POST AND HOSSZÚ-GLUSKIN THEOREM FOR VECTOR VALUED GROUPS

S.Markovski, B.Janeva

The notion of an (m+k,m)-group was first introduced in [1], as a generalization of the notion of an n-group. Here we generalize the Post theorem for embedding of an n-group into a group ([6]) and the Hosszú-Gluskin theorem for representation of an n-group by a group ([4], [5]). Namely, in Theorem P we show that every (m+k,m)-group (Q;[]) is embeddible into a group $(G;\cdot)$ such that $Q\subseteq G$ and $[a_1^{m+k}]=b_1^m <=> a_1 \cdot a_2 \cdot \ldots \cdot a_{m+k}=b_1 \cdot b_2 \cdot \ldots \cdot b_m$ for all $a_\lambda,b_\nu \in Q$. Using this result in Theorem HG we show that every (m+k,m)-group (Q;[]) can be represented by a group $(Q^m;*)$. As a corrolary of these results (for m=1) we have that Hosszú-Gluskin theorem is a consequence of Post coset theorem. It is notified (in [3]) that Post had proven the Hosszú-Gluskin theorem in [6], but his proof is, in a way, given in [6] ambiguously.

First we will give some preliminary notations and definitions. If A is a nonempty set, the elements of the n-th Cartesian power A^n of A will be denoted by (a_1,\ldots,a_n) , or shortly by a_1^n ; for n=0 we define $A^0=\{0\}$. Also, a_1^S is a notation for (a_1,a_{r+1},\ldots,a_S) if $s\geq r$, and the empty symbol if r>s. In the case when A is a subset of a semigroup $\underline{S}=(S;\cdot)$, then for $n\geq 1$, we put $A_n=\{a_1,\ldots,a_n\mid a_v\in A\}$. This product will be, as usual, written without the operation symbol.

Thus, if $\emptyset \neq A \subseteq S$,

$$A^{n} = \{a_{1}^{n} = (a_{1}, ..., a_{n}) \mid a_{1} \in A\}, n \ge 0$$

$$A_n = \{a_1 ... a_n | a_i \in A\}, n \ge 1.$$

If $a_1=a_2=...=a_n=aeA$, then $a=a_1^n$, and $a^n=a_1...a_n$.

The free semigroup with a basis A, where A is a nonempty set, is denoted by A^+ , and in this case

This paper is in final form and no version of it will be submited for publication elsewhere.

$$A^{+} = \bigcup_{n \ge 1} A^{n}, \ a_{1}^{i} \cdot a_{i+1}^{i+j} = a_{1}^{i+j}$$

for each $a_y \in A$, $i,j \ge 1$. If $a \in A^+$, then we define a <u>length</u> of a, |a|, by

We denote by \mathbb{N} the set $\{1,2,\ldots\}$ of positive integers, and by \mathbb{N}_{\sim} the set $\{1,2,\ldots,r\}$, for each $r \in \mathbb{N}$.

Here we will also give the formulations of the Post and Hosszú-Gluskin theorems and a definition of an (m+k,m)-group. Namely, Post theorem states that each n-group $(Q;[\])$ can be embedded into a group $(G;\cdot)$ such that $Q\subseteq G$ and for each $a_i\in Q$

$$\begin{bmatrix} a_1^n \end{bmatrix} = a_1 \cdot a_2 \cdot \dots \cdot a_n$$

The Hosszú-Gluskin theorem gives a representation of an n-group $(Q;[\])$ by a group $(Q;\cdot)$ with an automorphism θ on $(Q;\cdot)$ and a fixed element ceQ such that for each a,a,eQ

$$\theta(c)=c$$
, $\theta^{n-1}(a)=cac^{-1}$, $[a_1^n]=a_1\theta(a_2)...\theta^{n-1}(a_n)c$.

