SOME CLASSES OF VECTOR VALUED ASSOCIATIVES
N. Celakoski, S. Markovski, B. Janeva

Abstract. The notion of a (K,m)-associative or a vector
valued associative is introduced in |2]| and conditions when
a (K,m)-associative is a (K,m)-subassociative of a vector
valued semigroup are stated there. In this paper we investi-
gate some properties of cancellative and surjective (K,m)-
associatives and give a combinatorial description of free
vector valued associatives.

§1. m-DIMENSIONAL VECTOR VALUED ASSOCIATIVES

Let A be a nonempty set. By A% will be denoted the s-th
Cartesian power of the set A, i.e. A?={(a1,...,as) [aieA}. The
elements of A® will also be denoted by a,...a; or shortly by

8. Xf a,=...=a_=a, then we will write a® instead of af.

If n,m are positive integers, then a mapping £:2a0 - A™

we will write: §(f), p(f), 1(£f). The pair (A;f) is called an
(n,m)-groupoid (or a v.v. groupoid).

The set of all vector valued operations on a set A is de-
noted by Op(A); we note that the identity mapping on A, 1=1A’
is in Op(A). The partial (binary) operation "composition"™ on
Op(A), denoted multiplicatively, and the (binary) operation
"direct product" on Op(A) denoted by x, are defined as usual.

g,h€0p(A), pg=sh => (va,€a) (hg) (a}%)=h(g(a}9)), (1.1)
where

§(hg) = ég, p(hg) = ph, 1(hg) = 1h + 14, (1.2)

1182



124 N. CELAKOSKI, S. MARKOVSKI, B. JANEVA

and the direct product is defined by:

g,h€op(A) => (vai,bjeA}(gxh)(afgbfh) = g(adHnwth), (1.3)
where
& (gxh)=6g +8h, p(gxh)=pg +ph, 1(gxh)=1g +1h. (1.4)

Let F be a nonempty subset of Op(A), such that for all
fer, 6£>pf21. Then the pair (A;F) is called an F-algebra or a
v.v. algebra.

Let (A;F) be an F-algebra and let @=KP{F) be the subset
of Op(A) which is defined inductively by:

(i) FUl{1}s <,

P

(ii) g,gie@, §g = iz pg; => g(g,x...xgp)e@.
=1

Every element of & is called a polynomial operation on (A;F).

We will prove the following:

Proposition 1.1. Let h€0p(A), h#1. Then h€CP(F) iff there
exist P,iu,jv€N1), F\€F, such that

1 J i J i J
R S ST B MR T S B 1 S R B (1.5)
(Here 1% is an abbreviation for 1x1x...x1; 19 is the "empty
——_——
; o

form of h". More precisely, if (1.5) is satisfied, then the trip-
le of sequences (fy; i%; j}) is called a canonical form of h.)

Proof. It is clear that if g,,g9,,9,€0p(A) are such that

ég,=pg,, then the following equalities are true:

_Pg §g,
g,xg; = (gux1 ) 1 “xg,) (1.6)

and

ted )
g9,9,%9, = \g,x g,o%x94/) s
1927 “3 1 Gg: 3 (1.7)
9,x9,9, = (9,%xg,) (1 xg,).

1
) N={0,1,2,..+}
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SOME CLASSES OF VECTOR VALUED ASSOCIATIVES IS5

Let he@ (F), h#l. If h€F, then we can put r=0, £,=h. Thus,
we can assume that h=g(g1x...xgp), where q,gve@(F), g#l1 and
giaél for some i€N '}. Moreover, we can also assume that g, and
each 9, such that gvafl, admit the corresponding canonical forms.
By a finite number of applications of (1.6) and (1.7) we can

obtain a canonical form of h. [O

Proposition 1.2. @(F) = P(P(F)). 0O

polynomial operations in P =4P(F) with the same lenght and di-
mension are equal, i.e.

g,heP, sg=6h, pg=ph => g=h. (1.8)
As a consequence of P.1.2 we have:

Proposition 1.3. 4 v.v. algebra (A;F) is an F-associative
1ff, for every G € P(F), G#{1}, (A;G) is a G-associative. 0O

By the definition of a v.v. algebra (A;F) we have that
1€F and 1€P=P(F).

