ONE-DIMENSIONAL (4,2)-LIE GROUPS

Don&o Dimovski and Kostadin Trendevski

Abstract. In this paper we examine the existence of one-
dimensional (4,2)-Lie groups, and show that such groups do
exist.

§0. INTRODUCTION
The definition of (n,m)-groups, n-m=k 20 is given in [1].
A pair (G,[ ]) where [ ]:6" - G" is a map satisfying two axioms
(associativity and solvability of equations, see [1]), is called

an (n,m)-group. For n=4, m=2, these axioms are:

and (0.1)

-

[[xyzt]uv] = [x[yztu]v] = [xy[ztuv]]

(va,bec?) (dx,y€c?) [xa] =b= [ay]- (0.2)

In [2] it is proved that if (G,[ ]) is a (4,2)-group then
(G2,*), where (x,y)*(z,t)=[xyzt], is a group with identity ele-
ment (e,e), (x,e)*(e,y)=(x,y), and the map ¥:G* - G* defined
by ¥(x,y)=(e,x)*(y,e) is an involutive (i.e. ¢3=idG} automorphism.
We say that (G2,*) is the associated group to (G,[ ]). The con-
verse is also true.

Proposition 0.1. Let (G2,#) be a group with identity ele-
ment (e,e), and let ¥:G* — G*® be an involutive automorphism
such that v(z,y)=(e,x)*(y,e). Then (G,[ ]), where [zyszt]=
=(x,yl*(z,t), 18 a (4,2)-group.

Proof. The fact that § is an involutive automorphism, and
y(x,y)=(e,x)*(y,e)=(e,x)*(e,e)*(e,e)*(y,e)
=y (x,e)*y(e,y)=v((x,e)*x(e,y¥)),

imply that (x,e)*(e,y)=(x,y).

Now ,
[[xyzt]uv] = ((x,y)*(z,t))*(u,v) =

=(x,y)*((z,t)*(u,v))=[xy[ztuv]].
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Moreover, if [yztu]=(y,z)*(t,u)=(a,b), then

[x[yztu] v] = [xabv] = (x,a)*(b,v) =
= (x,e)*(e,a)*(b,e)*(e,v)
= (x,e)* (a,b)*(e,v)
= (x,e)*((y,z)*x(t,u))*(e,v)
= (x,e)*(y,z)* (t,u)*(e,v)
= (x,e)*(e,y)*(z,e)x(e,t)*(u,e)*(e,v)
= (x,y)*(z,t)*(u,v)
[[xyzt] uv] .

Hence, [ ] satisfies (0.1).

The definition of [ ] and the fact that (G?,*) is a group,
imply that [ ] satisfies (0.2). ||

Remark 0.2. Let (G*,*) and ¢ be as in Proposition 0.1.
Then, the condition ¢ (x,y)=(e,x)*(y,e) is equivalent to the con-
dition

(Xae)*‘l’{Y;e) ] (x;y]. (0.3)

group is commutative [3].

Let G be a topological space, and let (G,[ ]) be a (4,2)=
a continuous map from G* to G®. We say that (G,[ ]) is a topolo-
gical (4,2)-group, if the associated group (G*,*) is a topologi-
cal group. In other words, (¢,[ ]) is a topological (4,2)=-group,
if the map £:G* - G? defined as g(a,b,c,d)=(a,b)*(c,d) , where

~“':6® -+ G? is the inverse map for * in G*®, is a continuous map.

If G is a connected topological one-dimensional manifold*),
and (G,[ ]) is a topological group, then (G*,*) is a 2-dimensi-
onal Lie group**), In this case we say that (G,[ ]) is a (4,2)-
Lie group.

*

) A topological n-dimensional manifold is a paracompact
Hausdorff topological space M, such that each x€M has a neighbour-
hood homeomorphic to R .

