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"ALGEBRA AND LOGIC", SARAJEVO 1987

NONEXISTENCE OF CONTINUOUS (4,2)-GROUPS ON R

Don&o Dimovski and Kostadin Trencevski

Abstract. In this paper we show that continuous (4,3)-
groups on R do not exist.

0. Introduction. Let m,n,k=n-m be positive integers. A
set G#P# together with a map [ ]:Gn - G™ is called an (n,m)-

group if:

(1) [[x?]xng] = [xf[xi:?]x?:2+1] for each 1 <i <k; and

(2) For given a®,bXecX, c"eg™, there exist x7,yTec"

such that [a¥ x™]=cT=[y™ b5} (see [1], where this notion was
introduced). Above, xf denotes the vector {xt,...,xt)th,
and [x7] denotes the image of x| under the map [ ]. We will
denote by a the vector (a,a,...,a)EGt.

Wwe say that (G;[ ]) is a continuous (n,m)-group, if: G
is a topological space; (G;[ ]) is an (n,m)~group; and the
map [ ] is continuous, where G", G" are equiped with the pro-
duct topology.

1f (G;[ ]) is a (2m,m)-group, then (G",¢) where xTey =
=(xT y7], is a group with identity element 8, for some e€G
(see [2]). We say that e is the identity of the (2m,m)~-group
(6;[ ]1). A (2m,m)-group (G;[ ]) is called a topological
(2m,m) -group, if G is a topological space and (G™,%) is a
topological group.

If (G;[ ]) is an (m+l,m)~group, then (G;[ ]’) where
[x?™}r=(x3™], is a (2m,m)-group, induced by (G;[ ]). so, if
(6;[ ]) is an (m+1l,m)-group, then there exists an element

m
e€G, such that [x" 8]=[€ x}]=x7, and moreover [x e) = [e x)
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(see [3)). We say that an (m+l,m)-group is a +spological
(m+l,m)-group if its induced (2m,m)-group is a topological
(2m, m) ~group.

In [5) it was shown that continuous (3,2)-groups on R
(where R is the set of the real numbers equiped with the
usual topology) do not exist, but in [4] it was shown that
topological (4,2)-groups on R do exist. The examples produ-
ced in [4) were obtained using Lie groups and Lie algebras.

In this paper we give an elementary proof that continu-
ous (4,3)-groups on R do not exist. Also, we will give a
sketch of a proof, that topological (4,3)-groups on R do not
exist, using Lie groups and Lie algebras. Although the se-
cond result is a consequence of the first one, we include
its proof, because of its method, which may be used for ans-
wering the existence question about topological (m+l,m)-gro-
ups for m24. Similar methods were used in [4].

1. Elementary algebraic results

We need several elementary results about (4,3)-groups,
which are in fact, special cases of more general results
about (m+1,m)-groups. Let (G,[ ]) be a (4,3)-group, with
identity element e€G.

PROPOSITION 1. The following conditions are eguivalent:

(1) lGl=1, i.e. G has only one element;
(2) [x g] = 3, for some x€G;

3
(3) [xy %] = @, for some x,y€G; and

[z g],.for some x,y,z€G.

]

3
(4) [xy e]
Proof, It is obvious that (1) => (2), (1) => (3) and
(1) => (4. 1f [x é] = & for some x€G, then xyz=[xyze]=
=[x%yz]=[%yz]=[yz%]=[yzxé]=yzx, for each y,z€G, implies that
IGI=1; hence (2) => (1). If [xye]=2 for some x,y€G, then
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[xyxz]=[xyéxz]n[gxz)=[ng]=[xzxyg]=[xzxy], for each z€G,
implies that 2=y, i.e. |Gl=1; hence (3) ==> (1). If [xy%]a[z%]
for some x,y,2z€G, then xyz-[xyzg]=[xyxyg]=[xygxy]=[zgxy]=zxyf
implies that z=x, and so, [yé]:é. Hence (4) => (2). 1§

For given x,yFG, let «a Bx sk xyﬁnyxy denote the vec~

tors [xe] and [xye] respectively.

