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COMMUTATIVE (2m,m)-GROUPS
Don&o Dimovski, SneZana Ilié

Abstract. In this paper we prove several results about com-
mutative (2m,m)-groups, and give some examples of nontrivial,

finite and infinite, commutative and noncommutative (2m,m)-
groups, m 2 2.

§0. INTRODUCTION

Let m>1 and let G # ¢. Let [ ]:6*™ = G" be a map satisfy-
ing the following conditions:

- m+iy_am e 2my _3m
[y (230 1Xomeass] = (06371300,

For each 5,956“, there exist Er!?Gmr such that

[ax] =b= [y a].

Then, the pair (G;[ ]) is called a (2m,m)-group ([1]). Above,
txf) denotes the vector (x,,Xj,...,%X.), [xfm] denotes the image
of (x2™) under the map [ ], and a denotes a vector from (g

, for each 1 £i sm; (1)

(2)

Let (Gs[ ]) be a (2m,m)-group. Then (6™,0), where
acb = [a b], is a group with a neutral element (e™=(e,...,e),

e€G ([2]). The notion of (2m,m)-groups for m=1 coincides with

notion of groups. The simplest examples of (2m,m) -groups are

the
the mt! products of groups, i.e. if G is a group then (i
m

where [xly,] = (X,¥ reeerXpy¥p), is a (2m;m)=group. such groups

are called trivial (2m,m)-groups (see [2]). We say that a (2m,m)-
tive. The notions of (2m,m)-subgroups and normal (2m,m)-subgro-
ups are introduced and examined in [2].

In this paper we consider commutative (2m,m)-groups for
m 22, and give some examples of nontrivial (2m,m)-groups.
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§1. BASIC RESULTS

pProposition 1.1. Let (G;[ ]) be a commutative (2m,m)-group.

Then, for each 1<i <m and (xT),(yT)eGm.
(a) [em_mmfet = r:@+1,sz;
m my _ =1 =1 m
(b) [3131] = [x1 z y£+1]; and

yt t+1y
(e) [wTyT]

Proof. In [2], it is shown that in a (2m,m)-group with a

]

(a) <=> [, & 2ty 4" =

Yisa¥ t+1’a J

neutral element (e™), [xfemxT+1 = (x7).
(a) [e™1fel] = (™1 xb)o B, jef) = [« ™)) =
= (xi+1,xi)
(7] = [ [e™ "y, vy elvi ] -
= [Tl e 1xiem 1YixT+1Y1 Yevgad
= aobouoyow = aouovobow
= [xf-1YixT+1Yf-1xin+1], where
a= (xf-1'em-i+1}' b = (ei_1,xi,em-i), u = (91-1’Y1’XT+1)'
¥ = [Yf-1rem_i+1) and w = (ei,yT+1).
(c) Let [¥1yT] = (a7). Then (a) implies that:
(ai+1,af) - [em-iaTei [oM™iym n Ml o [P iylelem™ -i " 33 2

zat=m Lo i
X. [xi+1x1yi+1y1]. Ll
Proposition 1.2. 4 (2m,m)-group (G;[ ]) is commutative if
and only if for some 1 <% <m,

m p i m =1
[_,_,-l my o (3 T

1 m
¥ad = |%s YpTpu.Y 3£yi+1]- (3)

Proof. Proposition 1.1. (b) implies that in a commutativé
(2m,m) -group, (3) is satisfied for every 1 =i sm. Conversely,
let (3) be satisfied for some i. Then,

YR = [T = [ [t v gs,] =

[R-LHofal=ty ol RELFIR eal = [y Gx.0]
implies that (x%)o(y) = (YDo(x(). Il
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In general, in a commutative group (Gm,o} with a neutral
element (e™), the identity

i _m-i i om

(x7) = (xq,8" Hole %) (4)

and the gquasi identity
m m i : 2 i
Doly™ = (20 => O, xDoy],,,¥9) = (25,27 (5
do not hold, which is shown by the following examples.

Example 1.1. Let G={e,a}, (G*,0) be the cyclic group gene-
rated by (e,a), (e,e) be the neutral element, and (e,a)o(e,a)=
=(a,a). Then (G?,0) satisfies (5) but does not satisfy (4).