*
) Here we use the positive answer to the Fifth Hilbert
problem; i.e. a locally euclidean group is a Lie group (see [6.9]).
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In this paper we examine the existence of one-dimensional
(4,2)-Lie groups, and show that such groups do exist, in compa-
rison with the fact that one-dimensional continuous (3,2)-groups
do not exist (see [4]). Moreover, we show that there exist much
more non-isomorphic one-dimensional (4,2)-Lie groups, than non-
isomorphic Lie groups over R? and $'xS"'. The paper is divided
into four parts. In 1. we present some necessary notions and
results from Lie groups and Lie algebras. In 2. we examine commu-
tative (4,2)-Lie groups over R. In 3. we examine non-commutative
(4,2)-Lie groups over R, and in 4. we examine (4,2)-Lie groups
over §'.

§1., SOME RESULTS ABOUT THE LIE GROUPS AND LIE ALGEBRAS

Let g be an r-dimensional abstract Lie algebra over the
field R of real numbers. Then, there exists a simply connected
r-dimensional Lie group SG, whose Lie algebra is isomorphic to
g. The group SG is uniquely determined by g up to local analytic
isomorphism (converse of Lie’s Third Theoxem, see [8]). The abo-
ve theorem asserts that there is not a bijection between Lie
groups and Lie algebras. Many Lie groups may have the same Lie
algebra, but among all of these groups there exists only one
which is simply connected. It is denoted by SG. It is shown that
the enumeration of all posible Lie groups with the same Lie al-
gebra reduces to the problem of finding all discrete subgroups
of the centre of SG ([8]). In fact, if (SG,*) is a connected
and simply-connected Lie group with g as a Lie algebra, then any
Lie group with g as a Lie algebra is isomorphic to a factor group
SG/D, where D is a discrete subgroup of the centre of SG.

Since there are only two one-dimensional topological mani-
folds up to homeomorphism, R and S', we consider these two cases
separately.

After a simple calculation, one can show that there are
exactly two non-isomorphic Lie algebras over the field R ([5],
ex. 96). Their correspondind Lie groups over R®? are:
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(x,y)*(z,t) = (x+z,y+t) and 1)
(x,y)*(z,t) = (x+ze ¥ ,y+t). (1.2)

Since R? is a connected simply-connected manifold, these two
groups are the only non isomorphic Lie groups over R?. The first
group is commutative, and the second one is not. Hence, there
are two classes of (4,2)-Lie groups over R. The first class con-
tains all the (4,2)-Lie groups whose associated groups over R?
are isomorphic to the group given by (1.1). The second class
contains all the (4,2)-groups whose associated groups over R?
are isomorphic to the aroup given by (1.2).

§2. COMMUTATIVE (4,2)-LIE GROUPS OVER R

The group over R? given by (1.1) induces a (4,2)-Lie group
over R in a trivial way (this (4,2)-group is a trivial (4,2)-
group (2]). The corresponding involutive automorphism ¢ is given
by y(x,y)=(y,x). The other (4,2)-Lie groups in this class, can
be obtained by a change of coordinates. In fact, the coordinates
have to be chosen in such a way, so that the condition (0.3) is
valid in the new coordinates. To determine the new coordinates,
it suffices to choose a smooth curve (x(s),y(s)) as the first
coordinate axis which passes through the origin (0,0), and sa-
tisfies some additional properties. Using (0.3), we find the
correspondence between the two coordinate systems. It is given by

h(s:t}
h(s,t)

(x(s),y(s))*y(x(t),y(t)), i.e.
(x(s)+y(t),y(s)+x(t)),

where h:R® - R? is a homeomorphism. Note, that some (4,2)-Lie
groups obtained by this procedure may be isomorphic. For example,
if x(s)=s, y(s)=as, a#l, the (4,2)-Lie group obtained by this
procedure, is isomorphic to the (4,2)-group induced by (1.1). So,
we must look for another example. Let x(s)=s. Then the problem
reduces to finding a smooth function y(s) such that the system
of equations

s+y (t)

t+y (s)

]
b}

(2.1)

