Математички Билтен 13 (XXXIX) 1989 (25-34) Скопје, Југославија

FREE COMMUTATIVE (2m,m)-GROUPS

Dončo Dimovski, Snežana Ilić

Abstract. A commutative (2m,m)-group is a pair (G,[]) where G is a nonempty set and $[]:G^{2m} \to G^m$ is a (2m,m)-operation on G, such that G^m with the operation $x \circ y = [xy]$ is a commutative group, and for each $x \in G^1$, $y \in G^{2m-1}$, $z \in G^1$ and $v \in G^{m-1}$, [[xy]zv] = [x[yz]v]. In this paper we give a combinatorial description of free commutative (2m,m)-groups (for $m \ge 2$), inspired by the characterization of the commutative (2m,m)-groups as algebras with one (2m,m)-operation, one unary and one nulary operation.

1. Introduction

Let $m \ge 1$ and let $G \ne 0$. Let $[\]: G^{2m} \to G^m$ be a map satisfying the following two conditions:

$$\left[x_1^{i}\left[x_{i+1}^{2m+i}\right]x_{2m+i+1}^{3m}\right] = \left[\left[x_1^{2m}\right]x_{2m+1}^{3m}\right], \text{ for each } i\in\mathbb{N}_m;$$
 (1.1) for each a,beg^m, there exist x,yeg^m, such that

$$[ax] = b = [ya].$$
 (1.2)

Then, the pair (G;[]) is called a (2m,m)-group ([č]). Above, G^{m} denotes the m-th Cartesian power of G, (x_{1}^{t}) denotes the vector $(x_{1},x_{2},\ldots,x_{t})\in G^{m}$, $[x_{1}^{2m}]$ denotes the image of (x_{1}^{2m}) under the map [], aeG^t denotes a vector from G^{t} , and N_{t} denotes the set $\{1,2,\ldots,t\}$.

Let (G;[]) be a (2m,m)-group. Then (G^m,\circ) , where $a\circ b=[ab]$, is a group with a neutral element $e=(e^m)=(e,e,\ldots,e)\in G^m$ ($[\check{C}.D]$). We say that a (2m,m)-group is <u>commutative</u>, if the associated group (G,\circ) is commutative. Note, that for m=1, the notions of a (2,1)-group and a commutative (2,1)-group coincide with the usual notions of a group and a commutative group. So, from now on we assume that $m\geq 2$.

In this paper we give a combinatorial description of free commutative (2m,m)-groups, inspired by the following characterization of commutative (2m,m)-groups.

<u>Proposition 1.1</u>. Let $G \neq 0$ and $[]:G^{2m} \rightarrow G^m$. Then, (G;[]) is a commutative (2m,m)-group if and only if there exist $g:G \rightarrow G$ and eeg such that:

- (a) [[xy]z] = [x[yz]] for every x,y,zeg^m;
- (b) [xey] = xy for each xy e^m , where e^m :
- (c) $[x^m(g(x))^m] = e$, for each xeG, where $(x^m) = (x, x, ..., x) e G^m$;
- (d) [xayubv] = [xbyuav] for each xy,uv,xveG^{m-1}, a,beG;
- (e) $[xyuv] = wz \iff [yxvu] = zw$, for each xy, uv, wz, xv, $xz \in \mathbb{G}^m$.

<u>Proof.</u> Conditions (a), (b) and (e) imply that [] satisfies the associativity condition (1.1), and then, the rest of the proof follows from Propositions 1.1., 1.3, and 1.4 from [D,I]. \Diamond

We will use the following notions, conventions and notations. Let A be a nonempty set.

