SOME CLASSES OF VECTOR VALUED ASSOCIATIVES

N. Celakoski, S. Markovski, B. Janeva

Abstract. The notion of a (K,m)-associative or a vector valued associative is introduced in [2] and conditions when a (K,m)-associative is a (K,m)-subassociative of a vector valued semigroup are stated there. In this paper we investigate some properties of cancellative and surjective (K,m)-associatives and give a combinatorial description of free vector valued associatives.

§1. m-DIMENSIONAL VECTOR VALUED ASSOCIATIVES

Let A be a nonempty set. By A^S will be denoted the s-th Cartesian power of the set A, i.e. $A^S = \{(a_1, \ldots, a_S) \mid a_i \in A\}$. The elements of A^S will also be denoted by $a_1 \ldots a_S$ or shortly by a_1^S . If $a_1 = \ldots = a_S = a$, then we will write a^S instead of a_1^S .

If n,m are positive integers, then a mapping $f: A^n \to A^m$ is called an (n,m)-operation or a vector-valued (shortly: v.v.) operation with the <u>length</u> $\delta f = n$, the <u>dimension</u> $\rho f = m$, and the <u>index</u> $if = \delta f - \rho f$. (In cases when parenthesis are more convenient we will write: $\delta(f)$, $\rho(f)$, i(f). The pair (A;f) is called an (n,m)-groupoid (or a v.v. groupoid).

The set of all vector valued operations on a set A is denoted by Op(A); we note that the identity mapping on A, $1=1_A$, is in Op(A). The partial (binary) operation "composition" on Op(A), denoted multiplicatively, and the (binary) operation "direct product" on Op(A) denoted by \times , are defined as usual. That is, the <u>composition</u> is defined by:

$$g,h\in Op(A), pg=\delta h \Longrightarrow (\forall a_i\in A)(hg)(a_i^{\delta g})=h(g(a_i^{\delta g})),$$
 (1.1) where

$$\delta(hg) = \delta g, \rho(hg) = \rho h, \iota(hg) = \iota h + \iota g,$$
 (1.2)

and the <u>direct product</u> is defined by: $g,heop(A) \implies (\forall a_i,b_j \in A) (g \times h) (a_1^{\delta} g b_1^{\delta} h) = g(a_1^{\delta} g) h(b_1^{\delta} h), \qquad (1.3)$ where

$$\delta(gxh) = \delta g + \delta h, \ \rho(gxh) = \rho g + \rho h, \ \iota(gxh) = \iota g + \iota h. \tag{1.4}$$

Let F be a nonempty subset of Op(A), such that for all feF, $\delta f > \rho f \ge 1$. Then the pair (A;F) is called an F-algebra or a y.y. algebra.

Let (A;F) be an F-algebra and let $\mathcal{P}=\mathcal{P}(F)$ be the subset of Op(A) which is defined inductively by:

(i) FU{1}⊆9,

(ii)
$$g,g_i \in \mathcal{G}$$
, $\delta g = \sum_{i=1}^{p} \rho g_i \implies g(g_1 \times \ldots \times g_p) \in \mathcal{G}$.

Every element of \mathcal{G} is called a polynomial operation on (A;F).

We will prove the following:

<u>Proposition 1.1.</u> Let $h\theta Op(A)$, $h\neq 1$. Then $h\theta \mathcal{P}(F)$ iff there exist $r, i_{i_1}, j_{i_2} \theta N^{1}$, $f_{\lambda} \theta F$, such that

$$h = f_0(1^{i_1} \times f_1 \times 1^{j_1})(1^{i_2} \times f_2 \times 1^{j_2}) \dots (1^{i_r} \times f_r \times 1^{j_r}). \tag{1.5}$$
(Here 1^t is an abbreviation for 1×1×...×1; 1° is the "empty

symbol". The right hand side of (1.5) will be called a "canonical form of h". More precisely, if (1.5) is satisfied, then the triple of sequences $(f_0^r; i_1^r; j_1^r)$ is called a canonical form of h.)

<u>Proof.</u> It is clear that if $g_1, g_2, g_3 \in Op(A)$ are such that $\delta g_1 = \rho g_2$, then the following equalities are true:

$$g_2 \times g_3 = (g_2 \times 1)^{\rho g_3} (1)^{\delta g_2} \times g_3$$
 (1.6)

and

$$g_1 g_2 \times g_3 = (g_1 \times 1^{\rho g_3}) (g_2 \times g_3),$$

 $g_3 \times g_1 g_2 = (g_3 \times g_1) (1^{\rho g_3}).$ (1.7)

¹⁾ N={0,1,2,...}

Let $h \in \mathcal{P}(F)$, $h \neq 1$. If $h \in F$, then we can put r = 0, $f_o = h$. Thus, we can assume that $h = g(g_1 \times \ldots \times g_p)$, where $g, g_v \in \mathcal{P}(F)$, $g \neq 1$ and $g_i \neq 1$ for some $i \in N_p^{-1}$. Moreover, we can also assume that g, and each g_v such that $g_v \neq 1$, admit the corresponding canonical forms. By a finite number of applications of (1.6) and (1.7) we can obtain a canonical form of h. \square

Proposition 1.2.
$$\mathcal{G}(F) = \mathcal{P}(\mathcal{P}(F))$$
. \square

An F-algebra (A;f) is called an F-<u>associative</u> iff any two polynomial operations in $\mathcal{P} = \mathcal{P}(F)$ with the same length and dimension are equal, i.e.

$$g,h\in\mathcal{G}$$
, $\delta g=\delta h$, $\rho g=\rho h \Longrightarrow g=h$. (1.8)

As a consequence of P.1.2 we have:

Proposition 1.3. A v.v. algebra (A;F) is an F-associative iff, for every $G \subseteq \mathcal{P}(F)$, $G \neq \{1\}$, (A;G) is a G-associative. \square

By the definition of a v.v. algebra (A;F) we have that $1 \notin F$ and $1 \in \mathcal{P} = \mathcal{P}(F)$.

