KOSTADIN TRENCEVSKI

SOME EXAMPLES OF FULLY COMMUTATIVE
VECTOR-VALUED GROUPS

Abstract Fully commutative (nm)-groupoids (quesigroups,
semigroups, groups) are considered in [2] and [3). The following results are
shown in [3]. Ifk > 1, m > 2, then: (i) a fully commutative (m <+ k, m)-
group exists on a non-empty finite set Q iff O contains at most two elements;
(ii) every infinite set Q is the carrier of a fully commutative (m--k, m)-group.
In [4] a convenient description of the free fully commutative (m-+k, m)-
groups is given. We also note that, until now, free fully commutative
(m-+k, m)-groups are the unique known examples of such structures.
In this paper we give some natural examples of fully commutative
(m-+k,m)-groups on C (=the field of complex numbers), and examine some
of their properties. We note that C canbe replaced by an arbitrary
algebraically closed field.

§1. Introduction

Let G be an arbitrary set. In the j-th Cartesian power G/ of G we
define a relation ~ as follows:

Cets o oo Xp) ~ (1ye..3p9)
iff there exists a permutation ~ in the set {1, ... j} such that y, = x., for
k=1, ... . The set G//~ we shall denote further by G%, and the elements
of that set we shall denote as (a,,...,a)) = @, for each number 7.

The following definition of fully commutative groups is given in [3),
and it is a continuation of the research into vector-valued algebraic struc-
tures (see for example [1]).

The notion of the fully commutative (n, m)-groupoid is defined in
[2]. Namely, if n, m are positive integers and Q is a non-empty set, then every
mapping [ ]: Q™ —Q™ is called a fully commutative (n, m)-groupoid
on Q. A fully commutative (m-k, m)-groupoid (Q; [ 1) is called a fully
commutative (m--k, m)-group iff the following two axioms are satisfied

(i) (associativity) [[x7"*] xmtZ,] = [xi[xiir¥] 22 %, 1] for each
x€G(GELL ..., mi2k}) and for each i ¢ {1,2,... k};

(ii) (solvability) For each a,,....a,, b,,....,b,C G, there exist
unique X7 ¢ Gem such that

[x7'55] =af".
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Further on, “(n, m)-groupoid*, *’(n, m)-group* will mean **fully com-
mutative (n, m)-groupoid* and fully commutative (n, m)-group®, respectively.
Let P, be the set of canonical polynomials of degree n on C, i.e.

P, ={t"+a, " +. . tajt+ay | ag€C, i=0,1,..., n—I1}.

The fact that C is an algebraically closed field implies that there exists a
bijection between the mappings from P, into P, and (n, m)-groupoids
on C. Namely, if

@it a, "l dattag - ™4™l Lb it by,
@ :(t—z))...(t—z,) = (t—ry) ... (t—r,)

we can define an (n, m)-groupoid [ Jo by [z1]p = r{, and inversely
if [ ]:C® — C™ is an (n, m)-groupoid then [ ] induces a mapping
from P, into P,. Now it is easy to sec that [ ] is an associative (m-+k, m)-
groupoid on C, iff the polynomial (#—r,) ... (#—r,) is invariant under
each permutation of the numbers z,, . . . ,Z, sz, Where r{" = [ [Z]¥2nt2% 1l
Namely,

(t_rl) “an (r__‘rm) = 4" ("I" [ (f_"'z l) . (r_zm'i-k)] ('t'_'zm-H:‘Fl)' . ‘(t_zm'l'sk));

and hence [ ] is associative iff the polynomial

Y [(t—2z1) . . . (t—2p1) ] (t—Zpips1) - - - (—Zpt2p))

is invariant under each permutation of the numbers z,, . . . ,z,, 40 -
Using the above connection between polynomials on C and (n, m)-

groupoids on C, we shall construct in the following section some classes
of (m-+k, m)-groups.
§2. Examples
Example 1. The mapping
i pmtllg mt | da,t+tap — P, ™ L Hastta,
induces an (m--1,m)-group on C. In order to prove the axiom of associa-

tivity, we notice that ¢ can be extended over |J P, as follows:
n=0

b (I A Gy T 0)) = 1 gy 1Py,

and Y (p) = p if deg (p) < m. Now it is obvious that ¢ (p, - ps) = ¢ (U(p,) -
Y(pe)) and Y (Y (p)) = (p). Thus we obtain

