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POST AND HOSSZU-GLUSKIN THEOREM FOR
VECTOR VALUED GROUPS

S.Markovski, B.Janeva

The notion of an (m+k,m)-group was first introduced in
[1], as a generalization of the notion of an n-group. Here
we generalize the Post theorem for embedding of an n-group
into a group ([6]) and the Hosszu-Gluskin theorem for repre-~
sentation of an n-group by a group ([4], [5)). Namely, in
Theorem P we show that every (m+k,m)-group (Q:[ ]) is embed~

dible into a group (G;:) such that QCG and [ar:”'k] =b" <=>
A8, 008 = b,-ba-...-bm for all a, (b ,€Q. Using this

result in Theorem HG we show that every (m+k,m)-group (Q;[ ])

can be represented by a group (Q™;+). As a corrolary of the-
se results (for m=1) we have that Hosszu-Gluskin theorem is
a consequence of Post coset theorem. It is notified (in {3])
that Post had proven the Hosszu-Gluskin theorem in [6], but
his proof is, in a way, given in [6] ambiguously.

First we will give some preliminary notations and defi=-
nitions. If A is a nonempty set, the elements of the n-th

Cartesian power A” of A will be denoted by (a reessa ), or

%

shortly by af; for n=0 we define A°={0}. Also, a? is a nota=

tion for (ar,ar+1,...,asj if s 2r, and the empty symbol if

r >s. In the case when A is a subset of a semigroup S =(S;+),
then for n21, we put An={a1-...-an IavEA}. This product
will be, as usual, written without the operation symbol.

Thus, if # #AcCS,
A = {a?={a‘,...,an) |a,eal, n20
A = la ..., |a;eal, n21.
n_n n
If a,=a,=...=a_ = a€A, then a=a,, and a'=a,...a.

The free semigroup with a basis A, where A is a nonempty
set, is denoted by A+, and in this case

This paper is in final form and no version of it will
be submited for publication elsewhere.
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a, lal, by
lal = n iff aeA”.

We denote by || the set {1,2,...} of positive integers, and
by Nr the set (1,2,...,r), for each rej.

Here we will also give the formulations of the Post and
Hosszu-Gluskin theorems and a definition of an (m+k,m)-group.
Namely, Post theorem states that each n-group (Q;[ ]) can be
embedded into a group (G;:) such that QEG and for each aieo

[a7) = a,-a,-...:a..
The Hosszu-Gluskin theorem gives a representation of an
n-group (Q;[ 1) by a group (Q;+) with an automorphism © on
(Q;+) and a fixed element c€Q such that for each a,aieo

n=1

GKC)=C.‘Gn_1{aI=cac‘1, [a?]=a‘e(a=)...e (a )e.

Let m,k be positive integers, [']:Qm+k_*0m a mapping.
We say that the pair Q=(Q;[ ]) is an (m+k,m)-group (or a vec-

—_——— e ———

m+ky _m+2k g ir_i+m+ky_m+2k :
[[a‘ ]am+k+1] ik [a‘q [ai+1 ]ai+m+k+1]t leNkf

and the equations
[xaf] = By = [aEy]
k

have solutions x,y€Q™, for each a,eqQk, bTeQm.
1. Let G=(G;+) be a group with the unity e, and m,k be

positive integers. We say that the subset Q&G is an (m+k,m) -

(I) The mapping aT - a ...ap is a bijection from Q"
into Qm‘

Note that if (I) holds then the mappings af —a,...a,
are bijections from QF into Qr’ for each reNm. In this case
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we will identify af and a, ...a., i.e. we will assume erﬂr,
for each reﬂm.

(II) (va€Qy)aQ, = Q.
where aQ = {aa ...a |a1eq}.

To each (m+k,m)-subgroup Q of a group G we associate
a mapping [ ]:Q™*X -~ o™ defined by:
[pT+k] = by <=> a,...a

a'Bledb (1.1)

m+k m

for each a ,b,€Q. [[] is a well defined (m+k,m)-operation
on Q, as (I) and (II) hold for Q. The pair (Q;[ ]) is said
(m+k,m) -group, but first we will give some properties of
(m+k,m) -subgroups of a grodp G.

o —
Lats-2(a) Qm+k = Qm'

(b) Qin = Qi+j' for each i,j 21.

(c) i+j = m+kfr, rz20 => Qioj =Qm+r' for each
s A a0 [ S |

1.29 (a) ska2m => (e€Q_, & (Ya€Q)a€Q )i

sk+1

-
(b) sk >m, a€Q => a €Q_, _ .

