Математички Билтен 13 (XXXIX) 1989 (15-24) Скопје, Југославија

POLYADIC OPERATIONS INDUCED BY SEMIGROUPS

G. Čupona and S. Markovski

Abstract. Any operation (binary, n-ary or (n,m)-ary) on a set Q can be considered as a partial transformation of the free semigroup Q^+ with a basis Q. Replacing Q^+ by an arbitrary semigroup $S=(S;\cdot)$ such that $Q\subseteq S$, one can consider (S;n,m)-groupoids on Q. The notions of subgroupoids and homomorphisms (and some related topics) are considered.

1. (\underline{S} ;n,m)-groupoids. Let \underline{S} =(S;·) be a semigroup, Q a non-empty subset of S, and p a positive integer. Denote by Q_p the set { $a_1 \cdot a_2 \cdot \ldots \cdot a_p \mid a_v \in Q$ }. If n and m are two positive integers, and $f:Q_n \to Q_m$ a mapping, then we say that f is an (\underline{S} ;n,m)-operation on Q (or an \underline{S} -polyadic operation), and the pair (Q;f) will be called an (S;n,m)-groupoid.

Example 1.1. Let Q^+ be the free semigroup with a basis Q, i.e. $Q^+ = \bigcup \{Q^p \mid p \ge 1\}$, where Q^p is the p-th cartezian power of Q, and the operation on Q^+ is the usual concatenation of words. Then a $(Q^+;n,m)$ -groupoid is the same as an (n,m)-groupoid ([2]).

Example 1.2. Let Q^{\oplus} be the free commutative semigroup with a basis Q, i.e. $Q^{\oplus} = Q^{+}/*$ where * is the least congruence on Q^{+} such that $Q^{+}/*$ is commutative. (Namely, if a_{y} , b_{y} \in Q then:

iff r=s and $b_1b_2...b_r$ is a permutation of $a_1a_2...a_r$.) A $(Q^{\oplus};n,m)$ -groupoid is the same as a fully commutative (n,m)-groupoid ([3], [5]).

Example 1.3. If SL(Q) is a free semilattice with a basis Q, then an (SL(Q);n,m)-groupoid (Q;f) will be called a <u>semilattice</u> (n,m)-groupoid.

Let us give a more convenient description of semilattice (n,m)-groupoids. Denote first by F(Q) the family of the finite nonempty subsets of Q, and if $p \ge 1$, then put $F_p(Q) = \{X \in F(Q) \mid |X| \le p\}$. Then, if $f: F_n(Q) \to F_m(Q)$ we obtain a semilattice (n,m)-groupoid (Q;f).

Let (Q;f) be an (S;n,m)-groupoid. Then, there exists a unique homomorphism $\pi:Q^+\to S$ such that $\pi(b)=b$, for every $b\in Q$, and moreover we have $\pi(Q^p)=Q_p$, for every $p\ge 1$, and thus π induces a surjective mapping $\pi_p:Q^p\to Q_p$.

<u>Proposition 1.4</u>. If $g:Q^n \to Q^m$ is an (n,m)-operation on Q, then there exists at most one $(\underline{S};n,m)$ -operation $\overline{g}:Q_n \to Q_m$ on Q such that the following diagram commutes:

$$\pi_n \stackrel{Q^n}{\underset{Q_n}{\mid}} \xrightarrow{g} \stackrel{Q^m}{\underset{q}{\mid}} \pi_m$$

Such an operation \overline{g} do exists iff the following implication holds:

$$\pi_n(x) = \pi_n(y) \implies \pi_m(g(x)) = \pi_m(g(y)),$$

for every x,yeQn. x

(We say that g is induced by g.)

<u>Proposition 1.5</u>. If (Q;f) is an $(\underline{S};n,m)$ -groupoid then there exists an (n,m)-groupoid (Q;g) such that $\overline{g}=f$, and the above diagram is commutative.