Y@ [(t—2) - .. (—2Zps2) ] (—Zpirsd) - -« (—Zpiop) =
=0 I(—2z) - (—Zpi) 19 [ (t—Zpipsd) - - - —240) ] )=
=9((t—z) ... (t—zp+ar))
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and this polynomial is invariant under each permutation of the numbers
Zyy v v o Tt 2k

The axiom of associativity can be also verified in this way. Let us
suppose for example that m=2 and k=1. Then

l!) (t* +agra+a1t+ao) — t2+agr+ aq,
and hence
Z1+Zy+23 = Wy+Ws

Z,2 = (W:.We) &
[ 1 323] ( i 2) { 2122—1—21234‘2223'—:“?1‘92 .

Further, if [z4z423) = (Wy,we). we obtain [[z,2,25] z,] = [wywez] = (a.b)
where a and b satisfy the following conditions

a+b = wy+wetzs = 21 +2+23+2
and
ab = wiWo w124 +WeZy = 2,Z5+2125+ 2023+ 2124202412524

Since a-+b and ab are invariant under each permutation of the numbers
Z,,25,23 and z,, the associative law is satisfied.

In order to verify the axiom of solvability, let us suppose that
Wiye.rs Wy Z€ C are given numbers. We should show the existence of

Zy, -+ 2y € C such that [Z}'z]=w{. First, let a,, ... ,a, € C be such that
g 11 tagtta, = (t—wy) .. (E—w,),

and then @, can uniquely be determined such that z, is a root of the poly-
nomial M+14a, tm-+. . . tat+a, If z™ is the complte sequence of
roots of this polynomial, then we have [zg] = w{". This implies that
(C, [ D is an (m+1, m)-group. )

This (m-+1, m)-group, induces an (m-+k, m)-group on C. The cor-
responding mapping is:

§ (IMHota, e (fPHRT Lagta) = PG PTG

In special case when m=k=1, we obtain [z,z,] = z;+2,, and that is why
the above (m-k,m)-group is called additive, denoted by [ ];.

The proofs in the following examples are analogous, and we shall
omit them.

Example 2. Let «€C, 0. The mapping
:milig tmt. . @y ™ +q, " ... ta

induces an (m--1, m)-group on C. This group induces an (m--k, m)-group
on C, and:

ll): !”'+"+am.,.t+1!‘“+"'_3—|—. . -+au — !”'—!—a,,,.;.k_lf"‘_l +- . .+ag+km
is the corresponding polynomial mapping.
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Example 3. Let 8 C, 850. The mapping
§milpg mt | ay > t™(a, ™14, | +a)B

induces an (m+-1,m)-group on C\ {0}. This group induces an (m--k, m)-group
on C/{0}, and the corresponding polynomial mapping is

goambkpg, o mely gy > M BKE,, ™1 tay).

Spzcially i f3=—1, we obtain an (m-+k, m)-group on C\ {0}, which
is a generalization of the usual multiplication. Indeed, if m=k=1 we
obtain [z,z,] =z,-z,. More generzlly, if {z}"*"]:w’{', then

21-22. aila Zm.!_t: wl'w2 e .w’".

So the above (m--k,m)-group for B=—1 will be called multiplicative group,
and denoted by [ ].

Example 4. Let ¥y €C, v 54 0. The mapping
imillg My, tay > t™4@ ™. . 4a,+va,

induces an (m-+1, m)-group on C\ {1/y}. This group induces an (m+k, m)-
group on C\{l/y}, and:

Yipmikiqg (L mEEly | og) -
> I @y I LAY Y20 ot . YRa,
is the corresponding polynomial mapping.
Example 5 The mapping {:P; — P, which is defined by
g B3 tagt* tat+ay — t*4-(ay+9) t+a,+3a,+3*

induces a (3, 2)-group on C.

