PROCEEDINGS OF THE CONFERECE "ALGEBRA AND LOGIC", SARAJEVO 1987

NONEXISTENCE OF CONTINUOUS (4,3)-GROUPS ON R
Dončo Dimovski and Kostadin Trenčevski

Abstract. In this paper we show that continuous (4,3)-groups on R do not exist.

- <u>O. Introduction</u>. Let m,n,k=n-m be positive integers. A set $G \neq \emptyset$ together with a map []: $G^{R} \rightarrow G^{M}$ is called an (n,m)-group if:
 - (1) $[[x_1^n]x_{n+1}^{n+k}] = [x_1^i[x_{i+1}^{i+n}]x_{i+n+1}^{n+k}]$ for each $1 \le i \le k$; and
- (2) For given $a_1^k, b_1^k e G^k$, $c_1^m e G^m$, there exist $x_1^m, y_1^m e G^m$ such that $[a_1^k, x_1^m] = c_1^m = [y_1^m, b_1^k]$ (see [1], where this notion was introduced). Above, x_1^t denotes the vector $(x_1, \ldots, x_t) e G^t$, and $[x_1^n]$ denotes the image of x_1^n under the map []. We will denote by a the vector $(a_1, \ldots, a_n) e G^t$.

We say that (G;[]) is a <u>continuous</u> (n,m)-group, if: G is a topological space; (G;[]) is an (n,m)-group; and the map [] is continuous, where G^n , G^m are equiped with the product topology.

If (G;[]) is a (2m,m)-group, then (G^m,\bullet) where $x_1^m \cdot y_1^m = [x_1^m \ y_1^m]$, is a group with identity element E^m , for some eeg (see [2]). We say that e is the <u>identity</u> of the (2m,m)-group (G;[]). A (2m,m)-group (G;[]) is called a <u>topological</u> (2m,m)-group, if G is a topological space and (G^m,\bullet) is a topological group.

If (G;[]) is an (m+1,m)-group, then (G;[]') where $[x_1^{2m}]' = [x_1^{2m}]$, is a (2m,m)-group, induced by (G;[]). So, if (G;[]) is an (m+1,m)-group, then there exists an element eeg, such that $[x_1^m] = [e^m] = [$

This paper is in final form and no version of it will be submitted for publication elsewhere.

(see [3]). We say that an (m+1,m)-group is a <u>topological</u> (m+1,m)-group if its induced (2m,m)-group is a topological (2m,m)-group.

In [5] it was shown that continuous (3,2)-groups on R (where R is the set of the real numbers equiped with the usual topology) do not exist, but in [4] it was shown that topological (4,2)-groups on R do exist. The examples produced in [4] were obtained using Lie groups and Lie algebras.

In this paper we give an elementary proof that continuous (4,3)-groups on R do not exist. Also, we will give a sketch of a proof, that topological (4,3)-groups on R do not exist, using Lie groups and Lie algebras. Although the second result is a consequence of the first one, we include its proof, because of its method, which may be used for answering the existence question about topological (m+1,m)-groups for $m \ge 4$. Similar methods were used in [4].

1. Elementary algebraic results

We need several elementary results about (4,3)-groups, which are in fact, special cases of more general results about (m+1,m)-groups. Let $(G,[\])$ be a (4,3)-group, with identity element eeg.

PROPOSITION 1. The following conditions are equivalent:

- (1) |G|=1, i.e. G has only one element;
- (2) $[x \stackrel{3}{e}] = \stackrel{3}{e}$, for some xeG;
- (3) $[x y \hat{e}] = \hat{e}$, for some x, yes; and
- (4) [x y e] = [z e], for some x,y,zeG.