Let
$$F_m = \{ f \in F \mid \rho f = m \}$$
, $\mathcal{P}_m = \{ h \in \mathcal{P} \mid \rho h = m \}$, $\iota F_m = \{ \iota f \mid f \in F_m \}$, $\iota \mathcal{P}_m = \{ \iota h \mid h \in \mathcal{P}_m \}$.

The following proposition is proved in [2]:

<u>Proposition 1.4.</u> ι \mathcal{P}_m is a subsemigroup of the additive semigroup of nonnegative integers (N;+) generated by the set ι F $_m$, i.e.

$$\iota \mathcal{C}_m = \langle \iota F_m \rangle$$
. \square (1.9)

Further on we will assume that $m \ge 2^2$ is a fixed integer and that of=m for every fcf. Thus F=F_m, $\mathcal{P}_m = \mathcal{P} \setminus \{1\} = \mathcal{P}'$,

$$_{1}Q' = \langle _{1}F \rangle.$$
 (1.9')

In this case we say that each F-algebra (A;F) is an m-<u>dimensional</u> F-algebra, or shortly an (F,m)-algebra.

¹⁾ $N_{\pm}=\{1,2,\ldots,t\}$, for every integer t>0.

If m=1, corresponding considerations are given, for example, in $\begin{bmatrix} 1 \end{bmatrix}$, $\begin{bmatrix} 6 \end{bmatrix}$.

An m-dimensional F-algebra which is an F-associative is called an m-dimensional F-associative or an (F,m)-associative (and also an m-dimensional v.v. associative).

Proposition 1.5. Let A be a nonempty set, K be a subsemigroup of (N;+), 0\$\notin K\$, \$m \geq 2\$ and \$F=\{f_k \mid f_k: A^{k+m} \rightarrow A^m, k \notin K\}\$. Then, the v.v. algebra (A;F) is an (F,m)-associative iff for every n,t6K and every \$\alpha\$ (0 \le \alpha \le n)\$ the following equality holds:

$$f_n(1^{\alpha} \times f_t \times 1^{n-\alpha}) = f_{n+t}. \tag{1.10}$$

Moreover, $\mathcal{P}(F)=F$.

Conversely, let (A;G) be a (G,m)-associative and let $H=\mathcal{P}(G)$, $K=\iota H\setminus \{0\}$. Then $H=\{f_k\mid f_k:A^{k+m}\rightarrow A^m,\ k\not\in K\}$ and (1.10) holds as well.

<u>Proof.</u> Let (1.10) be true and let $g,h\in\mathcal{P}(F)$, $\delta g=\delta h$. We will represent g and h in canonical forms:

$$g = f_{k_0} (1^{i_1} \times f_{k_1} \times 1^{j_1}) \dots (1^{i_r} \times f_{k_r} \times 1^{j_r}),$$

$$h = f_{k_0} (1^{p_1} \times f_{k_1} \times 1^{q_1}) \dots (1^{p_s} \times f_{k_s} \times 1^{q_s}),$$

where,

 $i_{\nu} + j_{\nu} = k_{o} + k_{1} + \dots + k_{\nu-1}, \quad p_{\lambda} + q_{\lambda} = \ell_{o} + \ell_{1} + \dots + \ell_{\lambda-1}$

for $1 \le v \le r$, $1 \le \lambda \le s$. Here, by $\delta g = \delta h$, we have

$$i_r + j_r + k_r + m = p_s + q_s + \ell_s + m$$

i.e.

$$k_0 + k_1 + \dots + k_r = \ell_0 + \ell_1 + \dots + \ell_s$$
 (1.11)

By successive applications of (1.10) we obtain

= f_{lo+l1}+...+l_s'

$$g = f_{k_0+k_1} (1^{2} \times f_{k_2} \times 1^{j_2}) \dots (1^{i_r} \times f_{k_r} \times 1^{j_r}) = \dots =$$

$$= f_{k_0+k_1} + \dots + k_r'$$

$$h = f_{\ell_0+\ell_1} (1^{p_2} \times f_{\ell_2} \times 1^{q_2}) \dots (1^{p_s} \times f_{\ell_s} \times 1^{q_s}) = \dots =$$

which by (1.11) implies that g=h, i.e. (A;F) is an (F,m)-associative. Clearly, if (A;F) is an (F,m)-associative, then (1.10) holds.