Let m,k be positive integers, $[\]:Q^{m+k} \to Q^m$ a mapping. We say that the pair $Q=(Q;[\])$ is an (m+k,m)-group (or a vector valued group) if $[\]$ is associative, i.e. for all $a_j\in Q$

$$[[a_1^{m+k}]a_{m+k+1}^{m+2k}] = [a_1^{i}[a_{i+1}^{i+m+k}]a_{i+m+k+1}^{m+2k}], i \in \mathbb{N}_k,$$

and the equations

$$[xa_1^k] = b_1^m = [a_1^k y]$$

have solutions x,yeQ^m , for each $a_1^keQ^k$, $b_1^meQ^m$.

- 1. Let $G=(G;\cdot)$ be a group with the unity e, and m,k be positive integers. We say that the subset $Q\subseteq G$ is an (m+k,m)-subgroup of G iff the following conditions hold:
- (I) The mapping $a_1^m \, \mapsto \, a_1 \dots a_m$ is a bijection from Q^m into Q_m .

Note that if (I) holds then the mappings $a_1^r \mapsto a_1 \dots a_r$ are bijections from Q^r into Q_r , for each $r \in N_m$. In this case

we will identify a_1^r and $a_1 \dots a_r$, i.e. we will assume $Q_r = Q^r$, for each $r \in N_m$.

(II) $(\forall a \in Q_k) a Q_m = Q_m$

where $aQ_m = \{aa_1...a_m \mid a_i \in Q\}$.

To each (m+k,m)-subgroup Q of a group G we associate a mapping $[]:Q^{m+k} \to Q^m$ defined by:

$$[a_1^{m+k}] = b_1^m \iff a_1 \dots a_{m+k} = b_1 \dots b_m$$
 (1.1)

for each a_{v} , $b_{\lambda} \in \mathbb{Q}$. [] is a well defined (m+k,m)-operation on \mathbb{Q} , as (I) and (II) hold for \mathbb{Q} . The pair $(\mathbb{Q};[])$ is said to be an (m+k,m)-groupoid. We will show that $(\mathbb{Q};[])$ is an (m+k,m)-group, but first we will give some properties of (m+k,m)-subgroups of a group \underline{G} .

$$1.1^{\circ}$$
 (a) $Q_{m+k} = Q_{m}$.

(b)
$$Q_iQ_j = Q_{i+j}$$
, for each $i,j \ge 1$.

(c)
$$i+j = m+k+r$$
, $r \ge 0 \Longrightarrow Q_iQ_j = Q_{m+r}$, for each $i,j \ge 1$. \Box

$$\underline{1.2}^{\circ}$$
 (a) $sk \ge m \Longrightarrow (eeQ_{sk} & (VaeQ)aeQ_{sk+1})$.

(b)
$$sk > m$$
, $a \in Q \implies a^{-1} \in Q_{sk-1}$.

(c)
$$H = \bigcup_{i \ge 1} Q_i$$
 is a subgroup of the group G .

(d)
$$H = Q^{m} \cup Q_{m+1} \cup \ldots \cup Q_{m+k-1}$$
.

 $\underline{\text{Proof}}_{\cdot}$ (a) By 1.1° (c) and (II), for each aGQ there exist $\mathbf{x_1},\dots,\mathbf{x_m}$ GQ such that

$$a^{sk}x_1...x_m = a^m$$

where $s \ge 1$. If $sk \ge m$ we have

$$a^{Sk-m}x_1...x_m = e.$$
 (1.2)