Proof. It is obvious that (1) \Longrightarrow (2), (1) \Longrightarrow (3) and (1) \Longrightarrow (4). If $\begin{bmatrix} x & e \end{bmatrix} = e$ for some xeG, then $xyz=\begin{bmatrix} xyze \end{bmatrix} = \begin{bmatrix} xeyz \end{bmatrix} = \begin{bmatrix} 3yz \end{bmatrix} = \begin{bmatrix} 3yze \end{bmatrix} = \begin{bmatrix} yze \end{bmatrix} = \begin{bmatrix} yze \end{bmatrix} = yzx$, for each y,zeG, implies that |G|=1; hence (2) \Longrightarrow (1). If [xye]=e for some x,yeG, then

[xyxz]=[xy 3 xz]=[3 xz]=[xz 3]=[xzxy 3]=[xzxy], for each zeg, implies that z=y, i.e. |G|=1; hence (3) \Longrightarrow (1). If [xy 3]=[z 3] for some x,y,zeg, then xyz=[xyz 3]=[xyxy 3]=[xy 3 xy]=[z 3 xy]=zxy, implies that z=x, and so, [y 3]= 3 . Hence (4) \Longrightarrow (2).

For given x,yeG, let $\alpha_x \beta_x \gamma_x$, $\alpha_{xy} \beta_{xy} \gamma_{xy}$ denote the vectors [xe] and [xye] respectively.

PROPOSITION 2. The following conditions are equivalent:

- (1) |G|=1;
- (2) $\alpha_{X} = x \text{ or } \gamma_{X} = x \text{ for some xeG};$
- (3) $\alpha_x = \gamma_y \text{ for some } x, y \in G;$
- (4) $\alpha_{xy} = x \text{ or } \gamma_{xy} = y \text{ for some } x, y \in G;$
- (5) $\alpha_{x}\beta_{x} = \beta_{y}\gamma_{y}$ for some x, yeg;
- (6) $\alpha_{xy}\beta_{xy} = \beta_{zt}\gamma_{zt} \text{ for some } x,y,z,teg;$
- (7) $\alpha_x^{\beta} = \alpha_{xy}^{\beta} xy \text{ or } \beta_x^{\gamma} = \beta_{yx}^{\gamma} yx \text{ for some } x,y \in G.$

Proof. It is obvious that (1) \Longrightarrow (k) for each k=2,...,7. If $\alpha_x = x$ or $\gamma_x = x$, then $[\beta_x \ \gamma_x \ \hat{a}] = \hat{a}$ or $[\alpha_x \ \beta_x \ \hat{a}] = \hat{a}$, which implies that |G| = 1, by P.1; hence (2) \Longrightarrow (1). If $\alpha_x = \gamma_y$, then $\alpha_y \beta_y = \alpha_y \beta_y = \alpha_y \beta_x \beta_x \gamma_x = [\alpha_y \beta_y \alpha_x \beta_x \gamma_x] = [\alpha_y \beta_y \gamma_y \beta_x \gamma_x] = [\gamma_y \hat{a}] \beta_x \gamma_x = [\alpha_y \beta_y \alpha_x \beta_x \gamma_x] = [\alpha_y \beta_y \gamma_y \beta_x \gamma_x] = [\gamma_y \hat{a}] \beta_x \gamma_x = [\gamma_y \beta_y \gamma_y \beta_x \gamma_x] = [\gamma_y \hat{a}] \beta_x \gamma_x = [\gamma_y \beta_y \gamma_y \beta_x \gamma_x] = [\gamma_y \beta_y \gamma_y \gamma_x \beta_y \beta_x \gamma_x] = [\gamma_y \beta_y \gamma_y \gamma_x] = [\gamma_y \beta_x \gamma_x] = [\gamma_y \beta_y \gamma_y \gamma_x] = [\gamma_y \beta_x \gamma_x] = [\gamma_x \gamma_y \beta_x \gamma_x] = [\gamma_x \gamma_x \beta_x \gamma_x] = [\gamma_x \gamma_x \beta_x \gamma_x] = [\gamma_x \gamma_x \beta_x \gamma_x \gamma_x] = [\gamma_x \gamma_x \beta_x \gamma_x] = [\gamma_x \gamma_$

PROPOSITION 3. The element $\alpha_e \beta_e \gamma_e$ is in the centre of the group (G³,•) (where xyz•uvw=[xyzuvw]), if and only if

<u>Proof.</u> If $\alpha_e \beta_e \gamma_e \cdot xyz = xyz \cdot \alpha_e \beta_e \gamma_e$ for each $xyzeG^3$, then [exyz]=[xyze] for each x,y,zeG. For x=e, this implies eyz=yze i.e. y=z=e; hence |G|=1.