Now, let (A;G) be a (G,m)-associative, $H=\mathcal{P}(G)$, $K=\iota H\setminus\{0\}$. By (1.9) we have that K is a subsemigroup of (N;+) and by P.1.3, (A;F) is an (H,m)-associative. If keK, then there is an f_k eH such that ιf_k =k, i.e. H is as stated and, by the preceding, (1.10) holds. \square

m-dimensional v.v. associatives can be also observed as structures with a so called "poly-operation". Here, a (K,m)-operation is called a mapping $f:A^{K+m} \to A^{m}$, where A is a non-empty set, K is a subsemigroup of (N;+), $0 \not\in K$ and

$$A^{K+m} = \bigcup_{k \in K} A^{k+m}$$

(see also [3], §5). The restriction $f_k = f_{|A}k+m$ is a (k+m,m)- operation for every keK. We say that (A;f) is a $(K,m)-\underline{\text{groupoid}}$. A $(K,m)-\underline{\text{groupoid}}$ (A;f) is called a $(K,m)-\underline{\text{semigroup}}$ iff for every a_v,b_λ eA, for every n,teK and for every $\alpha:0\leq\alpha\leq n$, the following equality holds:

$$f(a_1^{\alpha}f(b_1^{t+m})a_{\alpha+1}^n) = f(a_1^{\alpha}b_1^{t+m}a_{\alpha+1}^n).$$
 (1.12)

By P.1.5 and (1.12) it follows that a (K,m)-groupoid (A;f) is a (K,m)-semigroup iff (A;f) is an (F,m)-associative, where

$$F = \{f_k \mid f_k \text{ is the restriction of f on } A^{k+m}, \text{ keK}\}.$$
 (1.13)

Therefore, we will not make any difference between (K,m)-semigroups and (F,m)-associatives, F being defined by (1.13). Hence, as usual, we can denote the poly-operation f by $[\]$, i.e. for every a CA, CA, we can write

$$f(a_1^{k+m}) = [a_1^{k+m}].$$

We note that every v.v. operation $f:A^n \to A^m$ can be considered as an m-tuple of n-operations (i.e. of (n,1)-operations) $f_i:A^n \to A$, $i\in N_m$, defined by:

$$f(a_1^n) = b_1^m \iff f_i(a_1^n) = b_i, i \in N_m.$$

We say that f_i is the i-th component of f.

Using components, v.v. associatives can be also considered as a variety of universal algebras and, therefore, the standard universal algebraic concepts such as: subalgebra, homomorphism, congruence etc. make sense for v.v. associatives. Namely, the equality (1.10) can be written componentwise in the following form:

$$f_{r,i}(x_1^{\alpha}f_{s,i}(y_1^{s+m})...f_{s,m}(y_1^{s+m})x_{\alpha+1}^r) = f_{r+s,i}(x_1^{\alpha}y_1^{s+m}x_{\alpha+1}^r)$$
or in a mixed (component-vector) form:

$$f_{r,i}(x_1^{\alpha}f_s(y_1^{s+m})x_{\alpha+1}^r) = f_{r+s,i}(x_1^{\alpha}y_1^{s+m}x_{\alpha+1}^r)$$
 (1.10")

where $f_{k,i}$ denotes the i-th component of the operation f_k .

To every poly-operation [] we can associate <u>component</u> mappings [];: $A^{K+m} \rightarrow A$, defined by:

$$[a_1^p] = b_1^m \iff [a_1^p]_1 = b_1, i \in N_m.$$

Here the restrictions of $[]_i$ over A^{k+m} , for every keK, are usual k+m-operations.

§ 2. VECTOR VALUED ASSOCIATIVES AND VECTOR VALUED SEMIGROUPS

Vector valued associatives are closely related to the vector valued semigroups. We will consider here this connection.

First we note that an (F,m)-associative (A;F) depends in fact on the set J=1F of indices of the operations in F, as it is seen by (1.9'). Therefore an (F,m)-associative will be also called a (J,m)-associative and will be denoted by (A;J). Moreover, if $K \leq (N;+)$ (i.e. K is the subsemigroup of (N;+)) generated by J, K=<J>, then an F-algebra (A;F) is a (J,m)-associative iff the \mathcal{P}' -algebra (A; \mathcal{P}') is a (K,m)-associative (see P.1.2).

Henceforth, no difference will be made between (A;F) and $(A; \mathcal{P}')$, i.e. we will consider any (J,m)-associative as a (K,m)-associative, where K=<J>. Also, if K=<L>, every (K,m)-associative will be considered as an (L,m)-associative (see P.1.3).

Therefore, we can consider only (K,m)-associative, where K is a subsemigroup of (N;+), $0 \notin K$. In that case, if $M \leq K$, then a

given (K,m)-associative (A;K) induces a corresponding (M,m)-associative (A;M) which is called an M-restriction of (A;K). Thus:

Proposition 2.1. If $L \le K \le (N; +)$, then an L-restriction of every (K, m)-associative is an (L, m)-associative. \square

We will often use the notation $\left[x_1^{k+m}\right]^k$ instead of $g(x_1^{k+m})$, where g is a fixed polynomial operation with the index k=ig.

Clearly, if (A;J) is a (J,m)-associative, then for any keJ, $(A;[\]^k)$ is an (m+k,m)-semigroup, which is said to be induced by the given (J,m)-associative.

On the other hand, every (m+d,m)-semigroup (A;[]) can be considered as a (K,m)-associative, where $K=\{sd\mid s\geq 1\}$ (i.e. $K=\langle d\rangle$) is the semigroup generated by d. Namely setting

$$(\forall k \in K) [x_1^{k+m}] = [x_1^{k+m}],$$

we obtain by the general associative law ([3]) that (A; []) is a (K,m)-associative. (Thus an (m+d,m)-semigroup is in fact a $(\langle d \rangle, m)$ -associative.)

Let $K \le L \le (N;+)$. A (K,m)-associative $\underline{A}=(A;[])$ is called a (K,m)-subassociative of an (L,m)-associative $\underline{B}=(B;[])$ iff $A \subseteq B$ and

$$(\forall a_{y} \in A) (\forall k \in K) [a_{1}^{k+m}] = [a_{1}^{k+m}].$$
 (2.1)

We will also say that \underline{B} is an <u>extension</u> of \underline{A} . In particular, if $L=\langle d \rangle$, then (A;[[]) is called a (K,m)-<u>subassociative</u> of the (m+d,m)-semigroup (B;[]); in this case $d \mid GCD(K)$.

