Математички Билтен 11-12 (XXXVII-XXXVII) 1987-1988 (23-27) Скопје, Југославија

HOMOTOPY AND CONGRUENCES OF GENERALIZED OUASIGROUPS

Kiril Stojmenovski

The notions of a congruence relation and factor structure of a generalized groupoid are considered in this paper and a connection between the homotopy and normal congruences of generalized guasigroups is stated.

 $\underline{0}$. First we give some definitions. Let Q_1,Q_2,Q_3 be nonempty sets and $A:Q_1\times Q_2+Q_3$ a mapping. The ordered quadruple $(Q_1,Q_2,Q_3;A)$ is called a generalized groupoid or shortly G-grupoid and the mapping A a generalized operation on the sets Q_1,Q_2,Q_3 .

A generalized groupoid $(Q_1,Q_2,Q_3;A)$ is called a <u>generalized</u> guasigroup iff the equations

$$A(x,b) = c, A(a,y) = c$$
 (0.1)

have unique solutions for any $a \in Q_1$, $b \in \Omega_2$, $c \in Q_3$.

A G-groupoid $(\Omega_1,\Omega_2,\Omega_3;A)$ is said to be <u>homotopically mapped</u> into a G-groupoid $(P_1,P_2,P_3;B)$ iff there exist mappings α,β,γ , where $\alpha:Q_1 \to P_1$, $\beta:Q_2 \to P_2$, $\gamma:Q_3 \to P_3$ such that

$$\gamma A(x,y) = B(\alpha x, \beta y)$$
 (0.2)

for any $x \in Q_1$ and $y \in Q_2$. The ordered triplet (α, β, γ) is called a homotopy. If α, β, γ are bijections, then (α, β, γ) is an isotopy of the G-groupoids ([2]).

1. Let $(Q_1,Q_2,Q_3;A)$ be a G-groupoid and $\alpha_1,\alpha_2,\alpha_3$ be equivalences on the sets Q_1,Q_2,Q_3 respectively. The ordered triple $(\alpha_1,\alpha_2,\alpha_3)$ of equivalences is said to be a generalized congruence in the G-groupoid iff

$$a\alpha_1b$$
, $c\alpha_2d \Longrightarrow A(a,c)\alpha_3 B(b,d)$. (1.1)

It can be easily verified that a triplet($\alpha_1, \alpha_2, \alpha_3$) of equivalences in a G-groupoid (Q_1, Q_2, Q_3 ; A) is a generalized congruence iff for every $s \in Q_2$ and $t \in Q_1$

$$a\alpha_1b \implies A(a,s)\alpha_3A(b,s)$$
 and $c\alpha_2d \implies A(t,c)\alpha_3A(t,d)$.

Note that if $Q_1=Q_2=Q_3$ and $\alpha_1=\alpha_2=\alpha_3$, then one obtains a usual congruence in the groupoid.

A generalized congruence $(\alpha_1, \alpha_2, \alpha_3)$ is said to be <u>normal</u> iff for any $s \in Q_2$ and $t \in Q_1$

$$A(a,s)\alpha_3A(b,s) \implies a\alpha_1b$$
 and $A(t,c)\alpha_3A(t,d) \implies c\alpha_2d$ (1.2)

Note that if a G-groupoid $(Q_1,Q_2,Q_3;A)$ has an identity element, then $Q_1=Q_2=Q_3$. In that case, by (1.2), $\alpha_1=\alpha_2=\alpha_3$, i.e. a normal generalized congruence is a usual normal congruence ([1]).

THEOREM 1. Every normal generalized congruence in a G-quasigroup $(Q_1,Q_2,Q_3;A)$ defines a generalized quasigroup which is a homotopic image of $(Q_1,Q_2,Q_3;A)$.