Example 1.2. Let m=2 and G={e,a,b}. It is easy to check
that there exists a commutative group (G2,0), such that: (e,e)
is the neutral element: (e,a)3=(e,b)3=(e,e); (e,a)?=(b,b);
(e,b)2=(b,a); (e,a)ol(e,b)=(a,e); (e,a)o(b,a)=(a,b); (b,b)o(e,b)=
=(a,a) and (b,b)o(b,a)=(b,e). Then (G%,0) satisfies (4) but does
not satisfy (5).

It is obvious that if a commutative group (G™,o) satisfies
(4), then (G™,0) satisfies:

m =1 i=1 m
{xr:l}o(y_') = (x; ,yi,xrilﬂ)o[y, ,xiryi+1}' (6)
Proposition 1.1. (c), allows us to describe commutative
(2m,m) -groups as algebras with one 2m-ary operation. Let (G;[ ]}

be a commutative (2m,m)-group and let

2] = (g, M e osvrg 3TN

where qi:G=m - G is a 2m-ary operation, for each 1 <i =m. Now,

Proposition 1.1. (c) implies that for each 1 i =m,

i- > B
91("?'3’?) = g, (%7 yieyy RE

For a given £:6*™ = G, and some i, let fi:Gm - G be de-
fined by fi{x?,yT)=f{x?,xf“',yT,yf“1). Moreover, let ?,?i:G’m g
be defined by E(x2™=(£,(x3™,..., £ (xi™) and F; (x]™) =

= (fi{xfm},...,fm{xfm},f1{i:m],...,fi_1(x:m)). Above, if we set

£ =g, theng, = £, and [ ].=%.
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Proposition 1.3. Let G # # and [ ]1:6*™ = @". Then: (G;[ ])
18 a commutative (2m,m)-group if and only if there exists a map
£:6*™ <« G such that [ ] = F and:

m —=,.m _m . =,.m _m m, .
(a) f(x,,f(y1,s1)J = f(f(x1,y1),z1),
(b) (Va,b6G")(3c€G") Fla,c) = b; and

m A m %=
(o) Flan.s) = flm; Vsysaly, b s®galg e )
Proof. If (G;[ ]) is a commutative (2m,m)-group, the conc-
lusion of the Proposition follows from the previous discusion

and Proposition 1.1.

Conversely, let f satisfy (a),(b) and (c) and [ ] = £. Then
(a) ,(b) and (c) directly imply that [Gm,o) is a commutative group,
where (xX7)o (y1)=[xTyT]=E(x],y7) . Moreover,

£ (xk f(x;T:k 'x:$+k+1) i fi(x"xzm+k+1'fm—k(x;r:rk -
=£, (xk xzm+k+',f(x$1f,xﬂ+1 :ﬂ:? ;Tk+1))
= fitf(xi'x:$+k+1’xﬁtf E+1) x;ﬂ:§'xm+k+1)}
5 fi(?(xT'xﬁtf'x;m+k+1} x:ﬂ:k' m+k+1)}
= fi(x?,f(xﬁxf,xaﬂ+k+1 x’ﬁi&,xm+k+1)) = £, (x], f(x;T1}

for each 1 <i <m, and each 1<k <m.
Hence (G;[ ]) is a commutative (2m,m)-group. ||

The following proposition gives a description of commutati-
ve (2m,m)-groups similar to the definition of groups as algebras
with one binary, one unary, and one nulary operation.

Proposition 1.4. Let G # # and [ ]:6*™ = ¢". Then: (G;[ ])
18 a commutative (2m,m)-group if and only if there exist e€G and
g:G - G, such that:

(a) [s [::T:‘ =m+t+1] [[zam]x m+1]‘ for each 1<% <m;
(b) [e™z] = z, for each z6G";

te) [z™(g(z))™] = (&™), for each z6G; and

(d) [:TyT] = [zT-'ymyT-izm], for each szJ,(yT)GGm.

1157



COMMUTATIVE (2m,m)-GROUPS 83

Proof. We have already seen that in a commutative (2m,m) -
group there exist e and (a),(b) and (d) are satisfied. To prove
(c), let x€G. Then there exists (yT)eGm, such that [y?xm]B(em),
and by Proposition 1.1. (c), we have that (e™=[yly,x"] =
=(y®,y,)0 (XM =(yMo (x™) . This implies y,=y,=...=y =y. Define
g:G = G by g(x) =y. Hence, there exists a map g satisfying (c).