The following statements are proved in [2]:

Proposition 2.2. A (K,m)-associative (A;[[]) is a (K,m)-subassociative of an (m+d,m)-semigroup iff (A;[]) is a (K,m)-subassociative of an (m+1,m)-semigroup. \square

Proposition 2.3. A (K,m)-associative is a (K,m)-subassociative of an (m+1,m)-semigroup iff d=GCD(K)GK. \square

The next example shows that if $d=GCD(K) \notin K$, the class of (K,m)-subassociatives of (m+1,m)-semigroups is a proper subclass of the class of (K,m)-associatives.

Example 2.4. ([2]). Let A={a,b,c}, a\neq b\neq c\neq a\$ and let J be a set of positive integers such that d=GCD(J)\netilde{\varphi}J\$. If p is the least element of J, then the set L=J\{\alpha p \ | \alpha \ge 1\}\$ is nonempty; let q be the least element of L.

Define a set $F=\{f_k \mid k \in J\}$ of vector valued operations on A in the following way:

$$(\forall k \in J) \delta f_k = m+k, \quad \rho f_k = m \text{ and }$$

$$f_k(x_1^{m+k}) = \begin{cases} b^m, & \text{if } k=q \text{ and } x_1^{m+k} = c^{m+k} \\ a^m, & \text{otherwise} \end{cases}$$

Then: a) (A;F) is a (J,m)-associative and b) this (J,m)-associative is not a (J,m)-subassociative of an (m+1,m)-semigroup.

We will state here two problems.

Let L, K be subsemigroups of (N;+) such that LCK.

(i) Under what conditions an (L,m)-associative is an Lrestriction of a (K,m)-associative?

Particularly, under what conditions an (L,m)-associative is an L-restriction of a vector valued semigroup?

(ii) Under what conditions an (L,m)-associative can be extended to a (K,m)-associative?

Specially, under what conditions an (L,m)-associative has an extension which is an L-restriction of a vector valued semi-group?

§3. CANCELLATIVE VECTOR VALUED ASSOCIATIVES

We will consider here some properties of cancellative v_*v_* associatives which are generalizations of the corresponding properties for J-associatives ([1], [6]).

A (K,m)-associative $\underline{A}=(A;[\])$ is said to be \underline{left} $\underline{cancella-tive}$ iff for every keK and for every a_{v} , x_{j} , y_{p} eA

$$[a_1^k x_1^m] = [a_1^k y_1^m] \implies x_1^m = y_1^m$$
 (3.1)

and right cancellative iff

$$[x_{*}^{m}a_{*}^{k}] = [y_{*}^{m}a_{*}^{k}] \implies x_{*}^{m} = y_{*}^{m}.$$
 (3.2)

A (K,m)-associative is <u>cancellative</u> iff it is left and right cancellative.

<u>Proposition 3.1.</u> If $\underline{A}=(A;[\])$ is a (K,m)-associative, then the following conditions are equivalent:

- (i) A is cancellative.
- (ii) For every k&K, i&N $_{k+1},$ $a_{_{\rm V}},x_{_{\rm A}},y_{_{\rm H}}$ &A, the following implication is true

$$\left[a_{1}^{i-1}x_{1}^{m}a_{i}^{k}\right] = \left[a_{1}^{i-1}y_{1}^{m}a_{i}^{k}\right] \implies x_{1}^{m} = y_{1}^{m} \tag{3.3}$$

- (iii) There exists a kGK, $k\geq 2$, such that for any $a_{_{\rm V}}$, $x_{_{\rm A}}$, $y_{_{\rm H}}$ ϵ A the implications (3.1) and (3.2) hold.
- (iv) There exists a kGK, $k \ge 2$, and an $i \in \mathbb{N}_k$, $i \ge 2$, such that for every $a_{_{\mathbb{N}}}, x_{_{\mathbb{N}}}, g_{_{\mathbb{N}}} \in A$ (3.3) holds.

 $\begin{array}{c} \underline{\text{Proof}}. \ (\text{i}) \implies (\text{ii}). \ \text{Assume that} \ \underline{A} \ \text{is cancellative and keK,} \\ i\text{eN}_{k+1} \ \text{are such that} \ \big[a_1^{i-1}x_1^ma_1^k\big] = \big[a_1^{i-1}y_1^ma_1^k\big]. \ \text{Then we have} \\ \big[a_1^ka_1^{i-1}x_1^ma_1^ka_1^{i-1}\big] = \big[a_1^ka_1^{i-1}y_1^ma_1^ka_1^{i-1}\big], \ \text{i.e.} \ \big[a_1^ka_1^{i-1}\big[x_1^ma_1^ka_1^{i-1}\big]\big] = \\ = \big[a_1^ka_1^{i-1}\big[y_1^ma_1^ka_1^{i-1}\big]\big]. \ \text{Thus, by (3.1) we obtain first} \end{array}$

$$[x_1^m a_i^k a_1^{i-1}] = [y_1^m a_i^k a_1^{i-1}],$$

and by (3.2), $x_1^{m} = y_1^{m}$.

It is clear that (ii) \Longrightarrow (iii). We will prove first that (iii) \Longrightarrow (iv), and then (iv) \Longrightarrow (i).