<u>Proof.</u> Let $x \in Q^n$. Then $f(\pi_n(x)) \in Q_m$, and $\pi_m^{-1} f(\pi_n(x)) \subseteq Q^m$. Choose a $y \in \pi_m^{-1} f(\pi_n(x))$ and put y = g(x). Then, $f\pi_n = \pi_n g$. X

Remark 1.6. In the case when \underline{S} is a commutative semigroup (a semilattice), we can also state analogically propositions as in 1.4 and $\underline{1.5}$.

2. Subgroupoids. Let (Q;f) be an (S;n,m)-groupoid, and P a nonempty subset of Q. We say that P is a subgroupoid of (Q;f) iff $f(P_n) \subseteq P_m$. And, P is called a strong subgroupoid of (Q;f) iff for all a, EP, b, EQ

$$f(a_1 \cdot a_2 \cdot \ldots \cdot a_n) = b_1 \cdot b_2 \cdot \ldots \cdot b_m \implies b_1, b_2, \ldots, b_n \in P.$$

<u>Proposition 2.1</u>. Every strong subgroupoid of (Q;f) is a subgroupoid of (Q;f).

<u>Proposition 2.2.</u> If $\{P_i \mid ieI\}$ is a family of strong subgroupoids of (Q;f) and if $P=\bigcap \{P_i \mid ieI\} \neq \emptyset$, then P is a strong subgroupoid of (Q;f).

Example 2.3. Let $Q=\{a,b,c\}$, and let \underline{S} be the semigroup given by the following presentation $\langle a,b,c;b^2=c^2\rangle$. Define an (S;1,2)-groupoid (Q;f) by:

$$f(a) = f(b) = f(c) = b^2 (=c^2)$$
.

Then, $B=\{a,b\}$ and $C=\{a,c\}$ are subgroupoids of (Q;f), but $A=B \cap C=\{a\}$ is not a subgroupoid. (Thus, a nonempty intersection of subgroupoids is not necessarily a subgroupoid.)

Proposition 2.2 implies that every nonempty subset D of an $(\underline{S};n,m)$ -groupoid generates a uniquely determined strong subgroupoid <D>, and from Ex. 2.3 it follows that this is not true in the case of subgroupoids. (Namely, we have

if we consider strong subgroupoids, but there does not exist a (unique) subgroupoid of (Q;f) generated by {a}.)

Remark 2.4. If (Q;f) is an (n,m)-groupoid (a fully commutative (n,m)-groupoid, a semilattice (n,m)-groupoid) then $P \subseteq Q$ is a subgroupoid iff it is a strong subgroupoid.

Remark 2.5. When we say that a subset B of Q is a generating subset of (Q;f), then we mean that if P is a subgroupoid of (Q;f) such that $B \subseteq P$, then P = Q. And, B is called weakly generating subset of (Q;f) iff $\langle B \rangle = Q$, i.e. if B generates (Q;f) as a strong subgroupoid.

3. Homomorphisms. Consider an $(\underline{S};n,m)$ -groupoid (Q;f) and an $(\underline{S}';n,m)$ -groupoid (Q';f'). A mapping $\phi:c \mapsto c'$ from Q into Q' is called a homomorphism from (Q;f) into (Q';f') iff for any $a_i,b_i\in Q$ the following implication is true:

$$f(a_1 \cdot \ldots \cdot a_n) = b_1 \cdot \ldots \cdot b_m \Longrightarrow f'(a'_1 \cdot \ldots \cdot a'_n) = b'_1 \cdot \ldots \cdot b'_m.$$

If, furthermore, ϕ is bijective and ϕ^{-1} is a homomorphism, then ϕ is called an isomorphism.