Thus eeQ and

$$a = a^{sk-m+1}x_1...x_m eq_{sk+1}.$$

- (b) If sk > m we obtain from (1.2) $a^{-1} = a^{sk-m-1}x_1...x_m eQ_{sk-1}$.
- (c) is a consequence of (a) and (b).
- (d) is a consequence of 1.1° (c), (a) and the fact that there exist an s such that m \leq sk < m+k. \square

$$\underline{1.3}^{\circ}. (a) i \ge 1, j \ge m, aeQ_{i} \Longrightarrow aQ_{j} = Q_{j}a = Q_{i+j}.$$

$$(b) (\forall aeQ_{k}) aQ_{m} = Q_{m} = Q_{m}a.$$

<u>Proof.</u> (a) It is obvious that $aQ_j \subseteq Q_{i+j}$, $Q_j a \subseteq Q_{i+j}$ for $a \in Q_i$. Let $a = a_1 \dots a_i$, $a_\lambda \in Q_i$, and $b_1 \dots b_{i+j} \in Q_{i+j}$, $b_\nu \in Q_i$. The equation $xa_1 \dots a_i = b_1 \dots b_{i+j}$ has a solution $x \in G_i$, and $x \in H_i$, $x \in G_i$

1.4° If Q is an (m+k,m)-subgroup of a group G then the induced (m+k,m)-groupoid (Q;[]) (defined by (1.1)) is an (m+k,m)-group.

 $\frac{\text{Proof. Let } a_{\lambda}\text{eQ and let } \left[a_{1}^{m+k}\right] = b_{1}^{m}, \; \left[a_{1+1}^{i+m+k}\right] = c_{1}^{m}, \; \text{i.e.}}{a_{1} \ldots a_{m+k} = b_{1} \ldots b_{m}}, \; a_{1+1} \ldots a_{1+m+k} = c_{1} \ldots c_{m} \; \text{in } \underline{G}. \; \text{Then we have}}$

$$[[a_1^{m+k}]a_{m+k+1}^{m+2k}] = [b_1^m a_{m+k+1}^{m+2k}] = d_1^m \iff d_1 \dots d_m =$$

- $= b_1 \dots b_m a_{m+k+1} \dots a_{m+2k} = a_1 \dots a_{m+k} a_{m+k+1} \dots a_{m+2k}$
- $= a_1 ... a_i c_1 ... c_m a_{m+k+i+1} ... a_{m+2k} < \Longrightarrow d_1^m =$
- $= [a_{1}^{i} [a_{i+1}^{m+k+i}] a_{m+k+i+1}^{m+2k}]$

for each ieNk.

The solubility of the equations

$$[xa_1^k] = b_1^m = [a_1^k y]$$

for a,,b, eQ is a consequence of 1.30 (b). \Box

1.5° If Q={a} is a one element subset of a group G, then Q is an (m+k,m)-subgroup of G iff the order of a devides k. $\underline{\text{Proof}}$. For each $m \ge 1$, $a^{m+k} = a^m$ iff $a^k = 1$ iff the order of a devides k. \square

1.6° (a) If $|Q| \ge 2$ and Q is an (m+k,m)-subgroup of the group G, then $aQ_m \subseteq Q_m$, for each aeQ.

(b) If $|Q| \ge 2$ and Q is an (m'+k',m')-, and (m''+k'',m'')- subgroup of a group G, then m'=m''.

<u>Proof.</u> (a) Let a,beQ, a\(\neq b. It is clear that $aQ_{m-1} \subseteq Q_m$. Suppose $aQ_{m-1} = Q_m$. Then, there exist a_{λ} eQ, such that $aa_{1} \cdots a_{m-1} = b^m$, which, by (I), implies a=b.

(b) Let m' < m", i.e. m' \leq m"-1. Then m'+t=m"-1, for some t \geq 0, and for each aGQ

$$aQ_{m''-1} = aQ_{m'+t} = Q_{m'+t+1} = Q_{m''}$$

which contradicts the result in (a).

1.7° If Q is an (m+k,m)-subgroup of a group G and $m \le sk < m+k$, sk=m+p, then Q_{m+p} is an invariant subgroup of the subgroup H of G.