]
o]
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ONE-DIMENSIONAL (4,2)-LIE GROUPS 95

has a unique solution (s,t) for given p,g€R. If t is a unique
solution of the equation

t+y(p-y(t)) = g (2.29

then (s,t) where s=p-y(t), is a unique solution of (2.1). Thus,
we search for a function y such that for a given p€R, the func-
tion f£f:R - R given by f(z)=z+y(p-y(z)) is a homeomorphism. It
is sufficient to take for y a bounded differentiable function,
such that |y’(z)| <c<1l. In this case lim f(z)=-=, lim f(z)==,

B =0 Z-D
and f is a monotonically increasing function, since f’(z)=

=1+y’ (p-y(z)) .(-y’(2)) >0. For example, such a function is
y(z)=(1/2)sin(z). The implicit funection theorem implies that
h:R? - R*® defined by

h(s,t) = (s+(1/2)sin(t), t+(1/2)sin(s)) (2.3)
is a homeomorphism.
The previous discussion shows that (R,[ ]) where

h™'(h(s,t)*h(u,v))

h™" ((s+(1/2)sin(t) ,£+(1/2)sin(s))* (2.4)
*(u+(1/2)sin(v) ,v+(1/2)sin(u))) =

= h™ " (s+u+(sint+sinv)/2,t+v+(sins+sinu)/2)

[stuv]

Il

is a (4,2)-Lie group. The correspondence between the two coordi=-
nate systems is described on the following figure.

{s,%sins)

The (4,2)-Lie group (R,[ ]) defined by (2.4) is a commuta-
tive (4,2)-group but not isomorphic to the (4,2)-Lie group indu-
ced by (1.1), because (Rx{0},*) is not a subgroup of (R?,*) for
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the first, and is a subgroup of (R*,*) for the second (4,2)-Lie
group.

Question 2.1. Is it possible to describe all commutative
(4,2)-Lie groups over R by the procedure given above? If the
answer is positive, then is there a method for finding all non-
isomoprhic commutative (4,2)-Lie groups over R? If the answer
is negative, what are the other examples of commutative (4,2)-
Lie groups over R?

Question 2.2, How the commutative (4,2)-Lie groups over R
classify the commutative Lie groups over R??

§3. NON-COMMUTATIVE (4,2)-LIE GROUPS OVER R

Here we examine the (4,2)-Lie groups whose associated groups
over R? are isomorphic to the group given by (1.2). In this case,

for the chosen coordinates, we do not know of any other involu-
tive automorphism but the identity. In order to find an involu-
tive automorphism of the group over R? defined by (1.2), we are
going to give an alternative presentation of this group. Suppose
that in a neighbourhood of (0,0) the seeking group satisfies the
following conditions:

(x,0)*(0,y) = (x,y); (3.1)

v(x,0)=(0,x), where § is an involutive automorphism; (3.2)

]

(x,0)*(y,0)
(0,y)*(z,0)

(x+y,0); and (3.3)

(z+¢ (y,2) ,y-¢(y,2)) (3.4)
where ¢(y,z) is a differentiable function of two variables.
As a consequence of (3.2) and (3.3), we have
(0,x)*(0,y) = v(x,0)*y(y,0) =
(3.5)
= p((x,0)*(y,0)) =9 (x+y,0) = (0,x+y).
Now (3.1) to (3.5) imply that

(x,y)*(z,t) = (x,0)*(0,y)*(z,0)*(0,t)
(x,0)*(2+¢(y,2) ,0)*(0,y-¢(y,2))*(0,t)
(x+z+¢(y,z) ,ytt-¢(y,2z)).
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ONE-DIMENSIONAL (4,2)-LIE GROUPS 97

The associativity of (*) implies that

o(a+B,y) = ¢ (B,y) + é(a,yH(8,v)); : (3.6)
¢ (a,B+y) = ¢(a,B) + ¢(a=¢(a,B),Y); (3.7)
¢ (a,0) = 0; and (3.8)
¢ (0,y) = 0. (3.9)

Suppose that ¢ (a ,R)=aBW(a,B8). Then, whena -0, v # 0
(3.6) implies that

w(e,y)+e BB = (148w (B,y)) WO,y (1+8W(B,¥)) . (3.10)

Let us suppose that W(0,0)=6. Taking y - 0 in (3.10), for
g # 0 we have

W(B,0) + sa—"”é%-'ﬂ-= (148W(B,0)) -0, i.e.