Let $k \ge 2$ be a given fixed element of K, and let (3.1) and (3.2) be true. If $i \ge 2$ is such that $[a_1^{i-1}x_1^ma_1^k]=[a_1^{i-1}y_1^ma_1^k]$, then $[a_1^ka_1^{i-1}[x_1^ma_1^ka_1^{i-1}]]=[a_1^ka_1^{i-1}[y_1^ma_1^ka_1^{i-1}]]$ implies, by (3.1) and (3.2), that $x_1^m=y_1^m$.

It remains only to prove (iv) \Longrightarrow (i). Assume that keK, $k \ge 2$, ieN $_k$, $i \ge 2$ are such that (3.3) holds, for any $a_{_{V}}, x_{_{\lambda}}, y_{_{\mu}}$ eA. Then, by ([3], T.5.7) the (m+k,m)-semigroup induced by \underline{A} is cancellative. Let s be an arbitrary element of K. Then, by ([3], T.5.7), the (m+sk,m)-semigroup is cancellative as well, and this implies that the corresponding (m+s,m)-semigroup induced by \underline{A} is cancellative. \square

We note that in the same manner as in ([3], P.5.12), the following implication could be proved:

Proposition 3.2. If $A=(A;[\])$ is a cancellative (K,m)-associative, then for all $i,j,p,q,r\geq 0$, such that $i+j+p-m,q+j+r-m\theta K$,

$$[a_1^i x_1^j b_1^p] = [a_1^i y_1^j b_1^p] \implies [c_1^q x_1^j d_1^p] = [c_1^q y_1^j d_1^p],$$

where $a_{y}, b_{y}, c_{y}, d_{y}, x_{y}, y_{y} \theta A$. \square

§4. SURJECTIVE VECTOR VALUED ASSOCIATIVE

A (K,m)-associative A=(A;[]) is surjective iff

$$[A^{K+m}] = A^m. \tag{4.1}$$

(Here: $[A^{K+m}] = \{[x^{k+m}] \mid x_v \in A, k \in K\}.$)

<u>Proposition 4.1.</u> If $\underline{A}=(A;[\])$ is a (K,m)-associative, then the following statements are equivalent:

(i)
$$[A^{k+m}] = A^m$$
 for every keK;

(ii)
$$[A^{k+m}] = A^m$$
 for some k&K

(iii) A is surjective.

<u>Proof.</u> Clearly, we have (i) \Longrightarrow (ii), (ii) \Longrightarrow (iii), and, thus, we have to show that (iii) \Longrightarrow (i). Since the subsemigroup K of (N;+) is finitely generated ([5]), let $\{k_1,k_2,\ldots,k_r\}$ be a generating subset of K. Then, assuming A is surjective, it is sufficient to show that (VieN_r) $[A^{k_1+m}]=A^m$. (Namely, if $A^{k_1+m}=A^m$, for every ieN_r, and k is an arbitrary element of K, then $A^{k_1+\alpha_2}=A^{k_2+\ldots+\alpha_r}=A^{k_r}=A^{k_1+\alpha_2}=A^{k_1$

$$[A^{k+m}] = [A^{\alpha_1} k_1 + \dots + \alpha_r k_r + m] = [[A^{k_1} + m] (\alpha_1 - 1) k_1 + \dots + \alpha_r k_r] = [A^{m} A^{(\alpha_1 - 1) k_1 + \dots + \alpha_r k_r}] = A^{m}.)$$

Let $k_{\underline{i}}$ be a fixed element of $\{k_1,k_2,\dots,k_r\}$. We will prove that $[A^{\underline{i}+\underline{m}}]=A^{\underline{m}}.$ If $a_1^{\underline{m}} \in A^{\underline{m}}$, then by the surjectivity of \underline{A} , there exist $b_i \in A$, such that $a_1^{\underline{m}}=[b_1^{}, \dots^{\nu_1\,k_1+\dots+\nu_r\,k_r+\underline{m}}]$, where $\nu_j \geq 0$, $\nu_1+\dots+\nu_r \geq 0.$ By the same reason there exist $c_i \in A$ such that $b_1^{\underline{m}}=[c^{\lambda_1\,k_1+\dots+\lambda_r\,k_r+\underline{m}}], \text{ where } \lambda_j \geq 0, \ \lambda_1+\dots+\lambda_r \geq 0, \text{ and thus}$ $a_1^{\underline{m}}=[c^{\lambda_1\,k_1+\dots+\lambda_r\,k_r+\underline{m}}, \dots^{\lambda_i\,k_1+\dots+\lambda_r\,k_r+\underline{m}}, \dots^{\lambda_i\,k_1+\dots+\lambda_r\,k_r+\underline{m}}].$

Continuing this procedure one obtains that

$$a_1^m e[A^{\epsilon_1 k_1 + \dots + \epsilon_r k_r + m}],$$

where at least one ϵ_s is such that $\epsilon_s = k_i + p$, $p \ge 0$. Hence,

$$\varepsilon_{i}k_{i} + \varepsilon_{s}k_{s} = k_{i} + (\varepsilon_{i} + k_{s} - 1)k_{i} + k_{s}p,$$

i.e. for some keK we have

$$\varepsilon_1 k_1 + \dots + \varepsilon_r k_r + m = k_1 + k + m$$
.

Therefore

$$a_{1}^{m}e[A^{k_{1}}[A^{k+m}]] \subseteq [A^{k_{1}}A^{m}] = [A^{k_{1}+m}],$$
 i.e. $A^{m} \subseteq [A^{i_{1}+m}]$. Obviously, $[A^{i_{1}+m}] \subseteq A^{m}$, and so $[A^{i_{1}+m}] = A^{m}$. \square

Here we note that a direct product of any nonempty collection of surjective (K,m)-associatives is a surjective (K,m)-associative. Clearly, a homomorphic image of a surjective (K,m)-associative is a surjective (K,m)-associative.