Proof. By 1.1° (c) $Q_{m+p}Q_{m+p} = Q_{m+p+sk} = Q_{m+p}$, and by 1.2° (a), $e \in Q_{m+p}$. Let $a_{\lambda} \in Q$ and tk > m. Then by 1.2° (b) we have $a_{\lambda}^{-1} \in Q_{tk-1}$ and thus

 $(a_1...a_{sk})^{-1} = a_{sk}^{-1}...a_1^{-1} \in Q_{sk(tk-1)} = Q_{sk}.$ $Q_{sk} = Q_{m+p}$ is an invariant subgroup of H by 1.3° (a). \square

- (a) Q is an (m+k',m)-subgroup of G iff klk'.
- (b) $m \le i < j < m+k \Longrightarrow Q_i \cap Q_j = \emptyset$.
- (c) $H/Q_{m+p} = Z_k$, where Z_k is the cyclic group of order k.

<u>Proof.</u> (a) If k|k' then Q is obviously an (m+k',m)-subgroup of \underline{G} . Let Q be an (m+k',m)-subgroup of \underline{G} , where k'=rk+t, 0 < t < k. Then for each aeQ₊

$$aQ_m = Q_{m+t} = Q_{m+t+rk} = Q_{m+k'} = Q_m$$

i.e. Q is an (m+t,m)-subgroup of \underline{G} , contradicting the choice of k.

(b) Since Q_{m+p} is an invariant subgroup of H, by 1.3 $^{\circ}$ we have

$$H/Q_{m+p} = \{xQ_{m+p} \mid xeH\} = \{Q_{m+i} \mid 0 \le i < k\},$$

which implies that the sets $Q_m, Q_{m+1}, \ldots, Q_{m+k-1}$ are either equal or pairwise disjoint. Let $Q_{m+t} = Q_{m+r}, k > t > r \geq 0$. Then for some a6Q_

$$aQ_{m+t-r} = Q_{m+t} = Q_{m+r} = aQ_{m}$$

which implies $Q_{m+t-r} = Q_m$. Thus Q is an (m+t-r,m)-subgroup of G, contradicting the choice of k.

(c) By 1.2° (d) and (b) we obtain that the mapping $\phi\colon a_1\dots a_{m+1} \longmapsto i\text{-p is an epimorphism from H into } \mathbb{Z}_k, \text{ with } \ker \phi = Q_{m+p}. \ \square$

We say that a group \underline{G} is a <u>covering group</u> of its (m+k,m)-subgroup Q if \underline{G} is generated by Q, i.e.

(III)
$$G = Q_m \cup Q_{m+1} \cup ... \cup Q_{m+k-1}$$

If, moreover, G satisfies the following condition

(IV)
$$m \le i < j < m+k \Longrightarrow Q_i \cap Q_i = \emptyset$$

then we say that \underline{G} is a <u>universal covering group</u> of its (m+k,m)-subgroup Q. The universal covering group of Q will be denoted by Q^V .

1.9° Let Q be an (m+k,m)-subgroup of $G=Q^V$, Q' an (m+k,m)-subgroup of a group (G';*) and $\lambda: Q \rightarrow Q'$ a map, such that for all a_i,b_i eQ

$$a_1 \dots a_{m+k} = b_1 \dots b_m \iff \lambda(a_1) * \dots * \lambda(a_{m+k}) = \lambda(b_1) * \dots * \lambda(b_m).$$

Then there exists a unique homomorphism $\xi: G \to G'$ which is an extension of λ .

As a corollary of 1.80 we have

1.10° If k is the least positive integer such that Q is an (m+k,m)-subgroup of the group G, and G is a covering group for Q, then G is a universal covering group for Q.

Let us note that by 1.30 the following is also true:

1.11° If G is a universal covering group of its (m+k,m)-subgroup Q, then for each aeQ

$$G = Q^{m} \bigcup aQ^{m} \bigcup ... \bigcup a^{k-1} Q^{m} =$$

$$= Q^{m} \bigcup Q^{m} a \bigcup ... \bigcup Q^{m} a^{k-1}. \quad \Box$$

2. Let Q=(Q;[]) be a given (m+k,m)-group. We will construct a group $G=(G;\cdot)$ such that $Q\subseteq G$ is an (m+k,m)-subgroup of G, and G is its universal covering group. The (m+k,m)-operation [] induced by the (m+k,m)-subgroup Q, defined by (1.1), will coincides with the operation [] of the given (m+k,m)-group Q.