<u>Proof.</u> Let $(\alpha_1, \alpha_2, \alpha_3)$ be a generalized congruence in $(Q_1, Q_2, Q_3; A)$. Define in the ordered triplet $(Q_1/\alpha_1, Q_2/\alpha_2, Q_3/\alpha_3)$ of factor sets a generalized operation $B: Q_1/\alpha_1 \times Q_2/\alpha_2 + Q_3/\alpha_3$ by

$$B(a^{\alpha_1},b^{\alpha_2}) = \left[A(a,b)\right]^{\alpha_3}. \tag{1.3}$$

If a = c and b = d, i.e. $a\alpha_1 c$ and $b\alpha_2 d$, then $A(a,b)\alpha_3 A(c,d)$ and

$$B(c^{\alpha_1},d^{\alpha_2}) = \left[A(c,d)\right]^{\alpha_3} = \left[A(a,b)\right]^{\alpha_3} = B(a^{\alpha_1},b^{\alpha_2}).$$

This shows that B is a mapping, i.e. (1.3) defines a generalized operation and thus $(Q_1/\alpha_1,Q_2/\alpha_2,Q_3/\alpha_3;B)$ is a generalized groupoid. It remains to show that it is a generalized quasigroup.

Consider the equation

$$B(a^{\alpha_1}, x^{\alpha_2}) = c^{\alpha_3},$$
 (1.4)

where $a^{\alpha_1} \in Q_1/\alpha_1$, $c^{\alpha_3} \in Q_3/\alpha_3$. The equation A(a,x) = c has a unique solution x_0 in the G-quasigroup $(Q_1,Q_2,Q_3;A)$. We will show that the class $x_0^{\alpha_2} \in Q_2/\alpha_2$ is a solution of the equation (1.4). Namely, it follows by (1.3) that

$$B(a^{\alpha_1}, x_0^{\alpha_2}) = [A(a, x_0)]^{\alpha_3} = c^{\alpha_3}.$$

Suppose that $x_1^{\alpha_2}$, $x_1 \neq x_0$, is a solution of (1.4), i.e. $B(a^{\alpha_1}, x_1^{\alpha_2}) = c^{\alpha_3}$ and $B(a^{\alpha_1}, x_0^{\alpha_2}) = c^{\alpha_3}$. Then

$$\left[A(a,x_1)\right]^{\alpha_3} = B(a^{\alpha_1},x_1^{\alpha_2}) = B(a^{\alpha_1},x_0^{\alpha_2}) = \left[A(a,x_0)\right]^{\alpha_3}$$

i.e. $A(a,x_1)\alpha_3A(a,x_0)$. Since $(\alpha_1,\alpha_2,\alpha_3)$ is a normal generalized congruence, it follows by the second implication of (1.2) that $x_1\alpha_2x_0$, i.e. $x_1^{\alpha_2}=x_0^{\alpha_2}$. Thus the equation (1.4) has a unique solution.

Analogously, the equation $B(x^{\alpha_1}, b^{\alpha_2}) = c^{\alpha_3}$ has a unique solution for every $b^{\alpha_2} \in Q_2/\alpha_2$ and every $c^{\alpha_3} \in Q_3/\alpha_3$.

The quadruple $(Q_1/\alpha_1,Q_2/\alpha_2,Q_3/\alpha_3;B)$ is called a <u>factor</u> structure of $(Q_1,Q_2,Q_3;A)$ under the generalized congruence $(\alpha_1,\alpha_2,\alpha_3)$. As we proved in the previous theorem, a factor quasigroup of a generalized quasigroup is a generalized quasigroup.