Example 3.1. Let Q be a set with at least two distinct elements, and let n,m be two positive integers such that $m \ge 2$. Denote by π the canonical homomomorphism from Q^+ into Q^{\oplus} . Assume that $g:Q^{\to} \to Q^{\oplus}$ is a $(Q^+;n,m)$ -operation such that

$$x, y \in Q^{n}, \pi(x) = \pi(y) \implies g(x) = g(y)$$

and that there exist an $x \in \mathbb{Q}^n$ and $a,b \in \mathbb{Q}$, $a \neq b$, such that g(x) = aby, where $y \in \mathbb{Q}^{m-2}$. (In the case m=2, y is the "empty" symbol.) Then g induces a fully commutative (n,m)-operation \overline{g} , and the identity transformation $c \mapsto c$ of G is a bijective homomorphism from $(\Omega;g)$ into $(Q;\overline{g})$, but it is not an isomorphism.

<u>Proposition 3.2.</u> Let $(\Omega;f)$ be an (S;n,m)-groupoid, (Q';f') be an (S';n,m)-groupoid, and $\phi:Q \rightarrow Q'$ be a homomorphism.

- (i) If P is a subgroupoid of (Q;f), then ϕ (P) is a subgroupoid of (Q';f').
- (ii) If P' is a strong subgroupoid of (Q';f') and if $\phi^{-1}(P') \neq \emptyset$, then $\phi^{-1}(P')$ is a strong subgroupoid of (Q;f).

<u>Proof.</u> (i) Let $a_1', a_2', \ldots, a_n' \in P'$. Then there exist $a_1, a_2, \ldots, a_n \in P$ and $b_1, b_2, \ldots, b_m \in P$ such that $a_i' = \phi(a_i)$, $f(a_1, \ldots, a_n) = b_1, \ldots, b_m$. From the second equality it follows $f(a_1', \ldots, a_n') = b_1', \ldots, b_m'$, where $b_i' = \phi(b_i)$.

(ii) Let $a_1, a_2, \ldots, a_n e^{-1}(P')$, $b_1, b_2, \ldots, b_m eQ$ are such that $f(a_1, \ldots, a_n) = b_1, \ldots, b_m$. Then we have $f'(a_1', \ldots, a_n') = b_1', \ldots, b_m'$, where $\phi(a_1) = a_1' e P'$, and this implies that $b_1', \ldots, b_m' e P'$, where $\phi(b_1) = b_1'$, i.e. $b_1, \ldots, b_m e \phi^{-1}(P')$.

Example 3.3. Let $Q=\{a,b,c\}$, $Q'=\{\alpha,\beta\}$ and let V be the variety of commutative semigroups, satisfying the identity $x^2=y^2$. Let \underline{S} ($\underline{S'}$) be a free semigroup in V with a basis Q(Q'). Then we have:

 $\begin{array}{l} \mathbb{Q}_2 &= \{ab,ac,bc,a^2 = b^2 = c^2\} \\ \\ \mathbb{Q}_4 &= \{a^4 = b^4 = c^4 = a^2b^2 = a^2c^2 = b^2c^2,a^2bc = b^3c = bc^3,ab^2c = a^3c = ac^3,abc^2 = ab^3 = a^3b\} \\ \\ \mathbb{Q}_2' &= \{\alpha^2 = \beta^2,\alpha\beta\}, \quad \mathbb{Q}_4' &= \{\alpha^4 = \beta^4 = \alpha^2\beta^2, \ \alpha^3\beta = \alpha\beta^3\}. \end{array}$

Define an $(\underline{S};4,2)$ -groupoid (Q;f) by f(u)=bc, for all $u\in Q_4$, and an $(\underline{S}';4,2)$ -groupoid (Q';g) by $f'(u')=\alpha^2$, for all $u'\in Q_4'$. Then, the mapping $\phi=\begin{pmatrix} a&b&c\\ \alpha&\beta&\beta \end{pmatrix}$ is a homomorphism from (Q;f) into (Q';f'), $A'=\{\alpha\}$ is a subgroupoid of (Q';f'), but $A=\{a\}=\phi^{-1}(A')$ is not a subgroupoid of (Q;f). On the other hand, $\{b,c\}=D$ is a strong subgroupoid of (Q;f), but $\phi(D)=D'=\{\beta\}$ is not a strong subgroupoid of (Q';f').