Further on by Q=(Q;[]) a given (m+k,m)-group will be denoted. By ([2], pg. 27) Q satisfies the general associative law, and the "product" $[a_1^{m+sk}]$ is defined for all $s \ge 1$. Also, Q is cancellative, i.e.

$$[a_{1}^{i-1}x_{1}^{m}a_{1}^{k}] = [a_{1}^{i-1}y_{1}^{m}a_{1}^{k}] \Longrightarrow x_{1}^{m} = y_{1}^{m}$$
(2.1)

for each $i\in \mathbb{N}_{k+1}$, and a_{λ} , x_{γ} , $y_{\mu}\in \mathbb{Q}$ (see [2], pg. 54). By (2.1), for each $x,y\in \mathbb{Q}^1$, ab, $cd\in \mathbb{Q}^{m+sk-1}$, $i\geq 1$,

$$[axb] = [ayb] \Longrightarrow [cxd] = [cyd],$$
 (2.2)

(see [2], pg. 37).

Let $\underline{Q}=(Q;[\])$ be a given (m+k,m)-group. Define a relation - on Q^+ by:

$$(\forall u, v \in Q^+) (u - v \iff (\exists w \in Q^+) [uw] = [vw]),$$
 (2.3)

where [uw] and [vw] denote that $uweQ^{m+sk}$, $vweQ^{m+tk}$ for some $s,t\geq 0$, and we put $[a_1^m]=a_1^m$ for a_1eQ .

- 2.1° (a) $u \cdot v \Longrightarrow |u| \equiv |v| \pmod{k}$.
 - (b) The relation is a congruence on Q+.
 - (c) Q⁺/- is a group.
 - (d) a,beQ, a ~ b \Longrightarrow a=b (<u>i.e.</u> we can concider

 Q as a subset of Q^+/\sim).

 $\frac{\text{Proof.}}{\text{(a) } u - v} => (\exists w \in Q^+) [uw] = [vw] => |uw| \equiv |vw|$ $(\text{mod } k) => |u| \equiv |v| \pmod{k}.$

(b) Note that by (2.2) and (2.3) it follows that

$$u - v \implies [tuw] = [tvw]$$
 (2.4)

for all t,weQ⁺ such that |tuw| \equiv |tvw| \equiv m (modk). Now by (2.4) we obtain that \sim is a congruence on Q⁺.

- (c) We will show that the equations ux ~ v and zu ~ v have solutions on x and z for every $u,v\in Q^+$. If |v| < m then for some $w,t\in Q^+$ we have |wv|=m and |wut|=sk, $s\ge 1$. Now, since in the (m+k,m)-group Q the equation [wuty]=wv has a solution $y\in Q^m$, we obtain that x=ty is a solution of ux ~ v. In the other case, when $|v|\ge m$, we have v=v'v'' where |v'|=m, and the equation [uty]=v' has a solution $y\in Q^m$ for some $t\in Q^T$. Now x=tyv'' is a solution of ux ~ v. Similarly we solve the equation zu ~ v.
- (d) Let a,beQ, a b. Then by (2.4) $\begin{bmatrix} m \\ a \end{bmatrix} = \begin{bmatrix} b & a^{-1} \end{bmatrix}$, i.e. $\begin{bmatrix} m \\ a = b & a^{-1} \end{bmatrix}$ in Q^m , which implies a=b. \Box

$$2.2^{\circ}$$
 Q⁺/~ = Q^V.

<u>Proof.</u> We will show that the conditions (I)-(IV) are fulfiled for $Q^+/$ -. It is clear that (I) holds for $Q^+/$ -, as if $a_1^m \sim b_1^m$ in $Q^+/$ - it follows that $\left[a_1^m w\right] = \left[b_1^m w\right]$, which (by cancellativity of the (m+k,m)-operation []) implies $a_1^m = b_1^m$.