Let F _={f€F | p£=m}, CPm={heQ"| ph=m},
lFm=(1f [fGFm}, 1Q’m={lh lhE?m}.
The following proposition is proved in [2]:

Proposition 1.4. (‘a: 18 a subsemigroup of the additive

semigroup of nonnegative integers (N;+) generated by the set
S O - T
m

© .
RS el o (1.3)

Further on we will assume that m2>22) is a fixed integer
and that of=m for every f€F. Thus F=F_, qu=‘?\{l}=?'r

P! = P>, (1.97)

F-algebra, or shortly an (F,m)-algebra.

1)

Nt~{1,2,...,t}, for every integer t >0.
2)

If m=1, corresponding considerations are given, for exam-
ple, in [1], [6], ’
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126 N. CELAKOSKI, S. MARKOVSKI, B. JANEVA

An m-dimensional F-algebra which is an F-associative is

(and also an m-dimensional v.v. associative).

Proposition 1.5. Let A be a nonempty set, K be a subsemi-
group of (N;+), 0K, m=2 and F={fﬁ |fk:Ak+m - o™, k6K}. Then,
the v.v. algebra (A;F) is an (F,m)-associative iff for every

n,t€K and every a (0 <a <n) the following equality holda:

o n-a, _
TS ARk (1.10)

Moreover, GP(F)=F.

Conversely, let (A;G) be a (G,m)-assoetative and let
H=P(G), K=1H\{0}. Then B={ £y, |fk:Ak+m - A™, keK} and (1.10)
holds as well.

Proof. Let (1.10) be true and let g,he P (F), Sg=6h. We will

represent g and h in canonical forms:
i 3 i j
LR SN R i Y G I
r
<] q P
Rom £ (1 "yf ol )e et S

k

o 1 g
£, x1 %),
o 1 s
where,

iv+jv = ko+k1+"'+kv-1’ pl+ql o £0+z1+"'+21-1

for 1sv<r, 1<) =<s. Here, by é§g=6h, we have

j . _+m = +q_+
ir+jr+kr m ps qS £S+m,

k°+k1+...+kr = £o+£1+...+ls. (1.11)

By successive applications of (1.10) we obtain
2

Ja ir Jr
g= £ | Y ey e P (& -1, oo I (R —
k,+k, kz kr

= Btk btk

pz qz ps qs
h=f¢f (1 - 3 (g W08 (3 B S L) [N e
Lo +h =y Lo

= £
Lot +... 42’
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SOME CLASSES OF VECTOR VALUED ASSOCIATIVES 127

which by (1.11) implies that g=h, i.e. (A;F) is an (F,m)-
associative. Clearly, if (A;F) is an (F,m)-associative, then
(1.10) holds.

Now, let (A;G) be a (G,m)-associative, H=Q (G),
K=1H\{0}. By (1.9) we have that K is a subsemigroup of (N;+)
and by P.1.3, (A;F) is an (H,m)-associative. If k€K, then there
is an kaH such that 1Ek=k, i.e. H is as stated and, by the
preceding, (1.10) holds. [

m-dimensional v.v. associatives can be also observed as
structures with a so called "poly-operation". Here, a (K,m)-
operation is called a mapping g:a80 L A", where A is a non-

empty set, K is a subsemigroup of (N;+), 0€K and
AK+m 4 \#} Ak+m
kekK i

(see also [3], 55). The restriction £ =f akem is a (k+m,m)~-

ry a ,b,€A, for every n,t€K and for every a:0 <q <n, the fol-
VoA :
lowing equality holds:

a t+m, _n L o, t+m_n
f{a.‘f(b1 )au+1} = f(a,b1 au+1}. (1.12)