Conversely, let e€G and g:G - G be given, satisfying (a)
to (d). Then, (a) implies that (G;[ ]) is a (2m,m)-semigroup,
and (b) and (d) imply that (G;[ ]) is a commutative (2m,m)-semi-
group with a neutral element (em). Let (aTIGGm, and let (bT)=
=[(g(a )™ )™ " ... (g(a, ) (a,)™"]. Then (a})o (b3)=[aibl]=
=[aT“‘am(g{am))m(am)m"...(g(a,)}m(a,}m“]=[aT“em...{g(a,))m(aamrﬁ=
=[a, (g(a,))™a,)™ ']=(e™, i.e. (b)) is the inverse element for
(aT] in (Gm,o). Hence, (G;[ ]) is a commutative (2m,m)-group. I

It is obvious that if (G,[ ]) is a (2m;m)~-group, then
p:G® - G" defined by w(xT]=[exTem-'], is an automorphism of the
group (G™,0) and y™=id. (see [2]). The converse is also true.

Proposition 1.5. Let (¢",0) be a group with a neutral ele-
ment (e™) and (x?,em‘t)o(ez,z$+1)=(xTJ, and v:6" =~ G defined
by w(zT)=(e,z™ 'Jo(x_,e" ') be an automorphism of (¢",0), sueh

shat y"=id. Then (G;[ ]) where [ ] is defined by [z7y7]=(2")e(y7),
ig a (2m,m)-group.

Procf. The definition of [ ] and the fact that (G™,0) is a
group, imply that for each a,b€G", there exist x,y€G", such that
[a x]=b=[y a]. Since y is an automorphism and y™=id, it follows
that for each {xT)eGm,

(XT) = {x,pem-1)o(e,xz,em-’)o...o(em-z,x

m_1,e)o{em-1,x )ss

m
Now let 1 <i €m-1. Then:

if,2m+1q am — [y i m, 3m mink =i m m
o Ep ]xzm+1+1]'[x1a1xzm+i+1] (x50 Do lap sy, Xomeis,)
- i m-i i, m i _am e e i 2m+i i _am
= (x,,e" Doy (ag)ole”,x .., )=(x;,e" "oy ([x33y Dole X pisy,)
= i m=i i +i i, 2am+i i _sm
= (xt,e™ Mo (R ) ev (ki Nolet X L)
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84 D.DIMOVSKI, S.ILIC

B i m-i : 3 m+i m-i T am am+i m-i
= (x € )ele ,xT+,}o{xm+1,e Jole™ , x . )o(x is )o
i _am =
ofe s X igtn)
~ =l 2m am _ [.mr_3m = 2my_3m
= (xe)olm L Jolxl ) = [x] xm+1]] = [[x5 ]x2m+1 A

Hence, (G;[ ]) is a (2m,m)-group. ||

§2. SPECIAL SUBGROUPS OF COMMUTATIVE (2m,m)-GROUPS

Let (G,[ ]) be a commutative (2m,m)-group, and let
D={ (x™) | x€G}.

Proposition 2.1. (D,0) is a subgroup of (G",o0).

Proof. Let (x™),(y™)e€D, and let [x"y™]=(2%). Then, Proposi-
tion 1.1. (c) implies that (zf,z1}=[xmym]=(zT}, i.e.
2,=2,=...=2 =z. Hence (x™o(y™)€D. It is obvious that (e™)€D.
Proposition 1.4. (c) implies that the inverse element for (x™)

is ({g{x))m}, i.e. is in D. Hence (D,o) is a subgroup of (6™,0). Il

Using Proposition 2.1, we define a map +:G® = G by
x+y=a<=> [¥Y" = (aM. (7)

Proposition 2.2. (G,+) is a commutative group with a zero e.
Moreover, (G;|[ ]J satisfies the following implication:

m

m m
[zTyT] = (aT) => _Z z; + _Z y; = '8 a;s (8)
& =1 =1 =1
where £§1xi S zytzpte .t in (G,+).
Proof. The fact that (G,+) is a commutative group, follows

directly from Proposition 2.1, and the fact that (G,[ ]) is a
commutative (2m,m)-group.

Now, let [xTy7]=(a®). Then

m
((i£1ai)“> = [@)™ . ()™ = @Doca a7 Vo...0(a],a,)

xTyTxmx?'1ymyT-1...x?x1yTy1]

[ex ) 020" (x )™ o [y )™y 2) ™. .. (y)™]
m

m m m
(2 x ™o (( Ey )™ =((Zx, + )™,
i=1 1 1-1Yi i=1 1 i=1yi

(XD o (x, %7 Ve oxD,x JolyPoly, vy No...olyiiy,)
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COMMUTATIVE (2m,m)-GROUPS 85

m m m m

Hence I a, = I Xy + Ly, = % {xi+yi). I

i=1 i=1 i=1 =4

Now, let M be a subgroup of (G,+), and let

m
K(M) = ((x) | (xhec™, = x;EM} . (9)
i:’!