Let $a=a_1...a_k\in Q_k$ and $b=b_1...b_m\in Q_m$ $(a_v,b_\lambda\in Q)$. Now, as $[a_1^kb_1^m]=c_1^m\in Q_m^m$, ab $-c_1...c_m$, and thus $ab\in Q_m$, i.e. $aQ_m\subseteq Q_m$. If $c=c_1...c_m\in Q_m$ is given, then for each $a\in Q_k$ the equation

[ax]=c has a solution $x \in Q_m$, i.e. $c \sim ax$. Thus $c \in aQ_m$, i.e. $Q_m \subseteq aQ_m$, i.e. (II) is satisfied. As Q generates Q^+/\sim we have (III), and (IV) follows by 2.1° (a). \square

Theorem P. Det (Q; []) be an (m+k,m)-group. Then there exists a group (G;) such that $Q\subseteq G$ and for each $a_1,b_1\in Q$

$$[a_1^{k+m}] = b_1^m \iff a_1 \dots a_{k+m} = b_1 \dots b_m.$$

Proof. Take G = Q+/-. []

We note that for each (m+k,m)-group (Q;[]), as a consequence of the results above, the (m+k,m)-operation [] (defined by (1.1)) and [] coincides, i.e. for each $a_i \in Q$,

$$[a_1^{m+k}] = [a_1^{m+k}].$$
 (2.5)

3. We have seen in $\underline{2}$ that the (m+k,m)-group (Q;[]) coincides with the (m+k,m)-group (Q;[]) induced by the (m+k,m)-subgroup Q of $Q^V=Q^+/\sim$. From now on we will denote by a a fixed element from Q and Q^V will be given in the form

$$Q^{V} = Q^{M} U Q^{M} a U Q^{M} a^{2} U ... U Q^{M} a^{k-1}$$
. (3.1)

The product in QV is defined by

$$x_1^m a^i \cdot y_1^m a^j = z_1^m a^{i \oplus j}$$

where $\boldsymbol{\theta}$ is the operation in the cyclic group \boldsymbol{Z}_k , and \boldsymbol{z}_{*}^m is a solution of the equation

$$[x_1^m a^i y_1^m a^{k+j-(i \oplus j)}] = [z_1^m a^k].$$

The inverse of the element $x \in Q^V$ will be denoted by x^{-1} ; and $Q_{m+p} = Q^m a^p$ is the invariant subgroup of Q^V , where $m+p \equiv 0 \pmod{k}$, $0 \le p < k$.

3.1° (a) Defining an operation * on Q^m by
$$x_1^m * y_1^m = \left[x_1^m x_2^p\right], \qquad (3.2)$$

 $\frac{\text{for each } x_1^m, y_1^m \text{eQ}^m, \text{ a group } (Q^m; *) \text{ is obtained, with a unity } a^{-p} \\ \frac{\text{and the inverse } b^{-*} \text{ of beQ}^m \text{ defined by } b^{-*} = a^{-p} b^{-1} a^{-p}.$

¹⁾ This property is given in [2].

(b) The mapping $\theta: x \mapsto a^{-p}xa^{p}$ is an automorphism of $(Q^{m};*)$ such that

$$\theta^{n}(x) = a^{-np}xa^{np}$$
 (3.3)

for each xeQm, n ≥ 1.

Proof. (a) By (2.5) we have

$$x_1^m * y_1^m = x_1 \dots x_m a^p y_1 \dots y_m$$

which implies the associativity of *. It is easy to check that a^{-p} is the unity, and $a^{-p}b_m^{-1}...b_1^{-1}a^{-p}$ is the inverse of $b_*^m e Q^m$. \square

Note that if beQ, then beQ^ma^{p+1}. Now, if k=tm+r, $0 \le r < m$, then for each xeQ^r there exists yeQ^m such that x=ya^{p+r}. Define a mapping $\phi: Q^r + Q^m$ by

$$\phi(x) = ya^{r-tp}. \tag{3.4}$$

(If r=0, then $Q^0=\{0\}$, and $\phi(0)=a^{-tp}-p$.)