A (K,m)-associative $\underline{A}=(A;[\])$ is called a (K,m)-group iff for every keK, the (m+k,m)-semigroup $(A;[\]^k)$ is an (m+k,m)-group.

The notion of an (m+k,m)-group is defined, for example, in [3] and it is shown there that every (m+k,m)-group is cancellative. Thus every (K,m)-group is a surjective and cancellative (K,m)-associative. We will show the following:

Proposition 4.2. Let K be a subsemigroup of (N;+) and d=GCD(K). Then a (K,m)-associative is a (K,m)-group iff it is a K-restriction of an (m+d,m)-group.

<u>Proof.</u> Let $\underline{A}=(A;[\])$ be an (m+d,m)-group. Let $[\]^S$ be the (m+sd,m)-operation induced by $[\]$. The (<d>,m)-associative induced by \underline{A} is a (<d>,m)-group, and thus, for all $s\geq 1$ $(A;[\]^S)$ is an (m+sd,m)-group. Then the K-restriction $(A;\{[\]^S \mid sdeK\})$ is a (K,m)-group.

Suppose now that $\underline{A}=(A;[[\]])$ is a (K,m)-group. We first note that there exists peK such that

$$(x \in K \land x \ge p) \iff (\exists r \in N) x = p + rd$$

(see [5]). We choose p to be the least element with the above property, and in this case the subset $K_*=\{p,p+d,p+2d,...\}$ of K is called the regular part of K.

We will define an (m+d,m)-operation [] on A as follows.

Let $a_1^{m+d} \in A^{m+d}$ and $0 \le i \le d$. By P.4.1 there exist $x_v \in A$ such that $a_{i+1}^{i+m} = \left[x_1^{m+k}\right]$, k,k+deK, and we put

$$[a_1^{m+d}] = [a_1^i x_1^{m+k} a_{i+m+1}^{m+d}].$$

The operation [] is well defined, since for all i, $0 \le i \le d$, we have:

$$[y_{1}^{m+t}a_{m+1}^{m+d}] = [a_{1}^{i}z_{1}^{m+s}a_{i+m+1}^{m+d}]$$
 (4.2)

where $a_1^m = [y_1^{m+t}]$, $a_{1+1}^{i+m} = [z_1^{m+s}]$, t,s,t+d,s+deK; y_v, z_v eA. Namely, for any c,eA,

$$= [c_1^p a_1^i [z_1^{m+s}] a_{i+m+1}^{m+d}] = [c_1^p a_1^i z_1^{m+s} a_{i+m+1}^{m+d}],$$

which imply (4.2) by the left cancellativity of A.

Now we will show that the (m+d,m)-operation $[\]$ is associative. Namely,

$$[[a_{1}^{m+d}]b_{m+1}^{m+d}] = [[a_{1}^{i}y_{1}^{p+m}a_{m+i+1}^{m+d}b_{m+1}^{m+d}],$$

where $a_{i+1}^{i+m} = [y_1^{m+p}],$

$$[a_{1}^{i}[a_{1+1}^{m+d}b_{m+1}^{m+i}]b_{m+i+1}^{m+d}] = [a_{1}^{i}y_{1}^{m+p}a_{m+i+1}^{m+d}b_{m+1}^{m+i}b_{m+i+1}^{m+d}]$$

for i: $0 \le i \le d$, and thus

$$[[a_1^{m+d}]b_{m+1}^{m+d}] = [a_1^{i}[a_{i+1}^{m+d}b_{m+1}^{m+d}]b_{m+i+1}^{m+d}].$$

It is clear that each (k+m,m)-operation $(k \in K)$ of (A;[]) is induced by the operation []. It remains to show that

$$(\forall a_1^d \in A^d, b_1^m \in A^m) (\exists x_1^m, y_1^m \in A^m) [a_1^d x_1^m] = b_1^m = [y_1^m a_1^d].$$
 (4.3)

Let $c_1, ..., c_p$ be fixed elements of A. Then the equations $\left[\!\!\left[a_1^d c_1^p u_1^m\right] = b_1^m \text{ and } \left[\!\!\left[v_1^m c_1^p a_1^d\right] = b_1^m \right] \right]$

have solutions on u_1^m, v_1^m in the (K,m)-group (A;[]) and then

$$[c_1^p u_1^m] = x_1^m, [v_1^m c_1^p] = y_1^m$$

are solutions of the equations (4.3). Hence (A;[]) is a (d+m,m)-group. \Box

§5. FREE VECTOR VALUED ASSOCIATIVES

The fact that the class of (K,m)-associatives can be characterized as a variety of universal algebras defined by a set of identities implies that every non-empty set B is a basis of a free (K,m)-associative. Here we give a convenient description of free (K,m)-associatives, following the ideas of [4].

First, we introduce some concepts and notations.

If X is a nonempty set, then X^+ denotes the set of all finite sequence of elements of X, i.e. $X^+ = \bigcup X^{\dot{1}}$. The set X^+ with the operation concatenation of sequences is a free semigroup with a basis X. If 1 denotes the empty sequence, then $X^* = X^+ \cup \{1\}$ is a free monoid with a basis X. If $K \subseteq N$, then we put $X^{K+m} = \bigcup X^{K+m}$.