(c) H = LJ Qi is a subgroup of the group G.
iza

(@ v =9"Uq  U...Ug

mtk=1"
Proof. (a) By 1.1° (¢) and (II), for each a€Q there
exist x1,...,xmeo such that

sk ¥
a X eeaX, = Ay,
where s 21. If sk 2m we have
sk-m
a XyoaoX, = €. £1.2)
Thus eerk and
_ .Sk-m+1
a=a x!"'xmeosk+1‘
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(b) If sk >m we obtain from (1.2)

-1 sk-m=1
a = a x1...mest_'.

(c) is a consequence of (a) and (b).

(d) is a consequence of 1.1° (c), (a) and the fact that

there exist an s such that m <sk <m+k. O

1.3° (a) 121, j2m, a€Q; ==> aQy = Q4a = Q ;-

(b} Waeok) ag. = Q.= Q2.

Proof. (a) It is obvious that aoqui+j, Qjac_._' Qi-l-j for
e:‘(i.'n:}jL Let a=a,...a;, akeﬂ, and bi"'b1+jeoi+j' bveq. The equ-
ation xa grec@y = ba"'b1+j has a solution x€G, and xeﬂ, sin-
ce H is a subgroup of G. Let sk >m. Then x=b,...b i+]ai S S ‘e
Thus Qi+j§ Qja, and by symmetry

eQi+3+1{sk-1} Qj+isk Qj
Q444< aQy. 0

1,4% If Q is an (m+k,m)~subgroup of a group G then the
induced (m+k,m)-groupoid (Q;[ ]) (defined by (1.1)) is an

(m+k,m) -group.
Proof. Let a,€Q and let [am"'k] =p™ i+m+k
3y A 1 1 i+1

3.1 . -ﬂm+k‘=b’ . -bm, ai+1 we ’ai+m+k=c1 = _cm

m+kq _m+2k m_m+2k M
[[a‘ ]am+k+1] = [b1 m+k+1} =d e=>d,...d

v aed «ssd

17 ek ¥ ma k41

i L mtak o

m+k+1

m _
= 8y.008C c0eClB it 30tk <e=dody =

m+x+i m+2k
) [a1 [ai_H m+k+i+1]

for each ieN,
The solubility of the equations
k m k
Bxai] = b7 = [a,v]

for a_,b.€0 is a consequence of 1.3° (b). O

]-c1, i.e,

in G. Then we have

m+2k

LR

1,59 If Q={a} is a one element subset of a group G,
then Q is an (m+k,m)-subgroup of G iff the order of a devi-
des k.
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Proof. For each m21, am+k=am iff ak=1 iff the order of
a devides k. O

1.6 (a) I£ 1Ql 22 and Q is an (m+k,m)-subgroup of the
group G, then an_;: Qm, for each a€Q. ;

(b) If 1Q1 22 and Q is an (m’+k’,m’)-, and (m"+k" ,m") -
subgroup of a group G, then m’=m".

Proof. (a) Let a,be€Q, a#b. It is clear that an_1C_:
Suppose an_ =Qm. Then, there exist a}EQ, such that
aa,...amﬁﬂb , which, by (I), implies a=b.

(b) Let m’ <m", i.e. m’ €m"-1. Then m’+t=m"-1, for
some t 20, and for each a€Q

an“-1 = aom'+t = Qm’+t‘.+1 = Qm“
which contradicts the result in (a). O

1.79 If Q is an (m+k,m)-subgroup of a group G and

m < sk <m+k, sk=m+p, then Qm+? is an invariant subgroup of
the subgroup H of G.

o i -
- Proof. By 1.1° (c) Qm+me+p = Qm+p+sk = Qm+p’ and by
1.2° (a), e€qy, . Let a,€Q and tk >m. Then by 1.2° (b) we
-1
have a, €Q,, |, and thus
-1

it -1
sk) = 3gkr @1 Qg (ek-1) T Ysk”
0 = Qm_'_p is an invariant subgroup of H by 1.3%%(a).. O

(31...3

1.8% Let k be the least positive integer such that Q

is an (m+k,m)-subgroup of G. Then
(a) Q is an (m+k’,m)-subgroup of G iff klk’.
(b) m<i<j<m+tk => Qinoj =4g.

(c) H/Qmp

Proof. (a) If kik’ then Q is obviously an (m+k’,m)-sub-
group of G. Let Q be an (m+k’,m)~-subgroup of G, where
kf=rk+t, 0 <t <k. Then for each aEQt

= 1,+ where 7, is the cyclic group of order k.
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Q= Aoe = Onttark = Ymik’ =
i.e. Q is an (m+t,m)~subgroup of G, contradicting the choice
of k.