By A^+ we will denote the free, and by $A^{(+)}$ the free commutative semigroup generated by A. For a positive integer p, we can identify the p-th Cartesian power A^p with the subset $\{a_1a_2...a_p|a_i\in A\}$, of A^+ , and instead of writing $(a_1,a_2,...,a_p)$ for a vector from A^p , we will use the notations a_1^p and $a_1a_2...a_m$. (Here $a_1a_2...a_p$ denotes the product of $a_1,a_2,...,a_p$ in A^+ .) For a positive integer p, let $A^{(p)}$ be the subset $\{a_1a_2...a_p|a_i\in A\}$ of $A^{(+)}$, where $a_1a_2...a_p$ is the product of $a_1,a_2,...,a_p$ in $A^{(+)}$. As above, we will use the notation a_1^p instead of $a_1a_2...a_p$, keeping in mind that $a_1^p=b_1^p$ in $A^{(p)}$, for $a_i,b_i\in A$ if and only if $b_1,b_2,...,b_p$ is a permutation of $a_1,a_2,...,a_p$.

A combinatorial description of free commutative (2m,m)groups

Let A be an arbitrary set. We will construct a free commutative (2m,m)-group (Q;[]) with a basis A.

For every aGA let a' be a new element, such that, for $A'=\{a'\mid aGA\}$ the map $f:A\to A'$, defined by f(a)=a', is a bijection and $A\cap A'=\emptyset$. Let e be an element not in $A\cup A'$, i.e. efAUA, and let $B=\{e\}\cup A\cup A'$.

We define a sequence of sets B_o , B_1 ,..., B_{α} ,... by induction on α , as follows. Let B_o =B. Suppose that B_{α} is defined, and then define $B_{\alpha+1}$ by

$$B_{\alpha+1} = B_{\alpha} \cup \{ (x_1, x_2, \dots, x_m) \mid x_1 \in B_{\alpha}^{(n)}, n \ge 2 \}.$$
 (2.1)
Now, let $D = \bigcup_{\alpha \ge 1} B_{\alpha}.$

Remark. By definition, ueD if and only if ueBo, or u=(x1,x2, ...,xm), where x1,x2,...,xmeB^{(n)}_{\alpha} for some n ≥ 2 and $\alpha \geq 0$. Moreover, if u=(x1,x2,...,xm) and v=(y1,y2,...,ym), where x1eB^{(n)}_{\alpha} and y1eB^{(k)}_{\beta}, then u=v if and only if n=k and there is a $\gamma \geq \alpha, \beta$ such that x1=y1 in B^{(n)}_{\gamma}.

Let $| : D \rightarrow \mathbb{N}$ be the map defined by induction on α as follows:

(i) |b| = 1, for beBo;

(ii)
$$|x| = |u_1| + |u_2| + ... + |u_n|$$
 for $x = u_1^n \in D^{(n)}$; and

(iii)
$$|u| = |x_1| + |x_2| + ... + |x_m|$$
 for $u = (x_1, x_2, ..., x_m) \in D$. We say that $|u|$ is a lenght of u .

Next, by induction on the lenght, we define a map $\phi:D \to D$, called <u>reduction</u>, as follows:

- (a) $\phi(b)=b$ for beBo;
- (b) Suppose that for each ueD with |u| < t, ϕ is well defined,

$$\phi(u) \neq u \iff |\phi(u)| < |u|, \text{ and}$$
 (2.2)

$$\phi^{2}(u) = \phi(u)$$
. (2.3)

(c) Next, let $u=(x_1,x_2,\ldots,x_m)$ $\in D$ with |u|=t, where for each $i\in N_m$, $x_i\in D^{(n)}$ for some $n\geq 2$. We define $\phi(u)$ by the first possible application of one of the following steps:

- (I) If there is ieN $_m$, such that x = zx and $_{\varphi}(x) \neq x$, where zeD $^{(n-1)}$ and xeD, then $_{\varphi}(u) = _{\varphi}(_{\varphi_1}(x_1), \ldots, _{\varphi_1}(x_m))$, where $_{\varphi_1}(y_1^t)$ denotes the element $_{\varphi}(y_1) \ldots _{\varphi}(y_t)$ in D $^{(t)}$, for $y_1^t eD$ $^{(t)}$.
- (II) If for each $i \in N_m$, $x_i = z_i \pi_i(v)$ for some $v = (y_1, y_2, \dots, y_m)$ in D and some $z_i \in E^{(n-1)}$, then $\phi(u) = \phi(z_1 y_1, z_2 y_2, \dots, z_m y_m)$, where $\pi_i(y_1, y_2, \dots, y_m) = (y_i, y_{i+1}, \dots, y_m, y_1, y_2, \dots, y_{i-1}) \in D$.