By P.1.5 and (1.12) it follows that a (K,m)-groupoid (A;f)
is a (K,m)-semigroup iff (A;f) is an (F,m)-associative, where

k+m

S {fk [fk is the restriction of f on A , k€K}. (1:13)

Therefbre, we will not make any difference between (K,m)-semi-
groups and (F,m)-associatives, F being defined by (1.13). Hence,
as usual, we can denote the poly-operation f by [ L i.e. for
every aven, k€K, we can write

k+m k+m
3 ot B - it 1
We note that every v.v. operation £f:A" - A™ can be consi-
dered as an m-tuple of n-operations (i.e. of (n,1)-operations)
£,:A" -2, i€N , defined by:
£(a3) = bY <=> £, (a}) = by, ien .

We say that fi is the i-th component of f.
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128 N. CELAKOSKI, S. MARKOVSEI, B. JANEVA

Using components, v.v. associatives can be also considered
as a variety of universal algebras and, therefore, the standard
universal algebraic concepts such as: subalgebra, homomorphism,
congruence etc. make sense for v.v. associatives. Namely, the
equality (1.10) can be written componentwise in the following

form:
o s+m s+m, r = a s+m r
fr i Xty (¥, ) eenfy (¥, % L,) = fr+s,ib9y1ﬂ%%+1) b0t
or in a mixed (component-vector) form:
a s+m, T - o s+m_r
£ (e (v X L)) = Eg i X0Yy Xoga) (1.10%

where fk i denotes the i-th component of the operation fk'
. r

mappings [ ]imK+m - A, defined by:
[a?] & bT <=> [af:]i = b, i€N_.

Here the restrictions of [ ], over a**™, for every kek, are

usual k+m-operations.

§2, VECTOR VALUED ASSOCIATIVES AND VECTOR VALUED SEMIGROUPS

Vector valued associatives are closely related to the vector
valued semigroups. We-will consider here this connection.

First we note that an (F,m)-associative (A;F) depends in
fact on the set J=\F of indices of the operations in F, as it
is seen by (1.9'). Therefore an (F,m)-associative will be also
over, if K< (N;+) (i.e. K is the subsemigroup of (N;+)) genera-
ted by J, K=<J>, then an F-algebra (A;F) is a (J,m)-associative
iff the ¢’-algebra (A;9’) is a (K,m)-associative (see P.1.2).

Henceforth, no difference will be made between (A;F) and
(A;@ '), i.e. we will consider any (J,m)-associative as a (K,m)-
associative, where K=<J>. Also, if K=<L>, every (K,m)-associati-
ve will be considered as an (L,m)-associative (see P.1.3).

Therefore, we can consider only (K,m)-associative, where
K is a subsemigroup of (N;+), OgK. In that case, if M<K, then a

)

)
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SOME CLASSES OF VECTOR VALUED ASSOCIATIVES 129

given (K,m)-associative (A;K) induces a corresponding (M,m)-

Thus:

Proposition 2.1. If L<K<(N;+), then an L-restriction of

every (K,m)-associative ig an (L,m)-associative. 0O

We will often use the notation [x<"™¥ instead of
g(x]:ﬂ“) , where g is a fixed polynomial operation with the index
k=1g.

Clearly, if (A;J) is a (J,m)-associative, then for any
keJg, (a;[ ]k) is an (m+k,m)-semigroup, which is said to be

on the other hand, every (m+d,m)-semigroup (A;[ ]) can be
considered as a (K,m)-associative, where K={sd |s 21} (i.e.
K=<d>) is the semigroup generated by d. Namely setting

(vkek) [ = [,
we obtain by the general associative law ([3]) that (A;[]) is

a (K,m)-associative. (Thus an (m+d,m)-semigroup is in fact a
(<d>,m)-associative.)