(b) Since Onep i an invariant subgroup of H, by 1.3°
we have

H/Qm+p = (xQ., | xeH} = (g .., |0=<i<Kk},

which implies that the setst,th,..., RS,

equal or pairwise disjoint. Let Qm+t = Qm+r’ k>t >,
Then for some aGQr

an+t-r ¥ Qm+t X, Qm+r o an‘

which implies Q .. = Q . Thus Q is an (m+t-r ,m) -subgroup

of G, contradicting the choice of k.

are either

(c) By 1.2° (4) and (b) we obtain that the mapping

$: a ...a ., = i-p is an epimorphism from H into Zk, with

ker¢=Qm+p. d

———————

(m+k,m) -subgroup Q if G is generated by Q, i.e.
(III) G = QmL)Qm+1LJ...L}Qm+k_1.
If, moreover, G satisfies the following condition
(IV) m<i <j <m+k => QiﬂQj =4

then we say that G is a universal covering group of its
(m+k,m) -subgroup Q. The universal covering group of Q will
be denoted by Q.

1.9% Let Q be an (m+k,m)-gubgroup of G=Q', Q' an
{m+k,m) -subgroup of a group (G';#) and A: Q -~ Q' a map,

such that for all ai,bjeo
Qyeeediy = b1"'bm <==> Ata,)*...*l(am+k]

= l(b1)*...*l(bm)-

m

Then there exists aunique homomorphism &: G = G' which is
an extension of *. O
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B3

As a corollary of 1.8° we have

1.10° If k is the least positive integer such that Q is

an (m+k,m)-subgroup of the group G, and G is a covering
group for Q, then G is a universal covering group for Q. O

Let us note that by 1.3° the following is also true:

1.119 1f ¢ is a universal covering group of its

(m+k ,m) -subgroup Q, then for each a€Q

¢ = Q"U aQ™u . Aak R e

= "yao™al Ud®* . o

2. Let Q_=(Qi[ ]] be a given (m+k,m)-group. We will
construct a group G=(G;*) such that QG is an (mtk,m)-
subgroup of G, and G is its universal covering group. The
(m+k,m) -operation [ ] induced by the (m+k,m)-subgroup Q, de-
fined by (1.1), will coincides with the operation [ ] of the
given (m+k,m)-group Q.

Further on by 0=(Q;[ ]) a given (m+k,m)-group will be
denoted. By ([2], pg. 27) Q satisfies the general associati-
ve law, and the "product" [a",ﬁSk] is defined for all s21.
Also, Q is cancellative, i.e.

[al'xTa¥) = o=ty ) => % = ¥ (2.1)

for each i€fj,.,, and a),x,,y,€Q (see [2), pg. 54). By (2.1),

for each x,y€Q*, ab,caeg™ sk, 353,

[axb]) = [ayb] => [cxd] = [eyd] . (2.2)
(see [2], pg. 37).

Let Q=(Q;[ ]) be a given (m+k,m)-group. Define a rela-
tion -~ on Q+ by:

(vu,veQ") (u - v <=> (awea’) [uw]=[vw]). (2.3)

where [uw] and [vw] denote that uweq™ =k, vwea™ K for some
s,t 20, and we put [a7] = ay for a €Q.
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_Z_;i? (a) u ~ v => |ul = lvl (modk).
(b) The relation - is a congruence gg.q*.
(c) @'/~ is a group.
(d) a,b€Q, a - b => a=b (3;3. we can concider
Q as a subset of Q°/-).

Proof. (a) u - v => (aweQ") [uw]=[vw] => luwl = Ivwl
(modk) ==> |u| = |v| (mod k).

(b) Note that by (2.2) and (2.3) it follows that
u - v => [tuw] = [tvw] (2.4)

m (modk). Now by

m

for all t,w€Q+ such that ltuwl = |tvwl
(2.4) we obtain that -~ is a congruence on Q+.

(¢) We will show that the equations ux - Vv and zu -~ Vv
have solutions on x and z for every u,v€Q+. If Ilvl <m then

for some w,t€Q+ we have lwvl = m and |lwutl = sk, s21. Now,
since in the (m+k,m)-group Q the equation [wuty] = wv has a
solution yeQm we obtain that x=ty is a solution of ux - v.
In the other case, when |Ivl 2m, we have V=V rv" where

lv’1 = m, and the equation [uty] = v’ has a solution yeQ™

for some t€QF. Now x=tyv" is a solution of ux - v. Similarly

we solve the equation zu - V.

m o
(4) Let a,beQ, a - b. Then by (2.4) [a]=[b"a'], i.e.
Mb™2' in @, which implies a=b. O

2205 = 9.

proof. We will show that the conditions (I)- (IV} are
fulfiled for Q /- It is clear that (I) holds for Q <, ag
if al ~ by in Q */- it follows that [aw] = [b%w], which (by
cancellativity of the (m+k,m)-operation [ ]) implies a —b s