Remark. Although (x_1, x_2, \dots, x_m) does not belong to D for $x_1, x_2, \dots, x_m \in D$, sometimes we will denote $\phi(x_1)$ by $\phi(x_1, x_2, \dots, x_m)$.

- (III) If for each ieN_m, $x_i = z_i e$, then $\phi(u) = \phi(z_1, z_2, \dots, z_m)$.
- (IV) If for each $i \in \mathbb{N}_m$, $x_i = z_i a a'$ for some $a \in A$, then $\phi(u) = \phi(z_1 e, z_2 e, \dots, z_m e)$. (V) $\phi(u) = u$.

The following three propositions, whose proofs will be given later, show that the map ϕ is well defined and give several of its properties which will be used in the proof of the main theorem.

<u>Proposition 2.1.</u> (a) The map ϕ is well defined and satisfies the conditions (2.2) and (2.3).

(c) For every ueD,
$$\phi(u) \le |u| \cdot \phi$$
 (2.5)

Proposition 2.2. Let $u=(x_1,x_2,...,x_m)$ eD, and $x_i=z_it_i$. Then:

(a)
$$\phi(u) = \phi(\phi_1(x_1), \phi(x_2), \dots, \phi(x_m))$$
. (2.6)

(b)
$$\phi(u) = \phi(z_1 \phi(t_1), z_2 \phi(t_2), \dots, z_m \phi(t_m)). \diamond$$
 (2.7)

Proposition 2.3. For every $z_i \in D^{(n)}$, $n \ge 1$, $v = (y_1, y_2, \dots, y_m)$, $y_i \in D^{(k)}$, $k \ge 2$, $i \in \mathbb{N}_m$, $a \in A$:

(a)
$$\phi(z_1\pi_1(v),...,z_m\pi_m(v)) = \phi(z_1y_1,...,z_my_m)$$
. (2.8)

(b)
$$\phi(z_1e,...,z_me)=\phi(z_1,...,z_m)$$
. (2.9)

(c)
$$\phi(z_1 a a', ..., z_m a a') = \phi(z_1 e, ..., z_m e) . \phi$$
 (2.10)

Let $Q=\phi(D)$. The condition (2.3) implies that $Q=\{u\in D\mid \phi(u)=u\}$. We define a (2m,m)-operation $[]:Q^{2m}\to Q^m$ by:

 $\begin{bmatrix} x_1^{2m} \end{bmatrix} = y_1^m \iff \begin{bmatrix} x_1^{2m} \end{bmatrix}_{\dot{1}} = y_{\dot{1}} \text{ for each } i \in \mathbb{N}_m.$

The following theorem is the main result of the paper.

Theorem 2.4. (Q,[]) is a free commutative (2m,m)-group with a basis A.

