimal partial quasigroup on Q.
It is also clear that:

PROPOSITION 3.3. Every cancellative groupoid on @ is a ma-=

ximal partial quasigroup on @. |
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PROPOSITION 3.4. A partial quasigroup (Q;od;f) is mazi-

~mal on Q iff for every zGQ(”)\‘iO, yGQn",, there exzist caqru,
'a_c,vear') such that z=au, avédd, flav)=y. []

4. FINITE FULLY COMMUTATIVE (n,m)-QUASIGROUPS

In this section we will assume that the set Q is finite
with g+l elements, i.e. that Q={0,1,2,...,q} and also that n,m,k
are given positive integers such that n-m = k21 and m2> 2.

Note that the elements of the set Q(r’ can be thaught of as
monotone sequences (of r members) of the elementsof Q, i.e. that

(x)

Q = {a,a,...a_|a eQ, 0sa,<...sa_<ql.

Therefore (see, for example, [1], III.1.6, p. 137):
PROPOSITION 4.1. If |Q|=q+1, then |@'*)| = (327). g

The first question which commes naturally is the existence
of (n,m)-quasigroups with the carrier Q.

By obvious reason we consider first the case g=1, i.e.
Q={0,1}.

Let (Q;f) be an (n,m)-quasigroup. Then o: X f[ka) is a

permutation of Q(m,, and £(0%"1 17" # f{0m+k'ili), for every

ieN,. This implies that £(0X""1™") = £(0™¥), similarly, if
k22, we have: :
£(0%721™2) = o™k, £(0%T™2) - g(0™hT23y,

and more generally:

f(0k~1—11m+1+1)= E(0m+k-jljl,

where i =j (mod m+l1), 0<i <k-1, 0<j <m.

Conversely, let g: x+— og(x) be a permutation of Q(m), and
let an (n,m)-operation f: Q(“) -+ Q(m} be defined by:

ftﬂkx} = o(x) for every er{m)
7T et sk T gt
where i and j are as above. Then (Q;f) is an (n,m)-quasigroup.

Thus, we have showed the following:
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PROPOSITION 4.2. If Q={0,1}, then there exist (m+1)! (n,m)=
quasigroups on Q. (I

In the case q 22, we have the following:

PROPOSITION 4.3. If 2<q<m, then there does not exist an

(n,m)-quasigroup with q+1 elements.

Proof. Assume that 0=(0,1,2,...,q}, and that (Q;oD;:£f) is a
partial (n,m)-quasigroup such that 0Xxe o) for every xeq (™,
u=0k-‘I lm_q+12.3...q803. Then v=0k-'1 2m-q+’3...q¢-f). Namely, if
veéd we would have f{uh‘f({)kx), f{vli&f{okx) for every er(m}\{Om},

and this would imply £(u)=£(0™)=f(v), which is impossible, for

k=1

u=0 1y, v=0k-'lz, and y # z. 1

Thus, if (Q;f) is an (n,m)-quasigroup with g+1 elements
where m22, g>1, it must be g >m.

EXAMPLE 4.4. Define a (4,3)operation on the set

Q={(0,1,2,3,4) as follows:
0) £(0x) = x, for every xeQ‘?)

1.1) £(12149) = 0%k, £(1i%j) = ok?, £(1ij*) = k%,
where {(i,j,k}=(2,3,4}, 1i<3;

1.2) £(1%1) = 03k, £(12i?) = j%k, £(11°) = jk?,
where {i,j,k} = {2,3,4}, j<k;

1. 3V HELL 2 374) =02, (£(1%) =,234;

2.1) £42%1) = 013, £(2%i?) = 12?3, £(21%) = 137,
where i # j;

2.2) £(2234) = 021, £(23%4) = 012, £(234%) = 1?

£(2%) = 134;
3) £{334) = 012, £(3%43) = 132, £(343) = 12*
£(3%)

124;

4) £(4%) = 123.

It is easy to show that (Q;f) is a (4,3)-quasigroup.
More generally, it can be shown that:

PROPOSITION 4.5. If @=(0,1,2,...,q}, q 23, then there
exigts a (q,q—-1)-quasigroup. |
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