Let K<L< (N;+). A (K,m)-associative A=(A;[ ]) is called

A< B and
k+my _ r k+
(va ea) (vkek) [ai™] = [a3]- (2.1)

(m+d,m) -semigroup (B;[ ]); in this case d | GCD(K).
The following statements are proved in [2]:

Proposition 2.2. 4 (K,m)-associative (a;0 1) is a (K,m)-
subassociative of an (m+d,m)-semigroup iff (A;[ ]) is a (K,m)-

subassociative of an (m+l,m)-semigroup. [

Proposition 2.3. 4 (K,m)-associative i8 a (K,m)-subassocia—
tive of an (m+1,m)-semigroup iff d=¢cp(k)ex. 0O
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130 N. CELAKOSKI, S. MARKOVSKI, B. JANEVA

The next example shows that if d=GCD(K)gK, the class of
(K,m)-subassociatives of (m+l,m)-semigroups is a proper subclass
of the class of (K,m)-associatives.

Example 2.4. ([2]). Let A={a,b,c}, afbfc#a and let J be a
set of positive integers such that d=GCD(J)¢J. If p is the least
element of J, then the set L=J\{ap | a« 21} is nonempty; let g be
the least element of L.

Define a set F={fk IkeJ} of vector valued operations on A

in the following way:
(VkeJ)Gfk = m+k, nfk = m and
" p™, if k=q and xT+k=cm+k
> (xm+)_{
k1 m
a , otherwise

Then: a) (A;F) is a (J,m)-associative and b) this (J,m)-
associative is not a (J,m)-subassociative of an (m+l,m)-semigroup.

We will state here two problems.
Let L,K be subsemigroups of (N;+) such that LCK.

(i) Under what conditions an (L,m)-associative is an L-
restriction of a (K,m)-associative?
Particularly, under what conditions an (L,m)-associative

is an L-restriction of a vector valued semigroup?

(ii) Under what conditions an (L,m)-associative can be
extended to a (K,m)-associative?

Specially, under what conditions an (L,m)-associative has
an extension which is an L-restriction of a vector valued semi-
group?

§3. CANCELLATIVE VECTOR VALUED ASSOCIATIVES

We will consider here some properties of cancellative v.v.
associatives which are generalizations of the corresponding
properties for J-associatives ([1], [6]).
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SOME CLASSES OF VECTOR VALUED ASSOCIATIVES 131

tive iff for every k€K and for every a s xj,YPGA

k k »
[ = [0 = o2 = 47 (3.1)
and right cancellative iff
k k
[Fe] = [y%al] = 2 = 2. (3.2

A (K,m)-associative is cancellative iff it is left and right
cancellative.

Proposition 3.1. If A=(4;[ ]) s a (K,m)-associative, then

the following conditions are equtvalent:

(i) A is cancellative.

(i2) For every k€K, iaﬁk+‘, a“,xx,yueA, the following impli-

ceation 18 true

k k
[t1m ]‘[t1yTaz]—“—>zT

yT (3.3)
(ii1) There existe a k€K, k 22, such that for any av,zl,yuea

the implications (3.1) and (3.2) hold.

(iv) There exists a k€K, k22, and an £€Nk, i 22, such that
for every av’xl‘quA (3.3) holds.

Proof. (i) => (ii). Assume that A is cancellative and k€K,
ieN, . are such that [ai—’xmak]=[ai'1ymak]. Then we have
[ki1mki1][akiﬂmki1]'ie_[ki-[xmki-]]_

1 13134

_[ak o E 1="1]. Thus, by (3.1) we obtain first

[xmaki1]=[ymki',

4
and by (3.2), xT=y1.

It is clear that (ii) => (iii). We will prove first that
(iii) => (iv), and then (iv) => (i).