Let f_1, f_2, f_3 be the natural mappings: $f_1 = \text{nat}\alpha_1 : Q_1 + Q_1/\alpha_1$; $f_2 = \text{nat}\alpha_2 : Q_2 + Q_2/\alpha_2$; $f_3 = \text{nat}\alpha_3 : Q_3 + Q_3/\alpha_3$. Then by (1.3)

$$f_3A(a,b) = [A(a,b)]^{\alpha_3} = B(a^{\alpha_1},b^{\alpha_3}) = B(f_1a,f_2b),$$

which proves that the triplet (f_1,f_2,f_3) is a homotopy. Since f_1,f_2,f_3 are surjections, it follows that the quasigroup $(Q_1/\alpha_1,Q_2/\alpha_2,Q_3/\alpha_3;B)$ is a homotopic image of $(Q_1,Q_2,Q_3;A)$.

THEOREM 2. Every homotopy (α, β, γ) of a G-quasigroup $(Q_1, Q_2, Q_3; A)$ in a G-quasigroup $(P_1, P_2, P_3; B)$ induces a normal generalized congruence in $(Q_1, Q_2, Q_3; A)$.

<u>Proof.</u> The relations $\alpha_1 = \ker \alpha$, $\alpha_2 = \ker \beta$ and $\alpha_3 = \ker \gamma$ are equivalences in the sets Q_1, Q_2, Q_3 respectively. Let $a\alpha_1 b$ and $c\alpha_2 d$ i.e. $\alpha a = \alpha b$ and $\beta c = \beta d$. In this case

$$\gamma A(a,c) = B(\alpha a, \beta c) = B(\alpha b, \beta d) = \gamma A(b,d),$$

i.e. $A(a,c)\alpha_3A(b,d)$. Thus $(\alpha_1,\alpha_2,\alpha_3)$ is a generalized congruence.

Let $A(a,s)\alpha_3A(b,s)$, i.e. $\gamma A(a,s) = \gamma A(b,s)$. Since (α,β,γ) is a homotopy, it follows that $B(\alpha a,\beta s) = B(\alpha b,\beta s)$, i.e. $\alpha a=\alpha b$, i.e. $a\alpha_1b$. The second implication of (1.2) can be proved analogously.

THEOREM 3. Let $H = (\alpha, \beta, \gamma)$ be a homotopy of a quasigroup $(Q_1, Q_2, Q_3; A)$ into a quasigroup $(P_1, P_2, P_3; C)$, $(\alpha_1, \alpha_2, \alpha_3)$ be the generalized congruence induced by the homotopy H (the kernel of the homotopy) and (f_1, f_2, f_3) be the natural homotopy of $(Q_1, Q_2, Q_3; A)$ into its factor quasigroup defined by $(\alpha_1, \alpha_2, \alpha_3)$. Then the quasigroups $(Q_1/\alpha_1, Q_2/\alpha_2, Q_3/\alpha_3; B)$ and $H(Q_1, Q_2, Q_3; A)$ are isotopic.

<u>Proof.</u> Let $g_1:Q_1/\alpha_1 \rightarrow \alpha(Q_1)$, $g_2:Q_2/\alpha_2 \rightarrow \beta(Q_2)$, and $g_3:Q_3/\alpha_3 \rightarrow \gamma(Q_3)$, where $g_1(a^{\alpha_1}) = \alpha(a)$, $g_2(b^{\alpha_2}) = \beta(b)$ and $g_3(c^{\alpha_3}) = \gamma(c)$. Then by (1.3),

$$g_3B(a^{\alpha_1},b^{\alpha_2}) \ = \ g_3\Big[A(a,b)\Big]^{\alpha_3} \ = \ \gamma A(a,b) \ = \ C\big(\alpha a,\beta b\big) \ = \ C\Big[g_1^{\alpha_1}\big(a^{\alpha_1}\big)\,,g_2^{\alpha_2}\big(a^{\alpha_2}\big)\Big]\,.$$

Thus (g_1, g_2, g_3) is a homotopy.

If $g_1(a_1^{\alpha_1})=g_1(a_2^{\alpha_1})$, then $\alpha_1(a_1)=\alpha_1(a_2)$, i.e. $a_1^{\alpha_1}=a_2^{\alpha_1}$, from what follows taht the mapping g_1 is injective.