PROPOSITION 2. The following conditions are equivalent:

(1) lel=1;

(2) @, = X or vy, = x for some x€G;

(3) e yy for some x,y€G;

(4) axy o e S Xy = y for some x,yEG;

(5) axBx - Y Y for some x,y€G;

(6) uxyﬂxy = Boe¥qe fOF

(7) axsx = xy xy or B % i Byx yx. for some x,y€G.

Proof. It is obvious that (1) ==> (k) for each 1L S
%]=%, which implies

for some X,y,z,teG;

34 3
If e =x or v =x, then [8_ v el=gor[a, 5,

that IGl=1, by P.1; hence (2) => (1). If u Yy then

a B, x = [ayﬂy X e} [ayByaxBxyx] [a yByTyPxY v, J=ly 2 s < Yyd = =yB, Yy
implies that X=Y i hence (3) => (2). If a Y-x or Y, =y, then

[y 1y 2l=[¥8] or [oy 8,

P.1; hence (4) => (1). If a 8 b 0 then[a x &)= [uyanxYxJ

3
'[uYBY¥YYx] [y e Yx]=[y s e] implies that X=Y hence

(5) => (2). 1f uxysxy=ﬁztyzt’ then ® e XY =[azt Xy e]=

e] [xe], which implies that IGI=1 by

=[a implies

s = 3 e
ztaxyﬂnyxy]_[“ztsththny_[z Eee ny]" 2t Yy
that y=y Y; hence (6) => (4), If « B =«_B_~, then a

Xy xy xyPxy Txy™

=[x v 3)=[3 x y)=[a,p v, v)= [0yyByyx ¥} implies that
[ XY e] [Y Y e], which implies that IGl=1, by P. 1- hence
(7) => (1). B
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PROPOSITION 3. The element a B v, is in the centre of
the group (G®,*) (where xyzeuvw=[xyzuvw]), if and only if

Proof. If a B v *Xyz =xyzea B v, for each xyz€G®, then
[exyz)=[xyze] for each x,y,z€G. For x=e, this implies eyz=yze

i.e. y=z=e; hence IGI=1. }

2. Nonexistence of continuous (4,3)-groups on R.

We start with the assumption that there is a continuous
(4,3)-group on R, and denote it by (R;[ ]). We denote by
[ 1, [ ], [], the components of [ ], i.e.

[xyzt] = [xyzt], [xyzt], [xyzt],.
since [ ] is continuous, it follows that [ ]i' i=1,2,3, are
also continuous. In the following several steps, the assumption
that (R;j[ ]) is a continuous group will bring us to a contra-
diction.

Step 1. Let $:R® = R be defined by #(xyz}=[xyze]1—x.
since [ ] and - are continuous, it follows that ¢ is also

continuous,

Fact 1. ¢ ' (0)#@, i.e. there exists xyz€R®, such that
$ (xyz)=0, where 0 is the zero in R.

Proof. Consider é(xee)=ux-x, d(a_B_v

o )=axe-u and

X X

4 (a Yyo)=X-0, . If é(a B vy )=0, then 4~ "'(0)#08. So suppose

xeBxe xe Xe

that ¢(axﬂxvx}#0. Since IRl > 1, P.2. implies that ¢ (xee)#0

and @(axeﬁxeyxe)#o. It is not possible all of the @ =X,

T a0y X0, tO have the same sign, since their sum is equal
to 0. So, two of them have different signs. This, together
with the facts that ¢ is continuous and R is connected, impli-

es that ¢  (0)#¢. 1

Step 2. Let c,a,b€R be such that ¢(cab)=0, i.e. [cabe]=
=cuv for some u,v€R. This implies that [ab&) =uve, [ab%]=[uv%]
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and abe=[uve], i.e. a  =a, B  =b, Y, ~e. Now, let y:R? = R :
be defined by ¥(xy)=[xyé),-x. Again, since [ ],k and - are

continuous, it follows that ¢ is continuous.

Fact 2. ¥ (0)##, i.e. there exists xy€R? such that
¥ (xy)=0.