 $\underline{4}$. Equivalences. It is natural to ask the question when we should say that an $(\underline{S};n,m)$ -groupoid (Q;f) is equal to an $(\underline{S}';n,m)$ -groupoid (Q';f'). Certainly, we have the following two trivial answers:

a)
$$S = S', Q = Q', f = f';$$

b) (Q;f) and (Q';f') are isomorphic.

But, the first condition is too strong, and the second one is too "abstract". We chose the following "meadle way".

We say that an $(\underline{S};n,m)$ -groupoid (Q;f) is <u>equivalent</u> to an $(\underline{S}';n,m)$ -groupoid (Q';f') iff Q=Q' and the identity transformation of Q is an isomorphism from (Q;f) into (Q';f'). Then, we write $(Q;f) \equiv (Q;f')$. In other words:

$$(Q;f) \equiv (Q';f') \text{ iff } Q = Q'$$

and, for any a,,b,eQ,

$$f(a_1 \cdot ... \cdot a_n) = b_1 \cdot ... \cdot b_m <=>$$

 $f(a_1 \cdot ... \cdot a_n) = b_1 \cdot ... \cdot b_m,$

where $\underline{S} = (S; \cdot), \underline{S}' = (S'; *).$

<u>Proposition 4.1.</u> Let (Q;f) be an $(\underline{S};n,m)$ -groupoid, and let \underline{T} be the subsemigroup of \underline{S} generated by Q. Define a $(\underline{T};n,m)$ -groupoid (Q;f') by:

$$f'(a_1 \cdot a_2 \cdot ... \cdot a_n) = f(a_1 \cdot a_2 \cdot ... \cdot a_n),$$

for any $a_i \in Q$. Then: $(Q;f) \equiv (Q';f')$.

(So, we can always assume that Q is a generating subset of \underline{S} , whenever an $(\underline{S};n,m)$ -groupoid (Q;f) is considered.)

Example 4.2. Let (Q;f) be an (\underline{S} ;n,m)-groupoid, and let p=max{m,n}, 0 \notin S. Assume also that R=QUQ₂U...UQ_p \neq S. Define on operation * on T=RU{0} as follows:

$$x \star y = \begin{cases} z, & \text{if } xy = z \text{ in } \underline{S} \text{ and } z \in \mathbb{R}, \\ 0, & \text{otherwise.} \end{cases}$$

Then $\underline{T}=(T;*)$ is a semigroup generated by Q, and if a $(\underline{T};n,m)$ -operation f' is defined on Q by:

$$f'(a_1 * ... * a_n) = f(a_1 * ... * a_n),$$

then we obtain that $(Q;f) \equiv (Q;f')$.

Assume now that (Q;f) is an arbitrary (\underline{S} ;n,m)-groupoid, and let $\pi:Q^+ \to S$, $\pi_n:Q^n \to Q_n$, $\pi_m:Q^m \to Q_m$, be defined as in part $\underline{1}$. If

$$\sigma_n : Q^n / \ker \pi_n \rightarrow Q_n, \quad \sigma_m : Q^m / \ker \pi_m \rightarrow Q_m$$

are corresponding canonical bijections, then we can define a mapping:

$$\overline{f}:Q^n/\ker_n \rightarrow Q^m/\ker_m$$

as follows:

$$\overline{f} = \sigma_m^{-1} f \sigma_n$$
.

<u>Proposition 4.3.</u> If (Q;f) is an $(\underline{S};n,m)$ -groupoid and (Q;f') is an $(\underline{S}';n,m)$ -groupoid such that $\overline{f}=\overline{f'}$, then (Q;f) = (Q;f').