Let a=a ...akGQk and b=b ...b eo (a b eq:. Now, as
1a¥p™) = “‘eq , ab ~ C eeeCy il thui abeQ , i.e. aQ SQ .
It n=c,...c €Q. is given, then for each a€Q, the equation
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[ax]=c has a solution x€Q , i.e. ¢ - ax. Thus c€aQ , i.e.
0. Sa0,, i.e. (II) is satisfied. As Q generates Q+/- we have
: (III), and (IV) follows by 2.1° (a). O

Theorem p! et (Q;[ 1) be an (m+k,m)-group. Then there
exists a group (G;+) such that QCG and for each ai'bjeQ

[aX*®]) = D™ com> @, i0ilp i =D e eb,
Proof. Take G = Q+/-. 0

We note that for each (m+k,m)-group (Q;[ ]), as a con-
sequence of the results above, the (m+k,m)-operation [ ]
(defined by (1.1))and [ ] coincides, i.e. for each a;€Q,

R™*] = [a™5). (2.5)

3. We have seen in 2 that the (m+k,m)-group (Q;[ ])
coincides with the (m+k,m)-group (Q;[ ]) induced by the
(m+k ,m) -subgroup Q of QV=Q+/-. From now on we will denote
by a a fixed element from Q and QY will be given in the form

0¥ = g™U gl g"a?U ...Ug"a""". (3.1)

The product in Q" is defined by
m ain

Bkl m 3

x,a vy a’ =z,
where ® is the operation in the cyclic group 7,, and 27 is a
solution of the equation

[xTalyTa**Im (03] = [7a5).

The inverse of the element x€Q' will be denoted by x ': and

Qm+p=Qmap is the invariant subgroup of aY, where m+p =0 (modk),
»
0 <p<k.
3.19 (a) Defining an operation * on 0 by

P
xT*yT = [xTayT] ' (3.2)

for each xT,yTEQm, a group (Q™; %) is obtained; with a unity
a P and the inverse b™* of beQ™ defined by b '=a b 'a ©.

") This property is given in [2].
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(b) The mapping ©:X = a PxaP is an automorphism of
(Qm;*) such that

en‘x) o a-npxanp {3-3)

for each x€Q", n21.
proof. (a) By (2.5) we have
m
x,wyT g x,...xmapy1...ym
which implies the associativity of =. It is easy to check
that a P is the unity, and a_Pb;‘...b:1a-p is the inverse of
breQ™. O
Note that if b€Q, then bEQmap+‘. Now, if k=tm+r, 0 <r <m,
then for each xe0* there exists yGQm such that x=yap+r. Defi-
ne a mapping $: QF = Q" by
s(x) = ya© P, (3.4)
(If r=0, then Q°={0}, and ¢(g)=a'tP-p_)

3.2° 4 is an injection from Q° into Q. O

Let z&Q", x,€Q" and x=xox1...xtzeqm+k. Using © and ¢
defined as above we obtain
2o *0 (X,) 0% (x,) % . .40 (x ) #0" " (4(2)) =
= xoapa-px1apapa"sz2a’pap

...apa-tpxtatpapa'{t+')P¢(z}a(t+1)P =

- xox,...tha'{p+r}ar'tpa(t+‘}P =
= x1...xtz
= [x].

Thus we have proven the following

Theorem HG. Let (Q;[ ]) be an (m+k,m)-group, where
k=tm+r, 0 <r <m.Then there exists a group (Q";%), an auto-
morphism oeAut (Q™;+) and an injection ¢: QF - o™ such that
for each xieQm, z€Q" the equality
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[Ky - %, 2] = %, *0(x,) %07 (x,) %00 (x) 40" (4(2))  (3.5)

holds. Furthermore, if r=0, then

a($(0)) = ¢(0), (3.6)

0%(x) = ¢(0)*xss(0)”" (3.7

for each x€Q™. O

In the case m=1, k=n-1, the notion of (n,l)-group coin-
cides with the notion of n-group. Thus the theorem of Hosszu-
Gluskin for representation of an n-group by a group is a soe-
cial case of Theorem HG. In the case of n-groups the conveirse
is also valid, i.e. if (G;*) is a group, @ an automorphism
of (G;+) and $(0)€G, such that (3.6) and (3.7) are valid then
by (3.5) an n-ary operation [ ] on G is defined such that
(G;[ ]) is an n-group.

In the vector valued version of Hosszu-Gluskin theorem
the converse is not generally valid, because even when r=0,
the (m+k,m)-operation [ ] defined by (3.5) need not be asso~
ciative (although it satisfies the condition for solubility
of equations when t21).

Note that Theorem HG is a consequence of Theorem P.
Thus in the n-ary case (when m=1) we obtain that the Post
coset theorem implies the Hosszu-Gluskin Theorem.
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