Proof. Consider ¥ (uv)=a ab™Y and y(ab)=u-a. Since the
map n:R*® =~ R defined by n(xy}-[xye] —-x is continuous, IRl >1
and R is connected, P.2. implies that a__ <x for each X,YER,
or uxy‘>x for each x,ye€R. If u=a, then v '(0)#@. If u-a<o0,
i.e. u<a=a ., then a__ >x for each x,y€R. 50 a_, -u >a-u>0,
1z e. ¢ (uv) >0. This, together with ¥ (ab) <0, implies that
v (0)¢¢. If u-a>0, i.e. u>a=e, ., then “xY <x for each x,y€R.
So %ap~Y <a-u <0, i.e. ¢(uv) <0. This, together with ¢(ab) >0,
implies that ¥~ T(0)#4.

Step 3. Let p,geR be such that ¥(pgq)=0, i.e. [pqe]=pr5
for some r,s€R. This implies that [rsé]=qe, i.e. B __v ¢ =4,

4. Symmetrically, there exist z, wER such that
a,.,B,,~€. (When we say symmetrigally, we mean: change [xyze] -
in Step 1, by [exyz]_ -z and [xye] -x in Step 2, by [exy]s -y.)

Now, Step 3, Step 4 and P.2. imply that I[RI=1, which is
a contradiction.

3. The Lie groups and Lie algebras method

Now we will give a sketch of a proof, via Lie groups and
Lie algebras, that topological (4,3)-groups on R do not exist.
1f (R;[ ]) is a topological (4,3)-group, then (R?,*) (where
xyz-uvw=[xyzuvw]} is a topological group. Using the positive
answer to the Fifth Hilbert Problem [8] we obtain that (R?,e)
is a Lie group on R>. The element a 8.7, €R® in this Lie group
has the following properties: {ueﬁeye) “eBeT ueseye 3,
ueﬁeye#e. and a B v, is not in the centre of (R’,'), by P.2
and P.3. We will prove that in arbitrary Lie group on R? the-

‘re does not exist an element x satisfying these properties.
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Suppose that (R®,*) is a Lie group, with the identity
element e, and, x€R® such that x®=e, x#e and x is not in
the centre of (R®,*). The map ¥:R® -~ R® defined by
¥ (y)=x*y*x ' is an automorphism of R’ of order 3, i.e.
9=id,; and $#idp,. Since R® is simply-connected manifold,
there exists a bijection between the automotphisms of the
Lie group and the automorphisms of its corresponding Lie
algebra [6]. So, ¥ corresponds to an automorphism, again
denoted by ¢, of the corresponding Lie algebra on R?, such
that ¢3=id and y#id.

It is easy to check that if ¢ is an autmorphism of a
Lie algebra on R® of order 3, then there is a vector Xe€Rr®
such that X, ¢(X)=Y and y*(X)=%Z is a basis for the vector
space R®. Let the bracket on the Lie algebra be defined on
X, Y by [X,Y]=aXx+bY+cz, for some a,b,c€R. This implies that
[¥,z)=cx+a¥+bz, [2,X]=bX+cY+aZ. The Jacobi identity implies
that (b-a) (a+b+c)=0. So, the Lie algebras on R® with such
an automorphism, can be classified into two classes:

Class 1, when a=b; and
Class 2, when a+t+b+c=0.

We will show that for each Lie algebra from these clas-
ses, which is a corresponding Lie algebra to a Lie group on
R®, in the Lie group there does not exist an element x such
that x#e, x’=e. This will complete the proof that topologi-
cal (4,3)-groups on R do not exist, via this method.

If a=b=c=0, then the corresponding Lie group, up to
isomorphism, is (R?,+) where + is the usual addition of vec-
tors. So if x’=e, then x=e.