Proof. The equality $\overline{f} = \overline{f'}$ implies

$$\sigma_{m}^{-1} f \sigma_{n} = \sigma_{m}^{\prime -1} f' \sigma_{n}^{\prime}$$

where $\pi':Q^+ \to S'$. This means that $Q^n/\ker_n = Q^n/\ker_n'$, i.e. $a_1 \cdot \ldots \cdot a_n = a_1 * \ldots * a_n$ for every $a_i \in Q$. Now, let $f(a_1 \cdot \ldots \cdot a_n) = b_1 \cdot \ldots \cdot b_m$, where $a_i, b_i \in Q$. Then

$$f'(a_1 * ... * a_n) = \sigma'_m \sigma_m^{-1} f(a_1 \cdot ... \cdot a_n) = \\ = \sigma'_m \sigma_m^{-1} (b_1 \cdot ... \cdot b_m) = \sigma'_m ((b_1, ..., b_m)^{ker_m} n),$$

where $(b_1, \ldots, b_m) \in Q^m$. It follows that

$$\pi_n(b_1,...,b_m) = \pi'_m(b_1,...,b_m) = b_1*...*b_m$$
, i.e.
 $f'(a_1*...*a_n) = b_1*...*b_m$. M

Example 4.4. Let $Q=\{a,b\}$, $0\notin Q$, and let $S=\{a,b,(a,a),(a,b),(b,a),(b,b),0\}$, $S'=\{a,b,0\}$, and let the semigroups $\underline{S}=(S;\cdot)$, $\underline{S}'=(S';\star)$ be defined as follows:

$$x*y = 0 \text{ for any } x,y \in S';$$

$$x \cdot y = \begin{cases} (x,y), \text{ if } x,y \in Q \\ 0, \text{ otherwise.} \end{cases}$$

Define an $(\underline{S};2,3)$ -operation f, and an $(\underline{S}';2,3)$ -operation f' by

$$f(u) = 0, f'(u') = 0$$

for every $u\in Q_2=\{(a,a),(a,b),(b,a),(b,b)\}$, $u'\in Q_2'=\{0\}$. Then we have: $(Q;f)\equiv (Q;f')$, but $\overline{f}\neq \overline{f'}$. (Namely, $Q_2=Q^2$, and π_2 is the identity mapping, which implies that:

$$\overline{f} = \begin{pmatrix} \{(a,a)\}, \{(a,b)\}, \{(b,a)\}, \{(b,b)\} \} \\ Q^3 & Q^3 & Q^3 & Q^3 \end{pmatrix}.$$
 We also have $Q^2/\ker \pi_2' = Q^2$, and thus $\overline{f'} = \begin{bmatrix} Q^2 \\ Q^3 \end{bmatrix}$.)

 $\underline{5}$. Regularity. An $(\underline{S};n,m)$ -groupoid (Q;f) is said to be \underline{tri} - \underline{vial} iff $Q_n \subseteq Q_m$, and f(u)=u, for every $u \in Q_n$, i.e. f is the imbedding from Q_n into Q_m . And, (Q;f) is said to be $\underline{regular}$ iff there is a trivial (S';n,m)-groupoid (Q;f') such that $(Q;f) \equiv (Q;f')$.

In what follows we suppose that (Q;f) is an (\underline{S} ;n,m)-groupoid, and $Q^*=Q^+U\{1\}$, (1 $\notin S$) is the free monoid with a basis Q (and 1 as its unit). If $a_i, a_{i+1}, \ldots, a_{i+p} \in Q$ then a_i^{i+p} is the corresponding product of a_i, \ldots, a_{i+p} in Q^+ , and $a_{i+1}^i=1$.

Define a relation = on Q as follows.

If u, veq then:

 $u \sim v \iff u \vdash v \text{ or } v \vdash u,$

$$u = v \iff (\exists p \ge 0, u_0, ..., u_p \in \Omega^+) \quad u = u_0 - u_1 - ... - u_p = v.$$

(Thus, \sim is the symmetric closure of \vdash , and z is the reflexive and transitive closure of \sim .)