Proposition 2.3. K(M) Zs a subgroup of (G",0).

Proof. Let (x7),(y7)€K(M), and let (¥T)o(y™)=(aT). Then
(8) and the fact that M is a subgroup of (G,+) imply that
(af)€K(M) . It is obvious that (e™)eK(M). Let (aT)eK(M). Then,
there exists (b])€G" such that (a})o(b})=(e™), and (8) implies

m m m

that I a; + I b, =e. Since I a,, e€M and M is a group, it
i=1 j_;1 = i=1

follows that = b,eM, i.e. (bT)€EK (M) . Hence, K(M) is a subgroup
m i=1

of (G,0). Il

For M={e}, we have the following:

Corollary 2.4. K({e}) is a subgroup of (G",0). |l

Using Proposition 2.2, we denote the image g(x) of x€G un-
der the inverse map g:G - G from Proposition 1.4 by -x, i.e.

-x=g(x).
m=1
Note, that if (x7)€k=K({e}), then x = - I x,. In this ca-
se, denote x. by ¢{XT-1)' Define 4=
o @™ ) = @™ by
(7T = @ = o0 we (v, v = (a7 wW) (10)

where u=y (3 '), v=y(yy ') and w=¢faT-1)-

The proof of the following proposition follows directly
from the definition of * and Corollary 2.4.

m=1

Proposition 2.5. (@G »*) i8 a group with a neutral element

@Y. I

Let m be even, i.e. m=2k. Define two maps
{ 1:(6%* + (6*)¥ and 4:(6*)* - G2 by:
Uxomp)essbap nx OF = (=F 200, .. 9By an
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(x,y)a(z,t) = (a,b) <=> {(x,7)%(z,6)%) = ((a,0)%). (12)

The proofs of the following propositions follow directly
from the Proposition 2.2 and the fact that (G;[ ]) is a commuta-
tive (2m,m)-group.

Proposition 2.6. (G2,{ }) s a commutative (2k,k)-group. ||

Proposition 2.7. (G2,A) Zs a commutative group. ||

§3. FINITE COMMUTATIVE (2m,m)=-GROUPS
Let (G;[ ]) be a finite commutative (2m,m)-group.

Proposition 3.1. If (¢™,0) is a eyelie group, then m is
divigible by the number of elements of G, |G| (m=22).

Proof. Let (xT) be a generator for (G™,o) and let |G|=n.
Then the subgroup D of (G",0) is cyclic and has n elements. Let
(a™)ep be its generator, and let {am)=(x’:‘)t for some t. Since
(am)n=(em)=(x?}nt, it follows that the order n™ of (x}) is a di-
visor of nt, i.e. ™71 is a divisor of t. Proposition 1.1. (b)
implies that (x?+1,xi)t+'=[xT+1{xT)txf]=[x?+1amxf]=(x?+1,xf)o(a
which together with the fact that (G™,s) is a group, implies that
(xT+1,xf}t=(am), for each i. Then Proposition 1.1. (b) and the
facts that |D|=n and n is a divisor of t, imply that (a™™=
=(xT)ta(xm,xT_1)ta...O(xﬂ,x1lt=[xTxmxT"...xfx,]t=[(x,)m{x2)m...

m]t=(em}. Hence, the order n of (a™) is a divisor of m. ||

i T

...(xm)
For m=2 and m=3 we have the following.

Proposition 3.2. If (G;[ ]) 4s a finite commutative (4,2)-

group and (G3,0) is a cyclic group, then |G|=1.

Proof. Since |G| is a divisor of 2 it follows that |G|=1
or |G|=2. Let G={e,a}. Then (e,a) and (a,e) are generators for
the group (G*,0), and (a,a)=(e,a)o(e,a). Since (a,a)=(a,e)o(e,a),
it follows that e=a, i.e. |G|=1. ||

Proposition 3.3. If (G;[ ]) is a finite commutative (6,3)-
group and (G*,0) ig a eyelie group, then |G|=1.

