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FREE COMMUTATIVE (2m,m)-GROUPS

Don¢o Dimovski, SneZana Ilié

Abstract. A commutative (2m,m)-group is a pair (G,[ ]) whe-
re G is a nonempty set and [ ]:6G2™ > G™ is a (2m,m)-operation on
G, such that G™ with the operation xoy=[xy] is a commutative
group, and for each x€Gl, yeG2™"1, zeGl and vec™ ', [[xy]zv]=
=[x[yz]v]. In this paper we give a combinatorial description of
free commutative (2m,m)-groups (for m 22), inspired by the cha-
racterization of the commutative (2m,m)-groups as algebras with
one (2m,m)-operation, one unary and one nulary operation.

1. Introduction

Let m21 and let G#0. Let [ ]:G*™ > G™ be a map satisfying
the following two conditions:

e T 0] [[x3™x2R,,], for each ieN ; (1.1)

for each a,beGm, there exist x,yEGm, such that
[ax] = b = [ya]. _ (1.2)

Then, the pair (G;[ ]) is called a (2m,m)-group ([&]). Abo-
ve, G™ denotes the m-th Cartesian power of G, {xf} denotes the
vector (x,,xz,...,xt)ecm, (xfm] denotes the image of (xfm) under
the map [ ], aeGt denotes a vector from Gt, and N, denotes the
set {1,2,...,t}.

Let (G;[ ]) be a (2m,m)-group. Then (G",0), where aob=[ab],
is a group with a neutral element e=(e™)=(e,e,...,e)ec™ ([&.n]).
We say that a (2m,m)-group is commutative, if the associated
group (G,o) is commutative. Note, that for m=1, the notions of a
(2,1)-group and a commutative (2,1)-group coincide with the usu-
al notions of a group and a commutative group. So, from now on
we assume that m=>2.
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In this paper we give a combinatorial description of free
commutative (2m,m)-groups, inspired by the following characte-
rization of commutative (2m,m)-groups.

Proposition 1.1. Let G#0 and [ ]:62™ » G™. Then, (G;[ ]) is
a commutative (2m,m)-group if and only if there exist g:G + G
and e€G such that:

(a) [[xy]lz] = [x[yz]] for every x,y,zeG";

(b) [xey] = xy for each xyeGm, where e={em}EGm;

(¢) [¥™(g(x))™] = e, for each x€G, where (x™)=(x,X,,..,X)€C";
(d) [xayubv] = [xbyuav] for each xy,uv,xve€G™ ', a,beG;

(e) [xyuv] = wz <=> [yxvu] = zw, for eachxynnnwzannxmafh

Proof. Conditions (a), (b) and (e) imply that [ ] satisfies
the associativity condition (1.1), and then, the rest of the
proof follows from Propositions 1.1., 1.3, and 1.4 from [D,I]. ¢

We will use the following notions, conventions and notations.

Let A be a nonempty set.

(+) the free commuta-

By AT we will denote the free, and by A
tive semigroup generated by A. For a positive integer p, we can

identify the p-th Cartesian power AP with the subset {a1a2...a |

|aj€r}, of A", and instead of writing (a,,a,,...,a_) for a vecE
tor from AP, we will use the notations a? and ajaz.-.a . (Here
a,az...ap denotes the product of a,,a,,...,a_ in A+.) For a po-
sitive integer p, let A{P) be the subset fa,a,...a | a;eal} of
A(+}, where a,a,...a_ is the product of a,,az,...,g in A(+}. As

above, we will use the notation a? instead of 2,85 <0080, keeping
in mind that aP=bP in A'P), for a ,b.ea if and only if b b,,...b,

is a permutation of a,,az,...,ap.
L]

2. A combinatorial description of free commutative (2m,m)-

SrOUES

Let A be an arbitrary set. We will construct a free commu-
tative (2m,m)-group (Q;[ ]) with a basis A.
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For everv a€A let a’ be a new element, such that, for
A’={a’ | aeA} the map f:A » A’, defined by f(a)=a’, is a bijec-
tion and ANA’=g. Let e be an element not in AUA’, i.e. efAUA,
and let B={elvAJUA’.