3.2° o is an injection from Qr into Qm.

Let $z \in Q^r$, $x_\lambda \in Q^m$ and $x = x_0 x_1 \dots x_t z \in Q^{m+k}$. Using 0 and ϕ defined as above we obtain

$$\begin{aligned} & x_{o} \star \theta (x_{1}) \star \theta^{2} (x_{2}) \star \dots \star \theta^{t} (x_{t}) \star \theta^{t+1} (\phi(z)) = \\ & = x_{o} a^{p} a^{-p} x_{1} a^{p} a^{p} a^{-2} p_{x_{2}} a^{2} p_{a} p_{a} \dots \\ & \dots a^{p} a^{-t} p_{x_{t}} a^{t} p_{a} p_{a}^{-(t+1)} p_{\phi}(z) a^{(t+1)} p = \\ & = x_{o} x_{1} \dots x_{t} z a^{-(p+r)} a^{r-t} p_{a}^{(t+1)} p = \\ & = x_{1} \dots x_{t} z \\ & = [x]. \end{aligned}$$

Thus we have proven the following

Theorem HG. Let (Q;[]) be an (m+k,m)-group, where k=tm+r, $0 \le r < m$. Then there exists a group $(Q^m;*)$, an automorphism $0 \in Aut(Q^m;*)$ and an injection $\phi: Q^r + Q^m$ such that for each $x_i \in Q^m$, $z \in Q^r$ the equality

$$[x_0 ... x_t z] = x_0 * \theta(x_1) * \theta^2(x_2) * ... * \theta^t(x_t) * \theta^{t+1}(\phi(z))$$
 (3.5)

holds. Furthermore, if r=0, then

$$\Theta(\phi(0)) = \phi(0), \tag{3.6}$$

$$\theta^{t}(x) = \phi(0) * x * \phi(0)^{-*}$$
 (3.7)

for each xeQm.

In the case m=1, k=n-1, the notion of (n,1)-group coincides with the notion of n-group. Thus the theorem of Hosszú-Gluskin for representation of an n-group by a group is a special case of Theorem HG. In the case of n-groups the converse is also valid, i.e. if (G;*) is a group, 0 an automorphism of (G;*) and $\phi(0)$ eG, such that (3.6) and (3.7) are valid then by (3.5) an n-ary operation [] on G is defined such that (G;[]) is an n-group.

In the vector valued version of Hosszú-Gluskin theorem the converse is not generally valid, because even when r=0, the (m+k,m)-operation [] defined by (3.5) need not be associative (although it satisfies the condition for solubility of equations when $t \ge 1$).

Note that Theorem HG is a consequence of Theorem P. Thus in the n-ary case (when m=1) we obtain that the Post coset theorem implies the Hosszú-Gluskin Theorem.

REFERENCES

- [1] G. Čupona: Vector valued semigroups, Semigroup Forum, Vol. 26 (1983), 65-74.
- [2] G. Čupona, N. Celakoski, S. Markovski, D. Dimovski: Vector valued groupoids, semigroups and groups, to appear
- [3] K.Glazek: Bibliography of n-groups (polyadic groups)

 and some group like n-ary systems, Proc. Symp. n-ARY
 STRUCTURES, 1982, Skopje, 253-289.

- [4] L.M.Gluskin: On positional operatives, Dokl. Akad. Nauk SSSR 157 (1964), 767-770.
- [5] M.Hosszú: On the explicit form of n-group operations, Publ. Math. 10 (1963), 88-92.
- [6] E.L.Post: Polyadic groups, Trans. Amer. Math. Soc. 48, (1940), 208-350.

PMF, p.f. 162 91000 Skopje Yugoslavia