Proof. Since |G| is a divisor of 3, it follows that |G|=1
or |G|=3. Let G={e,a,b}. Then the subgroup K of G* of Corollary
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2.4 is a cyclic group, and moreover, K={(e3®),(a®),(b3®),(e,a,b),
(e,b,a),(a,e,b),(a,b,e),(b,e,a),(b,a,e)}, because (G,+) is a cyc-
lic group with a neutral element e. Generators of K are elements
of the form (xf) where x #x,#x,#x,, and moreover, (e,a,b)>=
=(b,e,a)?=(a,b,e)*and (e,b,a)>=(a,e,b)>=(b,a,e)?. Hence, (e,a,b)?
and (e,b,a)® are generators for subgroups of K of order 3, i.e.

(e,a,b)?, (e,b,a)?*€{(a,a,a),(b,b,b)}.

1f (e,a,b)?€{(a,b,e),(b,e,a)}, then (e,a,b)®=(a,b,e)?=
=(e,a,b)® or (e,a,b)®=(b,e,a)3=(e,a,b)?®, which implies that
(e,a,b)?*=(e,e,e) i.e. e=a=b.

If (e,a,b)?=(e,a,b), then e=a=b.

It is obvious that (e,a,b)® = (a,e,b)® implies e=a=b.

So, we are left with two cases:

Case 1. (e,a,b)?=(a,a,a) and Case 2. (e,a,b)?=(b,b,b).

In the Case 1 we have three cases.

Case 1.1. (e,a,b)3=(b,a,e). Then (a;a,a)=(e,a,b)o(b,a,e)=
=(e,a,e)o(b,a,a) and (a,a,a)=(a,e,a)o(e,a,e), which imply that
e=a=b.

Case 1.2. (e,a,b)?=(e,b,a). Then (a,a,a)=(e,a,b)3=
=(e,a,b)o(e,b,a)=(e,a,a)o(e,b,b) and (a,a,a)=(a,e,e)ole,a,a),
which imply that e=a=b.

Cage 1.3. (e,a,b)?*=(a,e,b). Then (a,a,a)=(e,a,blola,;e,b)=
=(e,e,b)o(a,a,b)=(e,e,b)?o0(a,a,e) and {(a,a,2)={a,a,c}ole,e,a),
which imply that (e,e,b)?*=(e,e,a). Now, (a,e,b)?€{(e,a,b),(a,b,e),
(b,e,a)}. If (a,e,b)?=(e,a,b), then (e,a,b)>=(a,e,b)?, which
implies that e=a=b. If (a,e,b)?*=(a,b,e),then (a,e,e)o(e,b,e)=
=(a,b,e)=(a,e,b)?=(a,e,e) 3o (e,e,b)?=(a,e,e) %0 (e,e,a)=(a,e,e) (a,e,a),
i.e. e=a=b. If (a,e,b)?*=(b,e,a), then (a,e,b)3=(b,b,b), which
implies that (e,b,e)eo(b,e,b)=(b,b,b)=(a,e,b)3=(a,e,b)o(b,e,a)=
=(a,e,a)o(b,e,b), i.e. e=a=b.

The Case 2 is symmetric to the Case 1, Hence, |G|=1. ||
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Question 3.1. Is there a (2m,m)-group with more than one
element and m 22, such that the associated group is cyclic?

§4. EXAMPLES OF (2m,m)-GROUPS

Let (G,+) be a commutative group with zero 0, and let H be
a subgroup of G. For each class x+H we choose an element from
x+H, denoted by X, i.e. :G - G is a retraction of G, and more-

over,
X+H = x+H; and X=y <=> x+H =y+H. (13)

Then, (x+y)+H=x+H + y+H=(x+y)+H=(X+y)+H implies x+y=X+y.

Now, let £:G*™ ~ G be a map defined by

1 et AN m____
£,y = x4y, = I (A + IRy, dee. (14)
i=2 i=2
m m e — — —
£(x ) = x 45, + iiz{(xi+yi} -% -¥;)- (14")
It is obvious that for each 1 <i<m,

2 ot =1 m
f(x1 ;yi;XT+1;YJ.,' lxiryi+1) = f(xT!YT]'

Define [ ]:6°™ - ¢™ by [x3™]=F(x;™) . (See Proposition
1.3 . '
pProposition 4.1. (G;[ ]) is a commutative (2m,m)-group. Mo-

reover, if # # H # G, 0=0, and there are a,b€G such that
a+b#a+b, then (G;[ ]) is not a trivial (2m,m)-group.