Let k 22 be a given fixed element of K, and let (3.1) and
(3 2) be true. If i22 is such that [al™'xTa¥]=[al""yTa}], then

T [xakal '] ]=[akal "t [y"aXal™"]] implies, by (3.1) and (3.2),

that xI:l—yT
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132 N. CELAKOSKI, S. MARKOVSKI, B. JANEVA

It remains only to prove (iv) => (i). Assume that keK,
k=2, 1euk, i 22 are such that (3.3) holds, for any
a,,x,,y €A. Then, by ([3), T.5.7) the (m+k,m)-semigroup induced
by A is cancellative. Let s be an arbitrary element of K. Then,
by ([3], T.5.7), the (m+sk,m)-semigroup is cancellative as well,
and this implies that the corresponding (m+s,m)-semigroup indu-
ced by A is cancellative. [

We note that in the same manner as in ([3], P.5.12), the
following implication could be proved:

Proposition 3.2. If A;=(A,'[ 1) is a cancellative (K,m)-asso-

etative, then for all i,j,p,q,r 20, such that i+j+p-m,q+j+r-méK,
A P 3 e
[a32988] = [aSyiph] => [ed=z947] = [e%y?a’],

where av’bv’cv’dv"rv’yve" o

§4. SURJECTIVE VECTOR VALUED ASSOCIATIVE

[a%*m = a™, (4.1)
(Here: [AN*™]=( A | x en, keK}l.)
Y

Proposition 4.1. If A=(4;[ ]) is a (K,m)-associative, then

the following statements are equivalent:
(i) [Akﬂ"] = A" for every k6K;
(i) [Ak*m] = 4™ for some kéK;
(iii) A is surjective.
Proof. Clearly, we have (i) => (ii), (ii) => (iii), and,
thus, we have to show that (iii) => (i). Since the subsemigroup
K of (N;+) is finitely generated ([5]), let {k,,k,...,k.} be a

generating subset of K. Then, assuming A is surjective, it is

k;+m
sufficient to show that (VieN ) [a™1 7]=a". (Namely, if
k.+m
[a i ]1=A", for every ieN , and k is an arbitrary element of K,

then k=a k,+a k,+...+a k and by using induction on the number
of appearences of the generators of K, we have
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SOME CLASSES OF VECTOR VALUED ASSOCIATIVES 133

K ettt K Fm k+4m f(a,-1)k +...4a_k
[A.‘I‘I r -r ]=[[A1 ]A1 1 5 ST o

fa.=1)k +...4a_ k
S e T

Let ki be a fixed element of {k1,k2,...,kr}. We will prove

(A ] =

Il

= [a"a

k1+'m m
that [A ]=a". 1f al'eA™, then by the surjectivity of A, there
= v1k1+...+\:rkr+m
exist b €A, such that ay=[b,

v,*...+vyr 2 0. By the same reason there exist cleA such that
Ak, +ooohr Kk _+m

], where v.20,

b= [c ¥ T ], where »,20, A, +...9 20, and thus
s + s +
o [cl1k1+ +Arkr mbv,k1 +vrkv m
1 m+1 =

Continuing this procedure one obtains that
e k. +...4te _k_+m
aTe[A il AL i
where at least one € is such that es=ki+p, p=0. Hence,

Eiki + Esks = ki+(ei+ks—1)ki+ksp,

i.e. for some k€K we have
s1k1+...+erkr+m = ki+k+m.

Therefore
k,+m

ale[a {[AM] g [a 1AM = (a1,
k,+m k,+m k,+m
ie. Ac[a® ]. obviously, [A1 ]ca® andso [a 1 ]=a". QO
Here we note that a direct product of any nonempty collec-
tion of surjective (K,m)-associatives is a surjective (K,m)-
associative. Clearly, a homomorphic image of a surjective (K,m)-
associative is a surjective (K,m)-associative.

A (K,m)-associative A=(A;[ ]) is called a (K,m)-group iff
for every k€K, the (m+k,m)-semigroup (A;[ ]kJ is an (m+k,m)-group.