Let $a' \in \alpha(Q)$. Then there exists $a \in Q_1$ such that $\alpha a = a'$. Since $g_1(a^\alpha) = \alpha(a) = a'$, it follows that the mapping g_1 is surjective and thus it is bijective. Analogically, g_2 and g_3 are bijections. Therefore (g_1, g_2, g_3) is an isotopy.

The above results are a generalization of the theorem on homomorphisms applied on the generalized operations.

Let $(\alpha_1,\alpha_2,\alpha_3)$ be a normal generalized congruence in a quasigroup $(Q_1,Q_2,Q_3;A)$. An ordered triplet $(a^{\alpha_1},b^{\alpha_2},c^{\alpha_3})$, where $a^{\alpha_1} \in Q_1/\alpha_1$, $b^{\alpha_2} \in Q_2/\alpha_2$ and $c^{\alpha_3} \in Q_3/\alpha_3$, is called a <u>class</u> of the generalized congruence $(\alpha_1,\alpha_2,\alpha_3)$.

THEOREM 4. A class $(a^{\alpha_1}, b^{\alpha_2}, c^{\alpha_3})$ is a G-subquasigroup of $(Q_1, Q_2, Q_3; A)$ iff there exist $a_1 \in a^{\alpha_1}$, $b_1 \in b^{\alpha_2}$, $c_1 \in c^{\alpha_3}$ such that $A(a_1, b_1) = c_1$.

<u>Proof.</u> Let there exist $a_1 \in a^{\alpha_1}$, $b_1 \in b^{\alpha_2}$ and $c_1 \in c^{\alpha_3}$, such that $A(a_1,b_1)=c_1$ and let $a' \in a^{\alpha_1}$, $b' \in b^{\alpha_2}$. Since $(\alpha_1,\alpha_2,\alpha_3)$ is a generalized congruence, it follows that $A(a',b')\alpha_3A(a_1,b_1)$, i.e. A(a',b') $c_1^{\alpha_3}=c^{\alpha_3}$. Thus $(a^{\alpha_1},b^{\alpha_2},c^{\alpha_3};A)$ is a G-subgroupoid.

The equation A(a',x) = c' with $a' \in a^{\alpha_1} \in Q_1$ and $c' \in c^{\alpha_3} \in Q_3$ has a unique solution x_0 in $(Q_1,Q_2,Q_3;A)$.

We will show that $x_0 \in b^{\alpha_2} \in Q_2$. Because of $a'\alpha_1a_1$ and $x_0\alpha_2x_0$, one obtains that $A(a_1,x_0)\alpha_3A(a',x_0)=c'$, i.e. $A(a_1,x_0)\in c^{\alpha_3}$. Since $A(a_1,b_1)=c_1\in c^{\alpha_3}$, it follows that $A(a_1,x_0)\alpha_3A(a_1,b_1)$, i.e. $x_0\alpha_2b_1$ or $x_0\in b^{\alpha_2}$. Thus the equation A(a',x)=c' has a unique solution $x_0\in b^{\alpha_2}$.

Analogically, the equation A(y,b') = c', where $b' \in b^{\alpha_2} \subseteq Q_2$, $c' \in c^{\alpha_3} \subseteq Q_3$, has a unique solution $Y_0 \in a^{\alpha_1}$.

REFERENCES

- [1] Белоусов В.Д., Основы теории квазигрупп и луп, Москва, 1967
- [2] Milič S., On GD-groupoids with application to n-Ary quasigroups, Publications de L'Inst Mathém. 13 (27), 1972, 65-76

Tehnološki fakultet 91000 Skopje, Yugoslavia

хомотопија и конгруенции на обопштени квазигрупи

Кирил Стојменовски

Резиме

Во работата се разгледува поимот конгруенција и факторструктура на обопштен групоид, и се утврдува врската помеѓу комотопијата и нормалните конгруенции на обопштени квазигрупи.