- $\frac{\text{Proof.}}{\text{for u,veD, imply that: } [xy] = [yx] \text{ for x,yeD}^{\text{m}}, \text{ i.e. } (Q,\circ) \text{ is a commutative groupoid; and condition (d) of Proposition 1.1.}}$
- (B) Let $u_1^{3m} \in Q^{3m}$ and $i \in N_m$. Then, the definition of [] and conditions (2.7) and (2.8) imply that: $[[u_1^{2m}]u_{2m+1}^{3m}]_i = [\pi_1(u_1u_{m+1}, \ldots, u_mu_{2m}) \ldots \pi_m(u_1u_{m+1}, \ldots, u_mu_{2m}) u_{2m+1}^{3m}]_i = [\pi_1(u_1u_{m+1}, \ldots, u_mu_{2m}) \ldots \pi_m(u_1u_{m+1}, \ldots, u_mu_{2m}) u_{2m+1}^{3m}]_i = [\pi_1(u_1u_{m+1}, \ldots, u_mu_{2m}) u_{2m+1}, \ldots, \pi_m(u_1u_{m+1}, \ldots, u_mu_{2m}) u_{3m})] = [\pi_1(u_1u_{m+1}, u_2u_{m+2}, \ldots, u_mu_{2m}, \ldots, u_mu_{2m},$
- (C) Let $u_1^m \in Q^m$, $i \in N_m$, $j \in N_{m+1}$. Then (A) and (2.9) imply that $\left[u_1^{j-1} e^m u_j^m \right]_i = \left[u_1^m e^m \right]_i = \phi \left(\pi_i \left(u_1 e, u_2 e, \dots, u_m e \right) \right) = u_i .$
- (D) Let $u_1^{2m}eQ^{2m}$, jeN_m and $[u_1^{2m}]=z_1^m$. Then, $z_{j+1}^mz_1^j[e^{m-j}z_1^me^j]$ implies that $z_{j+1}=[e^{m-j}z_1^me^j]_1$. Moreover,

$$\begin{split} z_{j+1} &= \left[e^{m-j} \left[u_{1}^{2m} \right] e^{j} \right]_{1} = \left[e^{m-j} \phi \left(\pi_{1} \left(u_{1} u_{m+1}, \ldots, u_{m} u_{2m} \right) \right) \ldots \phi \left(\pi_{m} \left(u_{1} u_{m+1}, \ldots, u_{m} u_{2m} \right) \right) \right. \\ &+ \left. \left(u_{1}^{2m} u_{m+1} \right) e^{j} \right]_{1} = \phi \left(\pi_{j+1} \left(u_{1} u_{m+1}, \ldots, u_{m} u_{2m} \right) \right) \\ &= \left[u_{j+1}^{m} u_{1}^{j} u_{m+j+1}^{2m} u_{m+1}^{m+j} \right]_{1}, \quad i.e. \\ & z_{j+1}^{m} z_{1}^{j} = \left[u_{j+1}^{m} u_{j}^{j} u_{m+j+1}^{2m} u_{m+1}^{m+j} \right]. \end{split}$$

(E) We will define by induction on the length, a mapping $q: Q \to Q$ such that $\left[u^m(g(u))^m\right] = e^m$ for every ueQ.

Let g(e)=e, g(a)=a', and g(a')=a. Suppose that for every $v\in Q$ such that |v|<|u|, g(v) is defined and $[v^m(g(v))^m]=e^m$. Let $u=(x_1,x_2,\ldots,x_m)$. Then for each $i\in N_m$, $x_i=x_{i1}x_{i2}\ldots x_{in}=z_iy_i\in Q^{(n)}$ for some $n\geq 2$. We will put $G(x_1^m)=g(x_{11})\ldots g(x_{1n})g(x_{21})\ldots g(x_{mn})$ and

 $g(u) = \phi(\pi_2(u)...\pi_m(u)G(x_1^m),...,\pi_2(u)...\pi_m(u)G(x_1^m)).$ (2.12)