2. Nonexistence of continuous (4,3)-groups on R.

We start with the assumption that there is a continuous (4,3)-group on R, and denote it by (R;[]). We denote by $[]_1$, $[]_2$, $[]_3$ the components of [], i.e.

$$[xyzt] = [xyzt], [xyzt], [xyzt],$$

Since [] is continuous, it follows that [] $_{i}$, i=1,2,3, are also continuous. In the following several steps, the assumption that (R;[]) is a continuous group will bring us to a contradiction.

Step 1. Let $\phi: \mathbb{R}^3 \to \mathbb{R}$ be defined by $\phi(xyz) = [xyze]_1 - x$. Since $[]_1$ and - are continuous, it follows that ϕ is also continuous.

Fact 1. $\phi^{-1}(0) \neq \emptyset$, i.e. there exists xyzeR³, such that $\phi(xyz)=0$, where 0 is the zero in R.

<u>Proof.</u> Consider ϕ (xee)= α_{X} -x, ϕ ($\alpha_{X}\beta_{X}\gamma_{X}$)= α_{X} e- α_{X} and ϕ ($\alpha_{X}e^{\beta_{X}e^{\gamma_$

Step 2. Let c,a,ber be such that ϕ (cab)=0, i.e. [cabe]==cuv for some u,ver. This implies that [abe]=uve, [abe]=[uve]

and abe=[uve], i.e. α_{uv}^{2} =a, β_{uv}^{2} =b, γ_{uv}^{2} =e. Now, let $\psi: \mathbb{R}^{2} \to \mathbb{R}$: be defined by $\psi(xy)=[xye]_{1}$ -x. Again, since [], and - are continuous, it follows that ψ is continuous.

Fact 2. $\psi^{-1}(0) \neq \emptyset$, i.e. there exists $xy \in \mathbb{R}^2$ such that $\psi(xy) = 0$.

Proof. Consider $\psi(uv) = \alpha_{ab} - u$ and $\psi(ab) = u-a$. Since the map $\eta: \mathbb{R}^2 \to \mathbb{R}$ defined by $\eta(xy) = [xye]_{,-}x$ is continuous, $|\mathbb{R}| > 1$ and \mathbb{R} is connected, P.2. implies that $\alpha_{xy} < x$ for each x,yeR, or $\alpha_{xy} > x$ for each x,yeR. If u=a, then $\psi^{-1}(0) \neq \emptyset$. If u-a < 0, i.e. $u < a = \alpha_{uv}$, then $\alpha_{xy} > x$ for each x,yeR. So $\alpha_{ab} - u > a - u > 0$, i.e. $\psi(uv) > 0$. This, together with $\psi(ab) < 0$, implies that $\psi^{-1}(0) \neq \emptyset$. If u-a > 0, i.e. $u > a = \alpha_{uv}$, then $\alpha_{xy} < x$ for each x,yeR. So $\alpha_{ab} - u < a - u < 0$, i.e. $\psi(uv) < 0$. This, together with $\psi(ab) > 0$, implies that $\psi^{-1}(0) \neq \emptyset$.

Step 3. Let p,qeR be such that $\psi(pq)=0$, i.e. [pqe]=prs for some r,seR. This implies that [rse]=qe, i.e. $\beta_{rs}\gamma_{rs}=e$.

 $\frac{\text{Step 4. Symmetrically, there exist z,weR such that}}{\alpha_{\text{ZW}}\beta_{\text{ZW}}} = \frac{2}{e}. \text{ (When we say symmetrically, we mean: change [xyze],-x in Step 1, by [exyz],-z and [xye],-x in Step 2, by [exy],-y.)}$

Now, Step 3, Step 4 and P.2. imply that |R|=1, which is a contradiction.