We define a sequence of sets BQ,B,,...,BG,... by induction
on a, as follows. Let B =B. Suppose that Ba is defined, and then
define Bc‘_‘_.1 by

Boyr = BoU (x5, 00u,x) Ixiesénj, n=2}. (2.1)

Now, let D = (J B_.
a
LS

Remark. By definition, u€D if and only if u€B,, or w=(x,,x,,

,...;xm), where x1,x3:...,xmeBén) for some n=2 and a =2 0. More-
over, if u=(xX,,X,,...,X_) and v={y1,y2,...,y ), where x.GB{n)
(k) m : m i a
and yieBB , then u=v if and only if n=k and there is a vza,B
= ; (n)
such that X;=y; in BY .
Let | |:D » N be the map defined by induction on a as fol-
lows:
(1) |b| = 1, for beB,;
(i) |X| = |u,|+|ug|+...+|u | for x=u"ep (™) ; and
(iii) |ul] = |x1|+[x2[+...+]xm! for u=(x4,Xz,...,X )€D.

We say that |u| is a lenght of u.

Next, by induction on the lenght, we define a map ¢:D + D,
called reduction, as follows:

(a) ¢(b)=b for bE€B,;

(b) Suppose that for each ueD with |u| <t, ¢ is well defined,
4(u) # u <=> |¢(u)| < |u|, and (2.2)
$2(u) = ¢(u). (2.3)

(c) Next, let u=(X,,X;,...,% )ED with |u|=t, where for each

ieﬂm, xieD[n} for some n 22. We define ¢ (u) by the first possible

application of one of the following steps:
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(I) If there is ieNm.

zeD(n-1) and x€D, then ¢(u)=¢(¢1(x,),...,@,(xmjj, where ¢1(yf)

denotes the element ¢{y1}...¢(yt} in D(t), for yfeD(t

such that xi=zx and ¢ (x)#x, where

(ITI) If for each iemm, xi=zini(v) for some v=(y1,y2,...,ym)
in D and some ziSE(n'1}, then ¢{u)=¢(z,y,,zzyz,...,zmym), where
”i(y1'yz""*Ym)=(yiryi+1""'ym'yi‘yz""'yi—1}eD'

Remark. Although (x‘,xz,...,xm) does not belong to D for

xi,xz,...,xmen, sometimes we will denote ¢(x1) by ¢ug,x2,.“,xm).

YR W

m

(III) If for each iGNm, x;=2,e, then ¢(u)=¢(z1,z2,.

(IV) If for each iENm, xi=ziaa’ for some a€A, then

¢{u}=¢(zie,z2e,...,zme). (V) ¢ (u)=u.

The following three propositions, whose proofs will be gi-
ven later, show that the map ¢ is well defined and give several
of its properties which will be used in the proof of the main
theoren.

Proposition 2.1. (a) The map ¢ is well defined and satisfi-
es the conditions (2.2) and (2.3).

(b) For every be€B, ¢(b)=b. ' (2.4)
.(c) For every u€D, ¢(u) < |ul. ¢ (2.5)
Proposition 2.2. Let u=(x,,x2,...,xm)eD, and x,=z.t.. Then:
(@) o(u)=e(,(x,),(x,),0un,0(x)). (2.6)
(b) ¢(u)=¢(z1g{t,).zzg(tz),...,zm¢jtm)). o (2.7)

Proposition 2.3. For every ziSD(n}, nzl, v:(y1,yz,...,ym),

y;e0™ ), x 22, iew_, aea:
(a) ¢(z1w‘(v),...,zmwm(v))=¢(z1y1,...,zmym). (2.8)
(b) ¢lz,e,...,z e)=¢(z,,...,2,). (2.9)
(c) @{z,aa',...,zmaa’)=¢(z,e,‘..,zme). 0 (2.10)

Let Q=¢ (D). The condition (2.3) implies that Q={u€D | ¢ (u)=u}.
We define a (2m,m)-operation [ ]:Q*™ » Q™ by:
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uzm]i = ¢(wi(u1u reeve )}, for 1€N ., (2.11)

m+1 m 2m

where [ ]; is the i-th component operation of [ ], i.e.
[x2™] = yT <=> [xfm]i = y; for each i€N .
The following theorem is the main result of the paper.