Then, the definition of [], conditions (2.7), (2.8), (2.9), the inductive hypothesis and the fact that $u=\pi_1(u)$ imply that $\left[u^m(g(u))^m \right]_i = \left[u^m(\phi(\pi_2(u) \dots \pi_m(u)G(x_1^m), \dots, \pi_2(u) \dots \pi_m(u)G(x_1^m)))^m \right]_i = \\ = \phi(\pi_1(u\phi(\pi_2(u) \dots \pi_m(u)G(x_1^m), \dots, \pi_2(u) \dots \pi_m(u)G(x_1^m), \dots, u\phi(\pi_2(u) \dots \pi_m(u)G(x_1^m), \dots, u\phi(\pi_2(u) \dots \pi_m(u)G(x_1^m), \dots, u\phi(x_1^m))) = \phi(u\pi_2(u) \dots \pi_m(u)G(x_1^m), \dots, u\phi(x_1^m), \dots, u\phi(x_1^m)) = \\ = \phi(x_1^{m-1}z_mG(x_1^{m-1}z_m)y_mg(y_m), \dots, x_1^{m-1}z_mG(x_1^{m-1}z_m)y_mg(y_m)) = \\ = \phi(x_1^{m-1}z_mG(x_1^{m-1}z_m), \dots, x_1^{m-1}z_mG(x_1^{m-1}z_m)) = \dots = e.$

Now, the steps (A)-(E) imply that $(Q;[\])$ is a commutative (2m,m)-group.

(F) Since, ϕ (b)=b for every beB and A cB it follows that A cQ. Let $u=(x_1,x_2,\ldots,x_m)$ be an element of Q, with $x_i=x_{i1}x_{i2}\ldots x_{in}$, x_{ij} e<A>, for each $i\in N_m$, $j\in N_n$, where <A> denotes the (2m,m)-subgroup of (Q;[]) generated by A. Then,

Since $u=\phi(u)$, it follows that $u\in A>$. Hence, Q=A>.

(G) Let (P;[]) be a commutative (2m,m)-group, and $h:A \rightarrow P$ be a given map. We denote by $\lambda:B \rightarrow P$ the map defined by:

 $\lambda(a)=h(a)$, for every a $\in A$,

 λ (e)=f, where f is the neutral element of (P;[]),

 λ (a')= ψ (λ (a)), where ψ :P \rightarrow P is the bijection with the property $[x^{m}(\psi(x))^{m}]=f^{m}$, for every xeP.

Let $\xi:Q \to P$ be defined, inductively, by:

 $\xi(b)=\lambda(b)$, for every beB,

$$\xi(x_1, x_2, ..., x_m) = [\xi(x_{11})\xi(x_{21})...\xi(x_{m1})...\xi(x_{1n})\xi(x_{2n})...$$

 $...\xi(x_{mn})]_1,$

where x_i=x_{i1}...x_{in} for each ien_m.

Let $\eta:D\to P$ be the map $\xi\circ\phi$. It is obvious that, η is extension of λ . By induction on the length, using the definition and the properties of the reduction ϕ , and the properties of commutative (2m,m)-groups, it is easy to show that

$$\eta (x_{1}, x_{2}, ..., x_{m}) = \left[\xi (x_{11}) \xi (x_{21}) ... \xi (x_{m1}) ... \xi (x_{1n}) \xi (x_{2n}) ... \right]$$

$$... \xi (x_{mn}) \right]_{1}$$
(2.13)

for every $(x_1, x_2, ..., x_m) \in D$ with $x_i = x_{i1} x_{i2} ... x_{in}$, $x_{ij} \in Q$, for each $i \in N_m$, $j \in N_n$. This implies that ξ is a (2m, m)-homomorphism from (Q; []) into (P; []). \Diamond

3. Proofs of Proposition 2.1, 2.2, 2.3

<u>Proof of Proposition 2.1.</u> (a) In (1)-(4) the right hand sides have a form $\phi(v)$ where |v| < t and by the inductive hypothesis $\phi(v)$ is well defined, wich imply that $\phi(u)$ is well defined. By the inductive hypothesis $|\phi(v)| \le |v|$, $\phi^2(v) = \phi(v)$, and so $|\phi(u)| < |u|$ and $\phi^2(u) = \phi(u)$.

- (b) It follows directly from the definition.
- (c) Follows from (a). ◊

<u>Proof of Proposition 2.2</u>. (a) If $\phi_1(x_i)=x_i$ for each $i\in\mathbb{N}_m$, the conclusion is obvious. If there is $i\in\mathbb{N}_m$, such that $x_i=zx$ and $\phi(x)\neq x$, then (a) follows directly from (I).