§3. The problem of isomorphism of the obtained groups

Proposition 3.1. All of the (m -k, m)-groups of the example 2 are
isomorphic.
Proof. For the sake of simplicity we shall prove this proposition for
m=2 and k=I1.
Let us consider two groups for «; = 0 and o, -4 0. Then
[212223]0, = (Wi W) &

{ZI+Z=+ZS——“W1W2

o1+Z2129 12123 + ZeZg=wW1 Wy

(3.1)
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and
[z12225)a, = (W1 W2) &

{zlzzzs =W+ W,

0o+ Z120+2125 -+ Z2Z3=W W
We shall find a bijection ¢ : C — C such that

[212025)y, = (W1 W) = (@ (z,) & (z2) D (23)]a, = (@ (W), @ (W)
i.e. (3.1) =»> (3.2), where

(3.2) {«ﬁ(zo + B (z) + B (29) = & (w1) + & (w2)
’ tat P (2,) P (z) +P(2) D (z0) + D (z2) @ (z3)=ap (wy) P (wy).
The implication (3.1) => (3.2) is satisfied for ¢ (2) = z)/a,/a, . ||
Proposition 3.2. All of the (m-+k, m)-groups of the example 3 are iso-
morphic.
Proof. The mapping ¢ : C\ {0} — C\ {0} which is defined by ¢ (z) =

zB,/B, is a bijection, and it yields to the required isomorphism between
the groups which are parametrized by 3, and B,. ||

Proposition 3.3. All of the (m-+k, m)-groups of the example 4 are
isomorphic.

Proof. The mapping ¢ : C™ {1/y;} — C\(1/y2} which is defined by
¢ (2) = zv,/v. is a bijection, and it is an isomorphism between the groups
which are parametrized by v, and y.. ||

If ¢ is a homomorphism of (m+k, m)-groups, then for each positive
integer n, ¢ induces a mapping £, : P, — P, such that

Ealt—z) . . . (t—2) ] = (t— @(z)) - . . (t—0 (21)),
and such that the following diagram
¥
B, -H:_'_'_"Pm

Em'Hr

I
ooy

Pm-i-k '_>Pm

Eﬂ!

is commutative, where { and ¢’ are the corresponding polynomial mappings
for the given (m--k, m)-groups. Inversely, if the mappings &,z @ Ppig —
P,.p and &, : P, P, are induced from a mapping ¢ and the above
diagram is commutative, then ¢ induces a homomorphism of (m-k, m)-
groups which are given by ¢ and {’. This will be uszd in the proof of the
following proposition.
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Proposition 3.4. The (3, 2)-group which was defined in example 5,
is isomorphic to the additive (3,2)-group on C. The required isomorphism
is induced by the mapping ¢ : C — C, ¢ (2)=z+3.

Proof. The mappings &; : Py —~ P; and &, : P, — P, which are in-
duced by the bijection ¢ (z) =z-+8 are

%3 (B3 4-a,t® ta t+ag) =13+(a,—38) 12+ (a,—28a,+ 381+ ay—8a, -+ 5%a ,—39,
£, (2 +a,t+ay) = t*+(a,—28) t+a,—da,+ 8.
It is easy to verify that the following diagram

'~I)

Py——P,
e
ooy

Pr——us P,

is commutative, where
U(t3+a,t2+-a,t+a,) = t*+a.t+a,
and
' (13+-a,t2+ayt+ag) = 2 +(ay+3) t+a,+8a,+8% ||

As a summary of the above considerations we obtain that each of
the above (3, 2)-groups is isomorphic to one of the four groups, which are
given by the following polynomial mappings:

() b, :t¥4-asr*t-a,1+ay — t2+ast+a,, on C

(i) ¢, : 1? fayt®+a,t+a, — t2*+a,t+a,+1, on C

(iii) g : 134+-a > +-a,t1+a, — t*—a,t—a, on C\ {0}

(iv) 9y : P4a,t*t+aytt+a, — t*+ast+a,+a, on C\{1}.

Theorem 3.5. The four (3, 2)-groups induced by the polynomial
mappings ¢y, .. ¥ and {, are pairwise non-isomorphic.

Proof. We remind ourselves [3] that if (Q,[ ])isa (3, 2)-group then

there exists a unique efg Q® (called a unit of (Q;[ 1)) such that
[x €] = xi.
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Denote by [ ], the (3, 2)-group operation induced by {;. It can be
easily seen that:

a) (0.0) is the unit of [ ],

b) (2, —)/2) is the unit of [ ],
c) (i, —i) is the unit of [ ], and
d) (0, 0) is the unit of [ 14.

Thus the units of the first and the fourth groups have the form (x, x), but
the units of the second and the third groups have the form (x,y) where xs£y.
So the first group is not isomorphic with the second and the third group,
and the fourth group is not isomorphic with the second and third groups
either.