The notion of an (mt+k,m)-group.is defined, for example, in
[3] and it is shown there that every (m+k,m)-group is cancella-
tive. Thus every (K,m)-group is a surjective and cancellative
(K,m)-associative. We will show the following:
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134 N. CELAKOSKI, S. MARKOVSKI, B. JANEVA

Proposition 4.2. Let K be a subsemigroup of (Ny+) and
d=GCD(K). Then a (K,m)-assoctative is a (K,m)-group iff it 28 a

K-restriction of an (m+d,m)-group.

Proof. Let A=(A;[ ]) be an (m+d,m)-group. Let [ ]° be the
(m+sd,m) -operation induced by [ ]. The (<d>,m)-associative in-
duced by A is a (<d>,m)-group, and thus, for all s21 (A;[ ]%
is an (m+sd,m)-group. Then the K-restriction (A;{[ ]% | sdek})
is a (K,m)-group.

Suppose now that A=(A;[ ]) is a (K,m)-group. We first note
that there exists p€K such that

(x6éKA x2p) <=> (HreN) x = p + rd

(see [5]). We choose p to be the least element with the above
property, and in this case the subset Ks={p,p+d,p+2d,...} of K
is called the regular part of K.

We will define an (m+d,m)-operation [ ] on A as follows.

Let T+d Am+d and 0 <i<d. By P.4.1 there exist vaA such

+m = [xm+k] k,k+d€K, and we put

m+dy _ i_m+k m+d
(2] = [ayx, i+m+s]

that ai
i+

The operation [ ] is well defined, since for all i, 0 <i =4,

we have:
mtt_m+dqy _ i m+s m+d
E m+1] E Z4 i+m+1] (4.2)
i+m

where aT=[yT+t], a =EZT+S], t,s,t+d,s+d€K; y ,z EA. Namely,
for any c eA,

+t +d +t4 _m+d my m+d =
[By™*a™d] = [BIyT™*1am19] = [Balano] =

ir m+sq _m+d = 4 m+s m+d
T [cga1[z ] i+m&1] [cpa i+m+1]

which imply (4.2) by the left cancellativity of A.

i+4

Now we will show that the (m+d,m)-operation [ ] is associa-
tive. Namely,
m+dq, m+d i ptm m+d m+d
[[a1 ]bm+1] Ea P Amtida m+1]

i+m +
where ai+ = [¥yTP],
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SOME CLASSES OF VECTOR VALUED ASSOCIATIVES 135

1 m+d m+i m+d — i_m+p_m+d m+i, m+d
(a3([a 34 41 ma m+i+1] =[a % " ]

W1 A1 4 Pne i Pmid e
for i: 0<i =d, and thus

m+d m+d ip mtdy m+d m+d
[[a7Tbpy,] = [a7[a a5+ Bt a] m+i+1]

It is clear that each (k+m,m)-operation (k€K) of (A;E ]}
is induced by the operation [ ]. It remains to show that

(vadead, bTea™) (@x™,yTea™ [a%x™] = b7 = [yMa9]. (4.3)

Let c,,...,cp be fixed elements of A. Then the equations
d m m m p-d m
Ea‘c?u1] = b, and Ev1c2a1] =T,
have solutions on uT,vT in the (K,m)-group (A;[ ]) and then
m m m
[5ul] =, [¥]ef] = v]
are solutions of the equations (4.3). Hence (A;[ ]) is a (d+m,m)-
group. [O

§5. FREE VECTOR VALUED ASSOCIATIVES

The fact that the class of (K,m)-associatives can be cha-
racterized as a variety of universal algebras defined by a set
of identities implies that every non-empty set B is a basis of
a free (K,m)-associative. Here we give a convenient description
of free (K,m)-associatives, following the ideas of [4].

First, we introduce some concepts and notations.