Theorem 2.4. (Q,[ ]) is a free commutative (2m,m)-group with

a basis A.

proof. (A) The definition of [ ] and the fact that uv=vu in
D(+) for u,veD, imply that: [xy]=[yx] for x,yeD", i.e. (Q,0) is
a commutative groupoid; and condition (d) of Proposition Yol
holds.

(B) Let uj"eQ’™ and i€N_ . Then, the definition of [ ] and
conditions (2. 7) and (2.8) imply that: [[ui™]u 2m+ﬂ]1=

=[n, (u,u V5 =

PR I ) e (W el W u
4t d ) ( # “mzm’ T 2m+a

m+ m 2m m- ek

=¢(m (n,{u1um+1,...,umuzm)u

L TN GO yeseuu_u_))= -

=¢(m, (u
¢ ( ( 1 m+1 Yo ma m+2 2m+2 m =2m 3m

e, 0 Jpeaa,un (u

= ‘I'I‘.U'IT u u u
¢ (my (aqmq ( m+1 2m+1’ 2m am m m' m+a 2m+q

= [ (02, 1]

(C) Let ufeQ™, ieN , jeN_, . Then (A) and (2.9) imply that

[u?—1emu?]i = [uTe™]; = ¢(n (ue,uze, .. ue)) = uy.
(D) Let ui™eQ®", jeN_ and [ui"]=2zY. Then, ]+1zj[em szej]
implies that zj+1= em-joej]1. Moreover,
Z54 =™ I ™ ]ej] =[ m'j¢(ﬂ,{u1um+1,...,umu2m))..¢(wm{u1um+1,...,
e BpU )}ej] —¢{ﬂ (u1um+1,...,umu m)} =
[uj+1u3u;Tj+1 m:g] i Xl
zr;hzJ =1 ?+1u?u;TJ+1 ﬁia]

(E) We will define by induction on the lenght, a mapping q
Q + Q such that [u™(g(u))™]=e™ for every ue€q.
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Let g(e)=e, g(a)=a’, and gla’)=a. Suppose that for ecvery veQ
such that |v| <|ul, g(v) is defined and [V®(g(v))™]=e™. Let

=LK i X e p XY Then r each i€N X. =X, X._o..X, TZ.Y.
u=(x,,X,, P m} en for each i m’ XiTXi4%4, i J_yl(EQ

(n)

. m
for some n22. We will put G(x,]=g(x,1)...g{x1n)g(x2 Yoeaglxp )

1
and

glu) = ¢y (W e (WG], euu,my(u) .. (WE(X])) . (2.12)

Then, the definition of [ ], conditions (2.7), (2.8), (2.9),
the inductive hypothesis and the fact that u=r, (u) imply that

[um(g(u))m]i=[um{¢{n2(u)...ﬂm{u)G(xTJ,...,nz(u)...%nhﬂG(KT}ﬂn?i=
=0 (r; (Wo (m, (@) eeam (WG(XT) e enyma(u) eunm (WG(XT), .. ub (7, (0). ..
...nmcu)c{xT),...,wz(u}...nm(ujcfxT))))=¢tun2(u)...nmfu)cfxT}“..,
peeesum (@)Ll (W)GXT)) =0 (X6 (x]) , .., xT6(xT)) =

=. m=1 m=1 . m=1 m=1 -
=0 (xy Z G(xy 2 )y gly )s....x, z G(xy 'z )y gly ))=

_ m-1 ceom=1 m=-1 m=1 - _
=t (xy 2z G(xy 'z ),...,x] z G(x 'z ))=...=e.