It can easily be seen that

bexx]y = () => x =y (=0)

RN
&4 4, ey

which implies that [ ], and [ ]; are not isomorphic.

Now we shall prove that the third and the second groups are not
isomorphic. Indeed, the second group satisfies the following implication

[VZ —V2 x)e = 0, ) => x=2i V x=—2i,
but the third group satisfies the following implication

and

[ —i x]s = (ry) => x=1/4,

and hence there does not exist an isomorphism between these two groups. ||

If we consider (2, 1)-groups instead of (3, 2)-groups, then we obtain
the following groups

(i) [x y] = x+yp, on C

@ii) [x y] = x+y—1, on C

(i) [xy] = x-y, on C\ {0}

[iv) [xy] = x+y—x-p, on C\{l}

It is well known that the second group is isomorphic with the first group,
the fourth group is isomorphic with the third group, and the first and the
third groups are not isomorphic. The same result also holds for the
arbitrary (k--1, 1)-group.

In a general case, ecah of the above (m-k, m)-groups from exam-
ples 1—4 is isomorphic to one of four (m--k, m)-groups. Since all of them are

3
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induced from (m-+1, m)-groups. we can consider the units of the corresponding
(2m, m)-groups. The unit for the first and the unit for the fourth group is
(0,0,...,0). The unit for the third group is (zy, ..., z,) where z,,.
——

z
* e m

m
are roots of the polynomial z# | (—I)™, and the unit for the second group
is (zy, . . - ,2,,), where —z,, ... ,—z, are roots of the polynomial z™—m.
Hence we obtain that if m = 2, then the first group is not isomorphic with
the second and the third group, and the fourth group is not isomorphic
with the second and the third group, either.

§4. Some properties

Proposition 4.1. Let n be an arbitrary positive integer. Then:
(i) in the additive (3, 2)-group [ ], we have
[xmynz®]y = [wvn]y iff [xyz]y = (wv), and

(ii) the cquality [x7"y"z7]. = [w"v"]. holds in the multiplicative
(3.2)-group [ ], iff at least one of the equalities [xyz]®) = (u,v), i=0,
I,....n—1 is satisfied, where B, B,,...,B,_, are n-th roots of unit,
and [ ]®) is the corresponding parametric group of the cxample 3.

Proof. We shall prove this proposition for n=2.
(i) [xxyyzz]y = [wuvv],
_ 2x+2y-+2z=2u-+2y
= x4y dxy-tdyz Hzx =12 -2 +H4uy
x+y+z=u+tv
2 xy-+yz+zx=uv
& [xyz]y = (uy).
(ii) First we notice that, for the multiplicative (3, 2)-group, we have:
[=7]. = [wi].
l ZyZy ... Zp = WiWa .. Wg
=

Zyao- Zp 4t 2y Zp gZpt. o 22y 2, =WiWy. . W 3T -

+.. .—'r“r'g - . Wy

242, Z, = WyWs. . .Wg
1 | 1 1
= IS Jbey
z,_+ +zp_w1+ +wq°
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Using this fact, we obtain

[xxyyzz] = [uuvv]

xty2z% = uty?
ﬁ {

X y 'z -y

Xyz=uv { XyzZ=—uv

1 1 1 1 | 1 1 | 1 |
= or

e T 1 Ly | S f—_— T — —L— s — S "

x+y—rz ::+\' x+y'z Uy
S  [xyz]. =@y or [xyz] €Y = (u,v). ||

Remark. The implication [xyz] = (u,¥) => [x"y"z"] = [u"™v*] holds
for the arbitrary (3,2)-group. The proposition 4.1. can be generalized
for arbitrary additive and multiplicative (m--k, m)-groups.

Proposition 4.2. For the additive and the multiplicative (3, 2)-groups
the following implication is satisfied

[xyz]l, = [xV'2']; =>

4.1 [[pgx] . [pgy] - [paz] 1+ = [lpgx’] - [pgy'] . [Pqz’] . 14
Proof. First we remark that

xyz], = [xY'7] &
(4.2) x+y+z = x'+y'4+2z and
(4.3) xy+yz+zx = x'y+y'z' +z'x’.
Let us suppose that

[Pgx). = (u1, us), [pgy). = (us, w), [pgz), = (us, u,)

and [pgx’], = (unu2), [pgy’), = (us,us). [pqgz’]. = (us,ug). We should prove
that

(4.4) Uy -+ gty 4 Ug 1ty + Ug=ty+ U+ us+-ug+-us+ug, and
(4.5) Z Uy — Z wou .
1<i<j<6 1<i<j<6

Since (uy+uy)+(ustug) +(us T ug)=(pq+px+9x)+(pq+py+qy) +(pg+pz+qz)=
=3pg + (p+9) (x+y-+2), and analogously u;-+uz-+us+us-+us+us=3pg -+
+(p+9q) (¥'+y' +2'), the proof of (4.4) follows from (4.2).