3. The Lie groups and Lie algebras method

Suppose that $(R^3,*)$ is a Lie group, with the identity element e, and, $x \in R^3$ such that $x^3 = e$, $x \ne e$ and x is not in the centre of $(R^3,*)$. The map $\psi: R^3 \to R^3$ defined by $\psi(y) = x * y * x^{-1}$ is an automorphism of R^3 of order 3, i.e. $\psi^3 = \mathrm{id}_{R^3}$ and $\psi \ne \mathrm{id}_{R^3}$. Since R^3 is simply-connected manifold, there exists a bijection between the automorphisms of the Lie group and the automorphisms of its corresponding Lie algebra [6]. So, ψ corresponds to an automorphism, again denoted by ψ , of the corresponding Lie algebra on R^3 , such that $\psi^3 = \mathrm{id}$ and $\psi \ne \mathrm{id}$.

It is easy to check that if ψ is an autmorphism of a Lie algebra on R^3 of order 3, then there is a vector $X \in R^3$ such that X, $\psi(X) = Y$ and $\psi^2(X) = Z$ is a basis for the vector space R^3 . Let the bracket on the Lie algebra be defined on X, Y by [X,Y] = aX + bY + cZ, for some a,b,ceR. This implies that [Y,Z] = cX + aY + bZ, [Z,X] = bX + cY + aZ. The Jacobi identity implies that (b-a)(a+b+c)=0. So, the Lie algebras on R^3 with such an automorphism, can be classified into two classes:

Class 1, when a=b; and Class 2, when a+b+c=0.

We will show that for each Lie algebra from these classes, which is a corresponding Lie algebra to a Lie group on \mathbb{R}^3 , in the Lie group there does not exist an element x such that $x\neq e$, $x^3=e$. This will complete the proof that topological (4,3)-groups on R do not exist, via this method.

If a=b=c=0, then the corresponding Lie group, up to isomorphism, is $(R^3,+)$ where + is the usual addition of vectors. So if $x^3=e$, then x=e.

Now, let $a^2+b^2+c^2\neq 0$.

Case 1. Consider the Lie algebras from the class 1, i.e. when a=b. If $c\neq a$ and $c\neq -2a$, then each such Lie algebra is simple. It is known (see [7] p. 429) that there are only two

3-dimensional simple Lie groups up to a local isomorphism. So there are only two non-isomorphic simple Lie algebras on \mathbb{R}^3 . The following two Lie algebras:

- 1) a=b=1, c=0; and
- 2) a=b=0, c=1

on R are simple. They are not isomorphic, because the first one contains a 2-dimensional Lie subalgebra (generated by X and Y), and second does not, since in the second, the product-bracket is the usual vector-product on R³. The second Lie algebra (i.e. a=b=0, c=1) is semisimple compact Lie algebra (see [7], p. 453). The Weyl's theorem ([7], p. 444), says that a connected Lie group with a semisimple compact Lie algebra must be compact. So there does not exist a Lie group on R³ whose corresponding Lie algebra is isomorphic to the Lie algebra 2) i.e. a=b=0, c=1.

Next, we will give an example of a simple Lie group on a manifold homeomorphic to R³, whose corresponding Lie algebra is isomorphic to the Lie algebra 1) i.e. a=b=1, c=0. Let $D=\{z\in C: |z|<1\}$ where C is the set of complex numbers, and $|\cdot|$ is the module. The map $z + (1+z)/(1+\overline{z})$ from D into the set $\{z: z\in C, z\neq -1, |z|=1\}$ is continuous. Hence, for each zeD, there is a unique $t\in (-\pi,\pi)$ such that $\exp(it)=(1+z)/(1+\overline{z})$, and we shall denote that number t by $(-i)\ln((1+z)/(1+\overline{z}))$. Define a binary operation on R×D by:

 $(x,u) \cdot (y,v) = (x+u+t, \frac{u+v(\exp(2iy))}{(\exp(2iy))+u\overline{v}}),$

where $t = \frac{1}{2}(-i)\ln \frac{1+u\overline{v}(\exp(-2iy))}{1+\overline{u}\overline{v}(\exp(2iy))}$. Then $(R\times D,\cdot)$ is a covering

group for SL(2), and it is a semisimple Lie group (see [8], p.-417). In this group, $(x,u)^3=(0,0)$ implies (x,u)=(0,0).