C _B#o
tge .
Now, (3.9) implies that W does not have sinqularity for 8 = 0.
Hence C=1, i.e.

W(g,0) = —%

W(e,0) = (ef-1), (3.11)
for 8 # 0.

Symmetrically we have:

W(a,y)+a L) = (1-yW(a,y)) W(a(1-BW(a, ) ,0) (3.12)
and
W0,v) = 2(1-e7"%) (3.13)
for v # 0.

Substituting (3.11) in (3.12), we obtain

W(u,1)+y.ﬁ%‘¥.ﬂ'_)_ 2 %[euﬁh-mta.ﬂ)_l]' e il

ag{:_{,x) = e%9=00(a,Y) _ (3.14)

Symmetrically, substituting (3.13) in (3.10), we obtain

2elary) - g - g0V, (3.15)
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Since 5%-a¢(;;Y) = F% 3¢(;;Y}' it follows that the system of
partial differential equations (3.14), (3.15) has a solution. By
solving that system, one obtains

¢(a,y) = a=y + %1n{e97+e_ea-1}.

Hence, the operation (*) locally is given by:

(a,B)*(y,8) =

» = (3.16)
= (a+B + %ln(an+e BB—I),7+6 - %1n(eeY+e BB—1).

An elementary calculation, shows that (3.16) defines a lo-
cal (4,2)-Lie group. We also note that & - 0 leads to the ope-
ration defined by (1.1). So, we consider the special case, when
6=1, i.e.

(a,B)*(y,8) =
(3.17)

= (a+B+ln(e +e P-1),y+8-1n(eT+e™F-1)).

Now, we are going to give a globalization of the local Lie
group over R?. We use the following notations: Let
T={ (a==,b+») | a,b€R}/~, where (a-=,b+=)~(c-=,d+») <=> a+b=c+d;
let S={(a+mi,b-mi) | a,b€R}; let e "=0, 3*"i-_e2, 1n0=-=, and
ln(-1)=wi. It is obvious that R®, T and S are pairvise disjoint,
where T is homeomorphic to R and S is homeomorphic to R®. et
G=R*U TUS. We can identify G with RxR by identifying R? with
(0,#)xR; T with {0}xR and S with (-=,0)xR, as the following fi-

gure shows.
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This makes G a topological space, and G is homeomorphic to
R?*. Define an operation * on G, by (3.17), with the notation
used above. An elementary calculation shows that (G,*) is a Lie
group. Now, we define y:G - G by:

v (x,y) = (x+ln(e¥Y+e *-1),y-1n(e¥+e *-1))
for (x,y)E€G\T; and
¢ (a== ,b+=) = (a+ln(eP+e™@),b-1n(eP+e™@).
It can be verified that y is an involutive automorphism of (G,*).

Similarly as in 2, the existence of non-commutative (4,2)-
Lie groups reduces to the existence of continuous functions
s = (x(s),y(s)) from R into G, such that the map h:R®* - G de-
fined by:

h(s,t) = (x(s),y(s))*p(x(t),y(t))

is a homeomorphism. We consider a class of functions,
s = (s,As) for A€R. Next, we are going to determine those A
which make h a homeomorphism. For these functions,

h(s,t) (s,A8)*y(t,at) = (&(s,t),u(s,t)

where £(s,t) {1+A}s+ln{e(1+a}t—et+e-xs), and p(s,t)=(1+x)t-
{‘+1)t_et+e-ks}

-1ln(e . In order h to be a homeomorphism, it is

necessary for the equations
E(s,t) = a, U{Stt) =b ‘3-18)

to have a unique solution (s,t)€R?, for a given (a,b)€G. The
system (3,18) is equivalent to the system

(1+1) (s+t) = a+b

=Xt . e-As-(1+1)t gD

(3.19)

l-e
Since a+b€R for (a,b)€G, substituting s from the first equation
in the second one, we have to show that