Now, the steps (A)-(E) imply that (Q;[ ]) is a commutative
(2m,m) -group.
(F) Since, ¢(b)=b for every bE€B and AcB it follows that

ACQ. Let u=(x1,x2,...,xm) be an element of Q, with xi=xi1xiz“'xin'

xi.e<A>, for each ieﬂm, jeﬂn, where <A> denotes the (2m,m)-~sub-
group of (Q;{ ]) generated by A. Then,
_.m
x11x21...xm1x12x22...xmz...x1nx2n...xmn -v1e<A> and
ai=¢(ni(x1,xz,...,xm)} imply that ¢ (u)e<a>.
Since u=¢ (u), it follows that u€<A>. Hence, Q=<A>.

(G) Let (P;[ ]) be a commutative (2m,m)-group, and h:A + P
be a given map. We denote by 1:B + P the map defined by:

A(a)=h(a), for every a€A,

A(e)=f, where f is the neutral element of (P;[ ]),
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x(a’)=¢(r(a)), where y:P +» P is the bijection with the pro-
perty [x™ (¢ (x))™]=£", for every x€P.

Let £:Q + P be defined, inductiveiy, by:

£ (b)=A(b), for every bEB,

g(x1,xz,...,xm)=[£(x1,}§(x§1}...s(xmi}...g(x1n)£(xzn)---
NS £ ¢ S ) A

o ey SESPSRT ‘eac EN .
where i7%44 “in for h i &

Let n:D > P be the map £o¢. It is obvious that, n is exten-
sion of A. By induction on the lenght, using the definition and
the properties of the reduction ¢, and the properties of commu-
tative (2m,m)-groups, it is easy to show that

Xy XgyeeerX )=[80x, ) E(R,) ce Bl ) eecBlx DE(X ) oo

2513
...£(xmn}]1 S )

for every (x,,xz,...,xm)en with X =%y ceeXgoy xijeo, for each

1%i2
i€N . jeN . This implies that £ is a (2m,m)-homomorphism from
(Q;[ 1) into (P;[ ]). ©

3. Proofs of Proposition 2.1, 2.2, 2.3

Proof of Proposition 2.1. (a) In (1)-(4) the right hand si-
des have a form ¢(v) where |v| < t and by the inductive hypothe-
sis ¢(v) is well defined, wich imply that ¢(u) is well defined.
By the inductive hypothesis |¢(v)]| <[v]|, ¢*(v)=¢(V), and so
|6 (u)| < |u] and ¢2(u)=¢(u).

(b) It follows directly from the definition.
(c) Follows from (a). ¢

Proof of Proposition 2.2. (a) If ¢1{xi)=xi for each ien ,

the conclusion is obvious. If there is iENm, such that X =zx and
¢ (x)#x, then (a) follows directly from (I).

(b) Follows directly from (a) and the condition (2.3). ¢
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Proof of Proposition 2.3. The proof is given via the follo-

wing four lemmas, whose proofs are by induction on the length.

Lemma 3.1. If u=(x,m,(v),x,7m,(v),...,x 7 _(v)) and ¢ (v)=v,

(n)
r

where x €D n2l, v=(y,,¥,ree-s¥ ) yiEDrElk , k22, for each

ieﬂm, then
o(u) = (X ¥, )X, ¥ renerX Vo).
Proof. (A) If (I) is applicable on u then (¢,(x,),¢,(x;) 0./

,...,@1{xm})#(x1,xz,...,xm), and the conclusion follows from (I),
the fact that ¢ (v)=v and the inductive hypothesis.

(B) Let {¢,(x,),¢1(x2],...,¢,[xm))=(x1,x2,...,xm). Then (II)
is applicable on u and the conclusion follows from (II). ¢

Remark. If (II) is applicable on an element u=(Xy,Xz,.«+¢X_)s
we write u#(é,(x,) 6, (%) . urby(x)), where (¢,(%,),0,(X3)0eees
,...,¢3{xm}} denotes the element obtained from u by one applica-
tion of (II).

(n)

Lemma 3.2. If u=(x,e,x,e,...,xe), x,€ED , n21, i€N , then

p(u) = (x4, Xgpeea,X ).

Proof. (A) If (I) is applicable on u, then (¢, (x,),¢ (x,);...;
,...,¢1(xm])#{x,,xz,...,xm), and the conclusion follows from (I),
the condition (2.4) and the inductive hypothesis.