3
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z Uyl = Uty sty usttg (g +ug) (ugtuy) + (uy+u,) (us-+ug) -
II<<6  +(ug+uy) (Us-+ug) =pgx -+pqy-+pgz +(pq-+px+4qx) (pg+py-+qy)+
+ (pq-+px+qx) (pg+pz+qz) + (pg-+py-+4qy) (pg-+pz-+qz)=
=nq(1 +2p +29) (x+y+2)+3p*¢*+(p+q)P (xy+xz+yz).

Analogously one obtains

Y ) = pg (1429+20) (¥ -+¥/+2)+ 38 +@+a) (X3 +7'7+2x)
1<i<i<6 _
and the proof of (4.5) follows from (4.2) and (4.3). ||
Proposition 4.3. The usual multiplication is distributive with respect
to the additive (m+k, m)-group operation, i.e.

m+k]

Zz. [2'1 - = [(ZZI) (ZZS) e (zz;n+k) ]'l'.r

where a multiplication of complex number and an m-typle is defined in
the usual way.

Proof. Let us denote by ¢ the polynomial mapping for the additive
(m--k, m)-group. Then

Y ((t“zzl) von (t—zzpip)) =

m-t-k
= Y(1mtk—z( I zg) kI (2R L zpg) =

m+k
m+k
= (B gy | ) @) Gy
i=1 _

fyyeeeyim=1

h<...<im
= (t—zw,) . . .(t—2zw,)
where w,, . ...w, are roots of the following polynomial
m-+k
Ve mtk - Z :
m m—1_| 4 (—_1ym - =
f——(‘ElZ‘)f e« & ( ]) v(l...‘m'
I:].! . --l'mzl
Iy < .oa <im
Hence we obtain
(0220 s oi (ZZpup) Jo = (ZWgs o 5ie 5. ZW) = Za (Wis < 50 W) =

= Z. [Z'T.i—k]-l- . ”
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KOCTAAHH TPEHYEBCKH

HEKOJIKY TIPUMEPU HA TIOTIIOJJHO KOMVTATUBHHU BEKTOPCKO
BPEJIHOCHWN TPVITH

(Pes3wume)

TMoTNONHO KOMYTaTHBHHTE (x, m)-rpYNOMAM (KBA3WCrpynd, HONYTPYm, TPYNH) ce
pasraenysann 8o [2] u [3]. Crenpure pesynratu ce nobueny 8o [3]. Ako k =1, m > 2,
Torami: (i) Ha HEMPA3HOTO KOHEYHO MHOKECTBO () NOCTOM MOTNOJNHO KOMyTaTHBHA (71 +k,m).
rpyna akko Q coapku HajMHOTrY [pa enementa; (ii) Cexoe GeckonewHc muokecTno O € HO-
cav Ha MOTHOJHO KOMYTATHEHA (11 +k.m)-rpyria. Bo [4] e nanen norojesn onyc Ha cnoboanara
NOTNONHO KOMYTATHBHA (m-+k,m)-rpyna. [Ia yvouume nexa cio0OoAHHTE MOTHOIHO KOMY=
TaTHBHH (Mm-+k.m) TPYIIM Ce eNWHCTBEWMTE NO3HATH NPWMEPH R Takeu CTPyKTypn. Bo
OBOj TPYJ Ce HANeHH HeKOIKY MPMPONHH MPUMEPH HA MOTNONHO KOoMYyTATHBHH (m--k,m)-
rpylH Hajg T0JETO O Komiuiekcau Opoeen C, M MCHMTYBAHM CC HEKOM HHBHM OCOOWHM,
Ila 3adenecxkume aexa C mowe 1a OHAe 3aMeHETO CO MPOM3BOAHO anrebapckH 3aTBOPEHO
no’e.
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