If X is a nonempty set, then x* denotes the set of all fi-

nite sequence of elements of X, i.e. x*= U x*. The set x* with
iz1

the operation concatenation of sequences is a free semigroup

with a basis X. If 1 denotes the empty sequence, then x*=x+L;{1}

is a free monoid with a basis X. If K€ N, then we put XK+ U Xkﬂn_

kEK
Now let B be a nonempty set, K a subsemigroup of (N;+),
0K, and m22. We define a sequence of sets B,,B ,B,,... in the
following inductive way:
B,=B, B, =B UN_ xBX (5.1)

pt1 p P
and we put
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136 N. CELAKOSKI, S. MARKOVSKI, B. JANEvVA

i U - (5.2)
po P K+
Note that u€B iff u€B or u=(i,x), for some ieNm and x€B M,

We define a mapping from BY into N, named a norm and deno-
ted by | |, in the following inductive way:

beB => |b| = 1;

u= (i,x)€B => |u| = |x| + 1;

25
x,y€B" => |xy| = [x| + |y

x=uf+m, uveﬁ, k€K, u, is reducible for some i, or x=x'(1l,y)...

...(m,y)x", where x'x"€B", (1,¥),.0.,(m,y)€EB.

set of all reduced elements of B will be denoted by R.

Using induction on norm, we define a mapping y:B = R
which we will call a reduction.

(i) u€R => y (u)=u.

Let u€B\R and suppose that for every v€B, such that
[v] < |u], ¥(v) is well-defined element of R and the following
condition is satisfied:

p(v) # v <=> [p(v)| < |v| <=> veB\Rr. (5.3)

Assume that u=(i,uf+m), where u,€B, k€K. Then Iujl < |ul| for eve-

ry jeNk+m’ and by the inductive hypothesis, w(uj}eR is defined
and (5.3) is satisfied for v=uj.
If x=uf, “v6§ and y(u ) are defined, then we will write
V(x) = w(u1}...w{up}. (5.4)
If $(uj)#uj for some j, then we set
(11) v(a) = v(i,9 5™,
Here, y(u) is well-defined by (ii) since, by (5.3),
|¢(uj}l < luj[ and thus
k+m -

[, (a7 | = 1 + §1“"“le <1+ ilu\,l = |ul:
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If we have ¢y (u,)=uj for every j, then by (5.3) every u.
is reduced and thus u’?m:x'(l,y) s (m,y)x" for séme x’x" A
Assume that x’ has the least possible norm. Then we put

(iii) ¢ (u) = p(i,x’'yx").

Since the choice of x’ is unique and |x’yx"| < |x’(1,y)...(m,y)x"|=
=|u|, it follows by the inductive hypothesis that ¥ (u) is well
defined by (iii). Moreover, (5.3) is satisfied if we replace v

by u.

We will state some properties of the reduction ¥.

Proposition 5.1. The following statements are true:

ta) v(u) # u <=> |v(u)| < |ul<=> u6€B\R.
(b) $(¥(u)) = ¥(u), for every u€B.

(e) W(i,zyz) = ¢(Z,x¥(yls), for every zys&fx*m and every yé€B.

(d) V(Z,2(1,y)e..(myylz)=¥(i,xya), for every xyz,yefxﬂ'.

Proof. (a) is proved in the above definition of ¥. This,
and the fact that Yy (u)€R implies (b).

To prove (c) we first note that we can assume that
v (y)#y. Let x=uj, z=vf, where u ,v,€B, a,8 20. If
Muv}=uv, w(vx}=vl for every pair (v,1), then (c) is true by
(ii), and thus we can assume that there is a pair (v,1) such
that y(u )#u  or ¥(v,)#v,. If x'=y(u)v(u,)...v(uy),
z'=y(v,)...¥(vy), then we have |x*z*| < |xz|, and (i) and in-
duction on norm imply:

p(i,xyz) = p(i,x"v(y)z’) = ¥v(i,x'yz’) = ¥(i,xyz).