Now we consider the Lie algebras from Class 1, which are not simple. The Lie algebra for c=-2a, will be considered later as a Lie algebra from Class 2. So, we examine the Lie algebra for c=a, and hence a=b=c. The matrix group

$$G = \left\{ \begin{bmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{bmatrix} : x, y, z \in \mathbb{R} \right\}$$

can be considered as a Lie group on R3. The corresponding Lie algebra is

$$\left\{ \begin{bmatrix} 0 & \mathbf{x} & \mathbf{y} \\ 0 & 0 & \mathbf{z} \\ 0 & 0 & 0 \end{bmatrix} : \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R} \right\}$$

where [A,B]=AB-BA, and the map

$$\phi(X) = \begin{bmatrix} 0 & 1 & 1/a \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ \phi(Y) = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \ \phi(Z) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

is an isomorphism between this Lie algebra and the Lie algebra for a=b=c. In the matrix group G, if

$$\begin{bmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{bmatrix}^3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ then } x=y=z=0.$$

Case 2. Now consider the Lie algebras from Class 2, i.e. a+b+c=0. Let us suppose that the numbers x,y,z,u,v,weR, satisfy the conditions: x+y+z=u+v+w=0, $x^2+y^2+z^2\neq 0\neq u^2+v^2+w^2$ and $(x,y,z)\neq t(u,v,w)$. Then the vector product $(x,y,z)\times (u,v,w)=$ =(t,t,t) for t =0. It is easy to verify that the subspace U, of the Lie algebra for a+b+c=0, generated by the vector xX+yY+zZ and uX+vY+wZ is an invariant subalgebra. Moreover, it is a commutative Lie algebra. Suppose that Lie algebra for a+b+c=0, is a corresponding Lie algebra for a Lie group on R3. Then, this Lie group contains a commutative connected 2-dimensional Lie subgroup H, whose corresponding Lie algebra is U (see [8]). Since R3 is simply-connected, it follows that R3/H is simply-connected Lie group (see [8], p. 255). Since $\dim(\mathbb{R}^3/\mathbb{H})=1$, it follows that \mathbb{R}^3/\mathbb{H} is isomorphic to $(\mathbb{R},+)$. Let xer3 such that x3=e, and x is not in the centre of the Lie group on R3. Then (xH)3=H and so xH=H, i.e. xeH. Since H is a commutative subgroup, it follows that $\psi(z)=z$ for each zeH, and hence ψ(W)=W for each WeU. Since X+Y+Z∉U, and $\psi(X+Y+Z)=Y+Z+X=X+Y+Z$, it follows that $\psi=id$, hence x=e.

REFERENCES

- [1] G. Čupona, <u>Vector valued semigroups</u>, Semigroup Forum Vol. 26 (1983), 65-74.
- [2] G. Čupona, D. Dimovski, On a class of vector valued groups, Proceedings of the Conf. "Algebra and Logic", Zagreb 1984, 29-37.
- [3] D.Dimovski, Some existence conditions for vector valued groups, God. Zbor. Matem. fak. 33-34 (1982-1983), 99-103.
- [4] K. Trenčevski, D. Dimovski, One-dimensional (4,2)-Lie groups, Vector valued semigroups and groups, Skopje, 1988, 91-102.
- [5] K.Trenčevski, A note on non-existence for some classes
 of continuous (3,2)-groups, Proceedings of the Conf.
 "Algebra and Logic", Cetinje 1985,
- [6] C.Chevalley, <u>Theory of Lie groups</u>, Princeton University Press, Princeton 1946.
- [7] Л.С.Понтрягин, Непрерывные группы, Наука, Москва 1973.
- [8] М.Постников, Группи и алгебри Ли, Наука, Москва 1982.

Institut za matematika Prirodno-matematički fakultet p.f. 162, 91000 Skopje Yugoslavia