(b) Follows directly from (a) and the condition (2.3). ◊

<u>Proof of Proposition 2.3</u>. The proof is given via the following four lemmas, whose proofs are by induction on the length.

$$\phi(u) = \phi(x_1y_1, x_2y_2, ..., x_my_m).$$

<u>Proof.</u> (A) If (I) is applicable on u then $(\phi_1(x_1), \phi_1(x_2), \ldots, \phi_1(x_m)) \neq (x_1, x_2, \ldots, x_m)$, and the conclusion follows from (I), the fact that $\phi(v)=v$ and the inductive hypothesis.

(B) Let $(\phi_1(x_1), \phi_1(x_2), \dots, \phi_1(x_m)) = (x_1, x_2, \dots, x_m)$. Then (II) is applicable on u and the conclusion follows from (II). \Diamond

Remark. If (II) is applicable on an element $u=(x_1,x_2,\ldots,x_m)$, we write $u\neq (\phi_2(x_1),\phi_2(x_2),\ldots,\phi_2(x_m))$, where $(\phi_2(x_1),\phi_2(x_2),\ldots,\phi_2(x_m))$ denotes the element obtained from u by one application of (II).

Lemma 3.2. If $u=(x_1e,x_2e,...,x_me)$, $x_i\in D^{(n)}$, $n\geq 1$, $i\in N_m$, then $\phi(u) = \phi(x_1,x_2,...,x_m).$

<u>Proof.</u> (A) If (I) is applicable on u, then $(\phi_1(x_1), \phi_1(x_2), \ldots, \phi_1(x_m)) \neq (x_1, x_2, \ldots, x_m)$, and the conclusion follows from (I), the condition (2.4) and the inductive hypothesis.

- (B) Let $(\phi_1(x_1), \phi_1(x_2), \ldots, \phi_1(x_m) = (x_1, x_2, \ldots, x_m)$. If (II) is applicable on u, then $(x_1, x_2, \ldots, x_m) \neq (\phi_2(x_1), \phi_2(x_2), \ldots, \phi_2(x_m))$, and the conclusion follows from (II) and the inductive hypothesis.
- (C) Let $(x_1, x_2, ..., x_m) = (\phi_2(x_1), \phi_2(x_2), ..., \phi_2(x_m))$. Then (III) is applicable on u, and the conclusion follows from (III). \Diamond

Remark. If (III) is applicable on $u=(x_1,x_2,\ldots,x_m)$, we write $u\neq (\phi_3(x_1),\phi_3(x_2),\ldots,\phi_3(x_m))$, where $(\phi_3(x_1),\phi_3(x_2),\ldots,\phi_3(x_m))$ is only a notation for the element obtained from u by one application od (III).

Lemma 3.3. If $u=(x_1aa',x_2aa',...,x_maa')$, then $\phi(u)==\phi(x_1e,x_2e,...,x_me)$.

- <u>Proof.</u> (A) If (I) is applicable on u, then $(x_1, x_2, ..., x_m) \neq (\phi_1(x_1), \phi_1(x_2), ..., \phi_m(x_m))$, and the conclusion follows from (I), the condition (2.4) and the inductive hypothesis.
- (B) Let $(x_1, x_2, \ldots, x_m) = (\phi_1(x_1), \phi_1(x_2), \ldots, \phi_1(x_m))$. If (II) or (III) is applicable on u, then, $(x_1, x_2, \ldots, x_m) \neq (\phi_j(x_1), \phi_j(x_2), \ldots, \phi_j(x_m))$, je{2,3}, and the conclusion follows from Lemma 3. (j-1), and the inductive hypothesis.
- (C) Let $(x_1, x_2, \dots, x_m) = (\phi_j(x_1), \phi_j(x_2), \dots, \phi_j(x_m))$. Then (IV) is applicable on u, and the conclusion follows directly from (IV). \diamond

Remark. If (IV) is applicable on $u=(x_1,x_2,\ldots,x_m)$, we write $u\neq (\phi_4(x_1),\phi_4(x_2),\ldots,\phi_4(x_m))$, where $(\phi_4(x_1),\phi_4(x_2),\ldots,\phi_4(x_m))$ is only a notation for the element obtained from u by one applications of (IV).

$$\phi(u) = \phi(x_1y_1, x_2y_2, ..., x_my_m).$$

 $\underline{\text{Proof.}}$ (A) If ϕ (v)=v, then conclusion follows directly from Lemma 3.1.