Proposition 5.1. The relation z is a congruence on Q^+ . X

Denote by $Q^{\hat{}}$ the corresponding quotient semigroup $Q^{\hat{}}/z$. Note that $Q^{\hat{}}$ is the semigroup given by the presentation

 $\langle Q; \{a_1 \dots a_n = b_1 \dots b_m \mid f(a_1 \dots a_n) = b_1 \dots b_m \} \rangle$ (5.1) in the class of semigroups.

If $u \in Q^+$, then we will denote by \overline{u} the *-equivalence class containing u, i.e. $\overline{u} = \{v \in Q^+ \mid u \approx v\}$. In this sence the set $\{\overline{a} \mid a \in Q\}$, will be denoted by \overline{Q} . This implies that, for each $p \geq 1$, we have $\overline{Q}_p = \{\overline{a_1^p} \mid a_1, \ldots, a_p \in Q\}$, and that \overline{Q} is a generating subset of Q^* .

Proposition 5.2. $\overline{Q}_n \subseteq \overline{Q}_m$.

 $\underbrace{\frac{\text{Proof.}}{\text{b}_{1}^{m}}. \text{ If } a_{1}, \underbrace{\cdots, a_{n}}_{1} \text{eQ}, \text{ and } f(a_{1}, \cdots, a_{n}) = b_{1}, \cdots, b_{m} \text{ then } a_{1}^{n} = b_{1}^{m} \text{e} \overline{Q}_{m}. \text{ } \textbf{X} }$

Thus, we can define a $(\underline{Q}^*;n,m)$ -operation \hat{f} on \overline{Q} , by: $\hat{f}(u)=u$, for every $u\in\overline{Q}_n$.

<u>Proposition 5.3.</u> $(\overline{Q}; \hat{f})$ is a trivial $(\underline{Q}^{\circ}; n, m)$ -groupoid, and the mapping $-: a \mapsto \overline{a}$ is a homomorphism from (Q; f) into $(\overline{Q}; \hat{f})$.

We will show now that $(\overline{\mathbb{Q}}\,;\hat{f})$ admits a corresponding universal property.

<u>Proposition 5.4.</u> Let ϕ be a homomorphism from (Q;f) into a trivial (S';n,m)-groupoid (Q';f'). Then, by $\overline{\phi}(\overline{a})=\phi(a)$ is defined a homomorphism $\overline{\phi}$ from (\overline{Q} ; \widehat{f}) into (Q';f').

<u>Proof.</u> Denote the operation of $\underline{S'}$ by *. If a_1, \ldots, a_n , $b_1, \ldots, b_m \in \mathbb{Q}$ are such that $f(a_1, \ldots, a_n) = b_1, \ldots, b_m$ in $(\mathbb{Q}; f)$, then we have:

 $\phi(a_1)*...*\phi(a_n)=f'(\phi(a_1)*...*\phi(a_n))=\phi(b_1)*...*\phi(b_m),$

because ϕ is a homomorphism, and (Q';f') is trivial. This, and the fact that $\underline{Q}^{\, }$ has a presentation (5.1), implies that there exists a unique homomorphism $\hat{\phi}:\underline{Q}^{\, }\to\underline{S}'$ such that (YaeQ) $\hat{\phi}(a)=\phi(a)$.

The restriction $\overline{\phi}$ of $\hat{\phi}$ on \overline{Q} is a homomorphism from $(\overline{Q};\hat{f})$ into (Q';f') defined by $(\forall a \in Q)$ $\overline{\phi}(a) = \phi(a)$.

<u>Proposition 5.5.</u> (Q;f) is regular iff $-:a \mapsto \overline{a}$ is an isomorphism from (Q;f) into (\overline{Q} ; \hat{f}).