X
e A o= FmplasB) TREE Tl (3.20)

has a unique solution t€R, for given a+b, e P+1er. Hence we have

to determine A, such that the function f:R - R, defined by
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=iz 2z

f(z)=-e "%+ce” %, (C>0, A#-1) is a homeomorphism. This is pos-
sible for A€(-=,0)\{-1}. In this case, indeed, lim f(z) = -=,
z~=

lim £(z) = +=, and £’ (z)=-[e *%(-2)+Ce™?] < 0. In particular,
z‘-a
for A=-2, we can find h™':G - R explicitly. Namely,

h~'(a,b) = (-a-b-1n(f(a,b)), ln(f(a,b)))

where f£(a,b) =\/g(a,b)+/k(a,b) +\/g(a,b)-vk(a,b), where

gla,b) =%e_=(a+b)= and

-b
k(a,b) = (gla,b))? - (£=5—)°.

Remark 3.1. The above formulas are obtained by solving the
third order equation over R

23 + (1+e D)z = e~2(ath),

which is equivalent to (3.20) for A=-2 and z=et.
Next, the (4,2)-operation [ ] on R is defined by

h~' (h(s,t)*h(u,v)), i.e.

[stuv]

[stuv] = (s+t+u+v-1n(A+B), 1ln(A+B)), (3.21)

g (-s-t,-u-v) +\/g(-s-t,-u-v))3-(w/3)°,

Bk %l—s—t,—u-v} - V(g (-s-t,-u-v))2-(w/3)3, and

2 +v+ +v+t+a
wm ety o gtuty Jutv st gutv tias

]

where A

Note that A+B is always positive. =

The above discussion shows that (R,[ ]) is a non-commutati-
ve (4,2)-topological group, which can also be verified directly,
using (3.21). This group is not a Lie group because A and B are
not differentiable functions at any points of R?, although the
induced group (R?®,*) is continuously isomorphic to a Lie group
over R%.

Question 3.2. Is it possible to describe all non-commutati-
ve (4,2)-Lie groups over R by the above procedure? If the answer
is positive, then is there a method for finding all non-commuta-
tive non-isomorphic (4,2)-Lie groups? If the answer is negative,
what are the other examples of non-commutative (4,2)-Lie groups?
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Question 3.3. How the non-commutative (4,2)-Lie groups over
R classify the non-commutative Lie groups over R3?

§4. (4,2)-LIE GROUPS OVER S’

Now, we consider the one-dimensional manifold S', i.e. the
circle.

Proposition 4.1. If (5',[ 1) is a (4,2)-Lie group, then the

aggoctated group is a commutative Lie group.

Proof. If the associated group (S'xS',*) is a non-commuta-
tive Lie group, then it follows that (S'xS',*) is isomorphic to
a factor group of (R%*,*) defined by (1.2), over a discrete sub-
group of its centre. But the centre of (R?,*) is trivial. Hence
the Lie group (5'xS',*) has to be isomorphic to (R3,*), or in
particular S'xS' has to be homeomorphic to R?®, but this is not
the case, i.e. S'xS"' is not homeomorphic to R?. ||

Now, we are going to construct a countable family of non-
isomorphic commutative (4,2)-Lie groups over S'. Let n be a po-
sitive integer. Then it is easy to check that H={2wnk | k€z} is
a normal (4,2)-subgroup of (R,[ ]) defined by (2.4), and the
factor group R/H is a commutative (4,2)-Lie group over S'. For
different n’s, we obtain non-isomorphic commutative (4,2)-Lie
groups over S'.

Except this, the factor group of (R,[ ]) by the normal
(4,2)-subgroup Z, is a commutative (4,2)-Lie group over S’,
which is not isomorphic to any of the above (4,2)-groups on S'.

Question 4.2. Is it possible to describe all commutative
(4,2)-Lie groups over S' by the above procedure? If the answer
is positive, is there a method for finding all commutative non-
isomorphic (4,2)-Lie groups? If the answer is negative, are
there any other examples of commutative (4,2)-Lie groups?

Question 4.3. How the commutative (4,2)-Lie groups over S’
classify the commutative Lie groups over S'xS7'?
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