Proof. We have seen that f satisfies (c) from Proposition
1.3. Next, £(x%,F(yT,25)) =

m _m
x,+E, (vq,2,

)+ 1 ((xg+£, (97,270 -%; —_fityT,zT)}

1=2

m
T((Va+2:)=y.=2.))
Al A UL e

I

m - m
x,+y. ¥z, + L ((y;¥2.)-¥;=2,) - I (x +(y ,+z +
e £ s tara 1% S llle ¢ Js - : g 1 j

Joir

m
+v. 4z, + I ((y=+2Z.)=yV.-2.)) =
z(xi vitzy j=1[(yj zJ) y] j})

31
m

X,y 42, ~ Z (xi+yi+zi} +
i=2 i

m
L
1=
"

W
in{xi+yi+zi).

L}
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Similarly,
T My M N T s T Y e
E(E(X] ¥ )e2Z) = X 4y,+2, —iz (x;4y +2;) + I (X 4y +2.).
=2 i=2

Hence, f satisfies (a) from Proposition 1.3.

For given (aT},(bT)GGm, let (cT)eGm be defined by

c. =b,-a, + I a.- £ b, + I (b.-a.). Then, an easy computa-
tion shows that for each 1<i=<m, £, (a},c})=b,. Hence, f(a},c})=
=(b7), i.e. f satisfies (b) from Proposition 1.3. This, comple-

tes the proof that (G,[ ]) is a commutative (2m,m)-group.

Now, let a,b€G be the elements satisfying a+b#a+b. Then,
£,(a,0™",b,0™ " )=a+b-(m-1)0-(m-1)0+(m-1)O=a+b, and
fi(a,Om_1,b,Om-1]=—545+a+5, for i#1, i.e.

[a0™ 'b0™ '] = (a+b,a+b-a-b,...,a+b-a-b).
Hence, (G,[ ]) is not a trivial (2m,m)-group. ||

Proposition 4.2. If (G,;[ 17), (G,;[ ]") are (2m,m)-groups,
then (G1x62;[ 1), where

(248,00 (2t 120 (a3 2, (937 10052, ©s @ (2mym)-group.

Moreover, if one of the groups (G.;[ 1'),(G,;[ ]1") is not a tri-
vial or commutative (2m,m)-group, then fG‘sz;[ 1) is not a tri-

vial or commutative (2m,m)-group.
Proof. Follows directly from the definition. ||

Using Propositions 4.1 and 4.2 we can construct examples
of nontrivial finite and infinite, commutative and not commuta-
tive (2m,m)-groups.

Example 4.1. Let (G,+) be the group (Zq,+), and H={0,2}.
Define: 0=0=2, and I = 1 = 3. Then (G;[ ]) with

[xyzt] = (x+z-y-T+y+E,y+t-X-2+x+2)
is a nontrivial commutative (2m,m)-group. For example

[1030]=(0,2).
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Now, let (G,+), H, :¢ = G, and (G,[ ]) be as in Proposi-
tion 4.1, and let (G,®) be the commutative group obtained by
Proposition 2.2 from (G,[ ]).

Proposition 4.3. () (H,®) i8 a subgroup of (G,8).
(iZ) If 0=0, then (H,@)=(H,+).
(iii) If 0=0, then (G,+)/(H,+) = (G,®)/(H,8).

Proof. For he€H, h=0€eH.

(i) Let u,v€H. Then uev=[umvm]1=u+v~(m-1)5GH.-The identi-
ty in (G,®) is (m-1)0, but (m-1)0€H, since 0€H. For h€H,
u=-h+2(m-1)0€H, and h®u=h+u-(m-1)0=h-h+2(m-1)0-(m-1)0=(m=-1)0.
Hence, (H,®) is a subgroup of (G,®).

(ii) If 0 = 0, then udv=u+v-0=u+v, for u,veH.

(iii) If 0 = 0, then for x€G and u€H we have:
x¥Bu = x+u-(m-1)X-(m-1)U+(m-1) (xFu)=x+u-(m-1)0=x+u, using the
facts that u = 0 = 0, and x+u=x. ||

The converse of Proposition 4.3 (ii) does not hold; this is
shown by the following example.

Example 4.2. Let G={0,1,2,3}, (G'+}={Zu'+)' H={0,2},
0=2=2, 1=3=1, and m=3. Then, for u,v€H we have: u+v=utv-v-utu+v-
-u-v+ut+v=ut+v. Hence (H,®)=(H,+), but 0 # 0.
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