<u>Proof.</u> Let (Q;f) be regular, i.e. there exists a trivial $(\underline{S}';n,m)$ -groupoid (Q;f') such that $l=l_a:a\mapsto a$ is an isomorphism. By Pr. $\underline{4.4}$, $\overline{1:a}\mapsto a$ is a homomorphism from $(\overline{Q};\hat{f})$ into (Q;f'). This implies that $\overline{1}$ is bijective, and therefore $-:a\mapsto \overline{a}$ is a bijective homomorphism. Moreover, we have that $\overline{a}\stackrel{1}{\mapsto} a\stackrel{1}{\mapsto} a$, and this implies that $-:a\mapsto \overline{a}$ is an isomorphism from (Q;f) into $(\overline{Q};\hat{f})$. Conversely, let $-:a\mapsto \overline{a}$ be an isomorphism from $(Q;\hat{f})$ onto $(\overline{Q};f)$. Then, we can assume that $Q=\overline{Q} \leq Q^*$, and thus $(Q;f)\equiv (Q;f)$.

<u>Proposition 5.6</u>. (Q;f) is regular iff the following conditions are satisfied:

(i) $(\forall a,b \in Q)(a \approx b \Longrightarrow a = b);$

(ii)
$$(\forall a_i, b_i \in Q) (a_1^n \approx b_1^m \Longrightarrow f(a_1 \cdot \ldots \cdot a_n) = b_1 \cdot \ldots \cdot b_m))$$
.

Although Pr. $\underline{5.5}$ and Pr. $\underline{5.6}$ give complete descriptions of regular (\underline{S} ;n,m)-groupoids, these descriptions are not satisfactory enough. In the case when $\underline{S}=Q^+$ and n > m we have a convenient answers, and namely the following statement holds:

<u>Proposition 5.7.</u> ([4]) If n > m, then a $(Q^+; n, m)$ -groupoid (Q; f) is regular iff it is an (n, m)-semigroup. X

This result suggests to define the notion of $(\underline{S};n,m)$ -semigroup, for arbitrary semigroup \underline{S} and positive integers n,m, such that n>m. In the paper [4] it is also given a satisfactory description of regular $(\underline{Q}^+;1,m)$ -groupoids, but until now we do not have a convenient result in the case 1 < n < m.

The answer in the case n=m is quite clear. Namely, we have the following

<u>Proposition 5.8</u>. An (S;n,n)-groupoid (Q;f) is regular iff it is trivial.

Proof. If (Q;f) is regular, then by Pr. 5.6 (ii) we have:

$$a_1^n = a_1^n \Longrightarrow f(a_1 \cdot \ldots \cdot a_n) = a_1 \cdot \ldots \cdot a_n'$$

i.e. (Q;f) is trivial. X

REFERENCES

- [1] Čupona G.: Vector valued semigroups, Semigroup Forum, Vol. 26 (1983), 65-74
- [2] Čupona G., Celakoski N., Markovski S., Dimovski D.: Vector valued groupoids, semigroups and groups, "Vector Valued Semigroups and Groups", Maced. Acad. Sc. and Arts, Skopje (1988), 1-78
- [3] Čupona G., Dimovski D., Samardžiski A.: Fully commutative vector valued groups (in print)
- [4] Čupona G., Markovski S.: Vector valued subgroupoids of semigroups, Maced. Acad. Sc. and Arts, Contributions, VII/2, Sect. Math. Techn. Sci. (1986), 5-12
- [5] Čupona G., Samardžiski A., Celakoski N.: Fully commutative vector valued groupoids (in print)

ПОЛИАДИЧНИ ОПЕРАЦИИ ИНДУЦИРАНИ ОД ПОЛУГРУПИ

Г. Чупона и С. Марковски

Секоја операција (бинарна, n-арна или (n,m)-арна) на множество Q може да се разгледува како делумна трансформација на слободна полугрупа Q^+ со база Q. Заменувајќи ја Q^+ со произволна полугрупа $\underline{S}=(S;\cdot)$ таква што $Q\subseteq S$, се доаѓа до поимот $(\underline{S};n,m)$ групоид над Q. Во овој труд се разгледуваат поимите подгрупоиди и хомоморфизми на $(\underline{S};n,m)$ -групоиди.