Now, let a?+b?+c2#0,

Case 1. Consider the Lie algebras from the class 1, i.e.
when a=b. If c#a and c#-2a, then each such Lie algebra is
simple. It is known (see [7) p. 429) that there are only two
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3-dimensional simple Lie groups up to a local isomorphism.
So there are only two non-isomorphic simple Lie algebras on
R®. The following two Lie algebras:

1) a=b=1, c=0; and
2) a=b=0, c=1

on R are simple. They are not isomorphic, because the first
one contains a 2-dimensional Lie subalgebra (generated by X
and Y), and second does not, since in the second, the product-
bracket is the usual vector-product on R®. The second Lie
algebra (i.e. a=b=0, c=1) -is semisimple compact Lie algebra
(see [7], p. 453). The Weyl’s theorem ([7}, p. 444), says

that a connected Lie group with a semisimple compact Lie ali-
gebra must be compact. So there does not exist a Lie group

on R® whose corresponding Lie algebra is isomorphic to the
Lie algebra 2) i.e. a=b=0, c=1,

Next, we will give an example of a simple Lie group on
a manifold homeomorphic to R?, whose corresponding Lie algeb-
ra is isomorphic to the Lie algebra £y Low. a=b=1, c=0. Let
D={zeC: |zl <1} where C is the set of complex numbers, and
| | is the module. The map z = (1+z)/(14Z) from D into the
set (z: z€C, z#-1, lzl=1} is continuous. Hence, for each
z€D, there'is a unique t€(-w,7w) such that exp(it)={1+z)((1+§),
and we shall denote that number t by (-i)ln((1l+z)/(1+2)). De-
fine a binary operation on RxD by:

24
(xru)-iyfv)=(x+“+t'u;:éex1; il

where t =%¢-i]1n 1+E?{359(-21111. Then (RxD,-) is a covering
1+uv(exp(2iy)) :

group for SL(2), and it is a semisimple Lie group (see (sl,
p.-417). In this group, (x,u)’=(0,0) implies (x,u)=(0,0).

Now we consider the Lie algebras from Class 1, which
are not simple. The Lie algebra for c=-2a, wiil be conside-
red later as a Lie algebra from Class 2. So, we examine the
Lie algebra for c=a, and hence a=b=c. The matrix group
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X
G = 0 1 z|:x,y,2€R
0.0k

can be considered as a Lie group on R?. The corresponding

Lie algebra is
0 x y
.x.y,zER

where [A,B]=AB-BA, and the map

[o 1 1/a] [o -1 o] [o 0 o]
$(X) = |0 0 0|, ¢(¥)=]0" O Y|, ¢(Z) = |0 0 -1
0 o 0 B0 0 0 0 0
is an isomorphism between this Lie algebra and the Lie al-
gebra for a=b=c. In the matrix group G, if

[1 x y]a [1- 0 o]

Ll =10 1 0], then x=y=2z=0.

07" 943 8= 07 ")

Case 2. Now consider the Lie algebras from Class 2, i.e.
at+b+c=0. Let us suppose that the numbers x,y,z,u,v,weR,
satisfy the conditions: x+y+z=u+v+w=0, x*+y?+z3#0Fu?+vi+y?
and (x,y,z)#t(u,v,w). Then the vector product (x,y,z)%X(u,v,w)=
=(t,t,t) for t#0. It is easy to verify that the subspace U,
of the Lie algebra for a+b+c=0, generated by the vector
xX+yY+2Z and uX+v¥+wZ is an invariant subalgebra. Moreover,
it is a commutative Lie algebra. Suppose that Lie algebra for
a+b+c=0, is a corresponding Lie algebra for a Lie group on R?.
Then, this Lie group contains a commutative connected 2-di-
mensional Lie subgroup H, whose corresponding Lie algebra is
U (see [8]). Since R® is simply-connected, it follows that
R®/H is simply-connected Lie group (see [8), p. 255). Since
dim(R®*/H)=1, it follows that R?/H is isomorphic to (R,+).

Let x€R® such that x°=e, and x is not in the centre of the
Lie group on R®. Then (xH)®=H and so xH=H, i.e. x€H. Since H
is a commutative subgroup, it follows that ¢(z)=z for each
z€H, and hence ¥ (W)=W for each WEU. Since X+Y+Z@U, and

P (X+Y+2Z)=Y+2+X=X+Y+Z, it follows that y=id, hence x=e,
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