It remains to show (d). Let ¥(xyz)=xyz and let x has the
least possible norm. Then (d) follows by (iii). If ¥(xyz)#xyz,
then (a) implies that ¢(x)¥(y)¥(z) has smaller norm than xyz;
then by (ii) and (c), using induction on the norm, we have:

p(i,xyz) = (1,0 (x)v(y)v(z)) = ¥(i,¥(x)(1,¥(y)...(m,¥(y))¥(2)) =
= (i, ()W (1, 9(y)) ... v(m¥(y))e(z)) =

YL, p(x)p(l,y)...¢(m,y)¥(2)) =

pli,x(1,y)...(m,y)z).

[
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Now, consider the case y (xyz)=xyz when the norm of x is
not the least possible. But then x=x’'(1,t)...(m,t)x", where x’
has the least possible norm and then by (iii) and the inductive
hypothesis, we have:

p(i,x"(1,t)...(m,)x"(1,y)...(m,y)2) =

(i, x"tx"(1,y)...(m,y)2z) = ¢ (i,x"tx"yz) =
p(i,x" (1,t)...(m,t)x"yz) = ¥ (i,xyz). 0O

Il

The set R of all reduced elements of B can be written now
in the form

R={ueB |¢(u) = u}.

Let L be a subsemigroup of K. We define a subset R_ of R
by induction on norm as follows. First, BER;, i.e. |ul = 1
implies u€R . If u=(i,u} ™)ER then
uERL iff k€L and u €R, for every v.
Thus, RK = R.
Define in R a (K,m)-operation [ ] by:
(VKEK) (vu,,, v, €R) ([*T] = VP <=> (uieN)v, =v(i,uf"™).  (5.5)

Proposition 5.2. The (K,m)-groupoid (R;[ 1) is a (K,m)-

associative. For every subsemigroup L of K, R is an (L,m)=-sub-
associative of (R;[ ]) and (RL;[ 1) is generated by B.

Proof. First, by P.5.1 (b) it follows that [ ] is a well
defined (K,m)-operation on R. Also by P.5.1 it can be easily
shown that (R;[ ]) is a (K,m)-associative.

In addition, the definitions of [ ] and R imply that if
L+
u €R, for every veN ., , where €L, and [u] m]=vT, then v €R.
for every \eN . Thus, R  is an (L,m)-subassociative of (R;[ 1).

The conclusion that B is a generating subset of R; can be
also obtained in a usual obvious way. [

Proposition 5.3. Let L and K be as above and let (4;[])
be an (L,m)-assoeiative. If E:b - b is a mapping from B into 4,
then there exists a unique homomorphism f:fRL;[ 1) =[]

whieh is an extension of E.
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Proof. By P.5.2, it is enough to show. the existence of
such a homomorphism £. We defing £ by induction on norm. Thus,
if u€B, then Z (b)=¢(b). Assume that u={i,uf+m)eRL is such that
f(uv}=bveh is well defined for every veéN . . Then, we define

E(u) by:

m+

E(u) = a,, where [bf+“j = aT in ;[ 1.

i
Therefore, we have an extension E:RL - A of £, and
B[ 1) - (a;[ 1) is a homomorphism by the definition of
[1and E. O
As a corollary from P.5.2 and P.5.3 we obtain the following

Theorem 5.4. The (K,m)-assoeiative (R;[ ]) is a free (K,m)-
associative with a basis B. If (F;[ ]) is a free (K,m)-associa-
tive with a basis B and L is a subsemigroup of K, then the (L,m)-
subassociative (G;[ ]) generated by B is a free (L,m)-associati-
ve with a basis B. [

Finally, we have the following
Theorem 5.5. Every free (L,m)-associative is cancellative.

Proof. If K is the set of all positive integers, then a
(K,m)-associative is essentially the same as an (m+l,m)-semi-
group. It is shown in [3] (T.6.9) that every free v.v. semigroup
is cancellative, and therefore every free (L,m)-associative is
cancellative as an (L,m)-subassociative of a cancellative (m+l,m)-
semigroup. [
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