Now let B be a nonempty set, K a subsemigroup of (N;+), $0 \not\in K$, and $m \ge 2$. We define a sequence of sets B_0, B_1, B_2, \ldots in the following inductive way:

$$B_0 = B, B_{p+1} = B_p \cup N_m \times B_p^{K+m}$$
 (5.1)

and we put

$$\overline{B} = \bigcup_{p \ge 0} B_p. \tag{5.2}$$

Note that $u \in \overline{B}$ iff $u \in B$ or u = (i, x), for some $i \in N_m$ and $x \in \overline{B}^{K+m}$.

We define a mapping from \overline{B}^+ into N, named a <u>norm</u> and denoted by $| \cdot |$, in the following inductive way:

beb
$$\Longrightarrow$$
 $|b| = 1;$
 $u = (i,x)e\overline{B} \Longrightarrow |u| = |x| + 1;$
 $x,ye\overline{B}^+ \Longrightarrow |xy| = |x| + |y|.$

An element $ue\overline{B}$ is said to be <u>reducible</u> if u=(i,x) and $x=u_1^{k+m}$, $u_{\nu}e\overline{B}$, kek, u_{λ} is reducible for some λ , or $x=x'(1,y)\ldots(m,y)x''$, where $x'x''e\overline{B}^+$, $(1,y),\ldots,(m,y)e\overline{B}$.

If $ue\overline{B}$ is not reducible, then we say that u is $\underline{reduced}$. The set of all reduced elements of B will be denoted by R.

Using induction on norm, we define a mapping $\psi:\overline{B}\to R$ which we will call a reduction.

(i) uer
$$\Longrightarrow \psi(u)=u$$
.

Let $u \in \overline{B} \setminus R$ and suppose that for every $v \in \overline{B}$, such that |v| < |u|, $\psi(v)$ is well-defined element of R and the following condition is satisfied:

$$\psi(v) \neq v \iff |\psi(v)| \iff v \in \overline{B} \setminus R.$$
 (5.3)

Assume that $u=(i,u_i^{k+m})$, where $u_{\lambda} \in \overline{\mathbb{B}}$, kek. Then $|u_j| < |u|$ for every $j \in \mathbb{N}_{k+m}$, and by the inductive hypothesis, $\psi(u_j) \in \mathbb{R}$ is defined and (5.3) is satisfied for $v=u_j$.

If $x = u_1^D$, $u_v \in \overline{B}$ and $\psi \left(u_v \right)$ are defined, then we will write

$$\psi(x) = \psi(u_1) \dots \psi(u_p).$$
 (5.4)

If $\psi(u_i) \neq u_i$ for some j, then we set

(ii)
$$\psi(u) = \psi(i, \psi(u_1^{k+m}))$$
.

Here, $\psi(u)$ is well-defined by (ii) since, by (5.3), $|\psi(u_j)| < |u_j|$ and thus

If we have $\psi(u_j)=u_j$ for every j, then by (5.3) every u is reduced and thus $u_1^{k+m}=x'(1,y)...(m,y)x$ for some x'x eB^{+j} . Assume that x' has the least possible norm. Then we put

(iii)
$$\psi$$
 (u) = ψ (i, x'yx").

Since the choice of x' is unique and |x'yx''| < |x'(1,y)...(m,y)x''| = |u|, it follows by the inductive hypothesis that $\psi(u)$ is well defined by (iii). Moreover, (5.3) is satisfied if we replace v by u.

We will state some properties of the reduction ψ .

Proposition 5.1. The following statements are true:

- $(\alpha) \psi(u) \neq u \iff |\psi(u)| < |u| \iff u \in \overline{B} \backslash R.$
- (b) $\psi(\psi(u)) = \psi(u)$, for every $ue\overline{B}$.
- (c) $\psi(i,xyz) = \psi(i,x\psi(y)z)$, for every $xyz\theta \overline{B}^{K+m}$ and every $y\theta \overline{B}$.
- (d) $\psi(i,x(1,y)...(m,y)z)=\psi(i,xyz)$, for every $xyz,ye\overline{B}^{K+m}$.

<u>Proof.</u> (a) is proved in the above definition of ψ . This, and the fact that $\psi(u)\in\mathbb{R}$ implies (b).

To prove (c) we first note that we can assume that $\psi(y)\neq y. \text{ Let } x=u_1^\alpha, \ z=v_1^\beta, \text{ where } u_{_{_{\boldsymbol{v}}}}, v_{_{\lambda}}\in \overline{\mathbb{B}}, \ \alpha,\beta\geq 0. \text{ If } \\ \psi(u_{_{_{\boldsymbol{v}}}})=u_{_{_{\boldsymbol{v}}}}, \ \psi(v_{_{\lambda}})=v_{_{\lambda}} \text{ for every pair } (v,\lambda), \text{ then (c) is true by } \\ (ii), \text{ and thus we can assume that there is a pair } (v,\lambda) \text{ such that } \psi(u_{_{\boldsymbol{v}}})\neq u_{_{\boldsymbol{v}}} \text{ or } \psi(v_{_{\lambda}})\neq v_{_{\lambda}}. \text{ If } x'=\psi(u_{_{\boldsymbol{v}}})\psi(u_{_{\boldsymbol{v}}})...\psi(u_{_{\boldsymbol{\alpha}}}), \\ z'=\psi(v_{_{\boldsymbol{v}}})...\psi(v_{_{\boldsymbol{\beta}}}), \text{ then we have } |x'z'| < |xz|, \text{ and (i) and induction on norm imply:}$

```
\psi(i,xyz) = \psi(i,x'\psi(y)z') = \psi(i,x'yz') = \psi(i,xyz).
```