- (B) If $\phi(v) \neq v$, then $v \neq (\phi_j(y_1), \phi_j(y_2), \ldots, \phi_j(y_n))$, for some jen_4.
- (B.1) For j=1, Proposition 2.2 and the inductive hypothesis imply that

$$\begin{split} & \phi \left(\mathbf{u} \right) \! = \! \phi \left(\mathbf{x}_{1} \phi \left(\pi_{1} \left(\mathbf{v} \right) \right), \mathbf{x}_{2} \phi \left(\pi_{2} \left(\mathbf{v} \right) \right), \ldots, \mathbf{x}_{m} \phi \left(\pi_{m} \left(\mathbf{v} \right) \right) \right) \! = \\ & = \! \phi \left(\mathbf{x}_{1} \phi_{1} \left(\mathbf{y}_{1} \right), \mathbf{x}_{2} \phi_{1} \left(\mathbf{y}_{2} \right), \ldots, \mathbf{x}_{m} \phi_{1} \left(\mathbf{y}_{m} \right) \right) \! = \! \phi \left(\mathbf{x}_{1} \mathbf{y}_{1}, \mathbf{x}_{2} \mathbf{y}_{2}, \ldots, \mathbf{x}_{m} \mathbf{y}_{m} \right). \end{split}$$

(B.2) If (I) is not applicable on u, then $j\in\{2,3,4\}$ and, similarly to case (B.1), the conclusion follows from Proposition 2.2, Lemma 2.(j-1), and the inductive hypothesis. \Diamond

REFERENCES

- [č] Čupona G.: Vector valued semigroups, Semigroup Forum, Vol. 26 (1983), 65-74
- [č,D] Čupona G., Dimovski D.: On a class of vector valued groups, Proc. Conf. "Algebra and Logic", Zagreb, 1984, 29-38
- [Č,C,M,D] Čupona G., Celakoski N., Markovski S., Dimovski D.: Vector valued groupoids, semigroups and groups, Maced. Acad. of Sci. and Arts, Vector valued semigroups and groups, Skopje, 1988, 1-78
 - [D,1] Dimovski D.: Free vector valued semigroups, Proc. Conf.
 "Algebra and Logic", Cetinje, 1985, 56-62
 - [D,2] Dimovski D.: Free (n+1,n)-groups, Maced. Acad. of Sci. and Arts, Vector valued semigroups and groups, Skopje, 1988, 103-122
 - [D,I] Dimovski D., Ilić S.: Commutative (2m,m)-groups, Maced. Acad. of Sci. and Arts, Vector valued semigroups and groups, Skopje, 1988, 79-90

СЛОБОДНИ КОМУТАТИВНИ (2m, m) - ГРУПИ

Дончо Димовски, Снежана Илиќ

Резиме

Комутативна (2m,m)-група е пар (G,[]) каде што G е непразно множество, а $[]:G^{2m} \to G^m$ е (2m,m)-операција на G, така што G^m со операцијата хоу=[xy] е комутативна група, и за секој x G^{2m-1} , z G^{2m-1} , z G^{2m-1} , важи [[xy]zv]=[x[yz]v].

Во оваа работа даваме комбинаторен опис на слободни комутативни (2m,m)-групи (за $m \ge 2$), инспириран од карактеризацијата на комутативните (2m,m)-групи како алгебри со една (2m,m)-операција, една унарна и една нуларна операција.