(B) Let (¢i(x1),¢,(xa).-..,¢1(xm}=(x1,xz,...,xm). If (II) is
applicable on u, then {x1,xz,...,xm)#(¢2{x1],¢,(x2)....,¢,(xm)),
and the conclusion follows from (II) and the inductive hypothesis.

(C) Let (x,,xz,...,xm)={¢3[x,),¢2(x3),...,¢z(xm}}. Then (III)
is applicable on u, and the conclusion follows from (III). ¢

Remark. If (III) is applicable on ué{x,,xz,...,xm), we write
u#(@a(x1},¢3{xz),...,¢3(xm)), where (¢3(x1),¢3{x2),....¢3{xm}) is
only a notation for the element obtained from u by one applica-
tion od (III).

Lemma 3.3. If u=(x,aa’,x,aa’,...,x aa’), then ¢ (u)=

m
=¢(x,e,x,€,...,X ).
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Proof. (&) If (I) is applicable on u, then (x1,xz,...,xm)#
#(o, ()00, (x;),...,¢ (x)), and the conclusion follows from (I),
the condition (2.4) and the inductive hypothesis.

(B) Let {x,,xz;---.xm)=(¢1{x1).¢1(x3),.--,¢,{xm)).1f (I1)
or (III) is applicable on u, then, (x,,xz,...,xm)#[¢j (x1),¢j{xzh...,
,...,¢j(xm)), je{2,3}, and the conclusion follows from Lemma 3.
(j=1) , and the inductive hypothesis.

(C) Let [x,,xz,...,xm}={¢j(x‘},¢j(xz),...,¢j{xm]). Then (IV)
is applicable on u, and the conclusion follows directly from (IV). ¢

Remark. If (IV) is applicable on u=(x,,x2,...,xm), we write
uF (0, (X4) 404 (X3) senurta(x)), where (9, (x,),0,(%;),000r0,(x)) is
only a notation for the element obtained from u by one applica-
tions of (IV).

Lemma 3.4. If u=(x,7,(v),x,7,(Vv),...,x nm(v}, xieDn, n2l,

_ (k) -
v%y“yﬂ.u,%g,yfn ,kaz,ia%,ﬂwn

o(u) = (X ¥/ Xa¥00eeerX v ).

Proof. (A) If ¢(v)=v, then conclusion follows directly from

Lemma 3.1.

(B) If ¢(v)#v, then v#{¢j(y,},¢j{y2},...,¢j(yn}), for some
jen, .

(B.1) For j=1, Proposition 2.2 and the inductive hypothesis
imply that

¢ ()=¢ (xolm (v)), X0 (w (V) enu,x ¢(m (v)))=

=¢(x,¢,(y1),x,¢1(yz},...,xm¢,{ym))=¢(x1y1,x=yz,...,xmym}.

(B.2) If (I) is not applicable on u, then j€{2,3,4} and,
similarly to case (B.l), the conclusion follows from Proposjition
2.2, Lemma 2.(j=1), and the inductive hypothesis. ¢
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CJIIOBOOHM KOMYTATHUBHU (2m,m)-T'PYIIH

Ionuo JuMOBCKH, CHexaHa WnHK
Pe3uHME

KoMyTaTHBHa (2m,m&-rpyna e nap (G,[ ]) kage wrto G e Hemnpas-
HO MHOXecCTBO, a [ ]:G2 > 6™ e (2m,m) -onepaunja Ha G, TaKa WTO,
G™ co omepamwjata xoys[xy] e xomyrarmeHa rpyma, @ 3a cekoj xec™,
vec®™ 1 zecl u vee™ *, maxm [[xy]zv]=[x[yz]v].

Bo oBaa pafora JapaMe KOMBHHATOpeH OMHC Ha CJIO60OOHH KOMyTa-
TuRHH (2m,m)~rpynu (3a m = 2), HHCIHPHPaH OR KapaxTepusauujarta
Ha KOMYyTaTHUBHHTe (2m,m)-rpynu Kako anrebpe co engHa (2m,m)-onepa-
uMia, emHa yHapHa ¥ enHa HyJlapHa criepau#ja.
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