It remains to show (d). Let $\psi(xyz)=xyz$ and let x has the least possible norm. Then (d) follows by (iii). If $\psi(xyz)\neq xyz$, then (a) implies that $\psi(x)\psi(y)\psi(z)$ has smaller norm than xyz; then by (ii) and (c), using induction on the norm, we have:

```
 \psi(i, xyz) = \psi(i, \psi(x)\psi(y)\psi(z)) = \psi(i, \psi(x)(1, \psi(y))...(m, \psi(y))\psi(z)) = 
 = \psi(i, \psi(x)\psi(1, \psi(y))...\psi(m, \psi(y))\psi(z)) = 
 = \psi(i, \psi(x)\psi(1, y)...\psi(m, y)\psi(z)) = 
 = \psi(i, x(1, y)...(m, y)z).
```

Now, consider the case $\psi(xyz)=xyz$ when the norm of x is not the least possible. But then $x=x'(1,t)\dots(m,t)x''$, where x' has the least possible norm and then by (iii) and the inductive hypothesis, we have:

$$\psi(i,x'(1,t)...(m,t)x''(1,y)...(m,y)z) =$$

$$= \psi(i,x'tx''(1,y)...(m,y)z) = \psi(i,x'tx''yz) =$$

$$= \psi(i,x'(1,t)...(m,t)x''yz) = \psi(i,xyz). \square$$

The set R of all reduced elements of $\overline{\mbox{\bf B}}$ can be written now in the form

$$R = \{u \in \overline{B} \mid \psi(u) = u\}.$$

Let L be a subsemigroup of K. We define a subset R_L of R by induction on norm as follows. First, $B \subseteq R_L$, i.e. |u| = 1 implies $u \in R_L$. If $u = (i, u_1^{k+m}) \in R$ then

$$\text{uer}_{L}$$
 iff keL and $\text{u}_{\nu}\text{eR}_{L}$ for every ν .

Thus, $R_K = R$.

Define in R a (K,m)-operation [] by:

$$(\forall k \in K) (\forall u_{v_{1}}, v_{\lambda} \in R) ([u_{1}^{k+m}] = v_{1}^{m} \iff (\forall i \in N_{m}) v_{1} = \psi(i, u_{1}^{k+m})).$$
 (5.5)

Proposition 5.2. The (K,m)-groupoid (R;[]) is a (K,m)-associative. For every subsemigroup L of K, R_L is an (L,m)-sub-associative of (R;[]) and (R_L ;[]) is generated by B.

<u>Proof.</u> First, by P.5.1 (b) it follows that [] is a well defined (K,m)-operation on R. Also by P.5.1 it can be easily shown that (R;[]) is a (K,m)-associative.

In addition, the definitions of [] and R_L imply that if u CR_L for every $\text{vEN}_{m+\ell}$, where LEL, and $[\text{u}_1^{\ell+m}] = \text{v}_1^m$, then $\text{v}_{\text{v}} \in \text{R}_L$ for every LEN_m . Thus, R_L is an (L,m)-subassociative of (R;[]).

The conclusion that B is a generating subset of $\mathbf{R}_{\underline{\mathbf{L}}}$ can be also obtained in a usual obvious way. \Box

<u>Proposition 5.3.</u> Let L and K be as above and let (A; []) be an (L,m)-associative. If $\xi:b\to \overline{b}$ is a mapping from B into A, then there exists a unique homomorphism $\overline{\xi}:(R_L;[])\to (A;[])$ which is an extension of ξ .

$$\overline{\xi}(u) = a_i$$
, where $[b_1^{\ell+m}] = a_1^m$ in $(A; [])$.

Therefore, we have an extension $\overline{\xi}:R_L\to A$ of $\overline{\xi}$, and $\overline{\xi}:(R_L;[\])\to (A;[\])$ is a homomorphism by the definition of $[\]$ and $\overline{\xi}$. \square

As a corollary from P.5.2 and P.5.3 we obtain the following

Theorem 5.4. The (K,m)-associative $(R;[\])$ is a free (K,m)-associative with a basis B. If $(F;[\])$ is a free (K,m)-associative with a basis B and L is a subsemigroup of K, then the (L,m)-subassociative $(G;[\])$ generated by B is a free (L,m)-associative with a basis B. \square

Finally, we have the following

Theorem 5.5. Every free (L,m)-associative is cancellative.

<u>Proof.</u> If K is the set of all positive integers, then a (K,m)-associative is essentially the same as an (m+1,m)-semigroup. It is shown in [3] (T.6.9) that every free v.v. semigroup is cancellative, and therefore every free (L,m)-associative is cancellative as an (L,m)-subassociative of a cancellative (m+1,m)-semigroup. \square

REFERENCES

- [1] N. Celakoski; On semigroup associatives, Maced. Acad. Sci. and Arts, Contributions IX 2, Sect. Nat.-Math. Sci. (1977), 5-19.
- [2] N. Celakoski, B. Janeva; Vector valued associatives, Proc. Conf. "Algebra and Logic", Cetinje 1986, 15-21.
- [3] G. Čupona, N. Celakoski, S. Markovski, D. Dimovski; Vector valued groupoids, semigroups and groups (this volume).

- [4] D. Dimovski; Free vector valued semigroups, Proc. Conf. "Algebra and Logic", Cetinje 1986, 55-62.
- [5] Д. Димовски; Адитивни полугрупи на цели броеви, МАНУ, Прилози IX 2 (1977), 21-26.
- [6] f. Чупона; Асоцијативи со кратење, Год. зб. ПМФ Скопје, 19 (1969), 5-14.