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FREE (n+1,n)-GROUPS
Don¢o Dimovski

Abstract. The goal of this paper is to give a combinato-
rial description of free (n+l,n)-groups. This description
is also a proof that (n+l,n)-groups do exist.

§0. INTRODUCTION

Vector valued qgroups are defined in [1]. Here we focus on
vector valued (n+l,n)-groups. An (n+l,n)-group is a set G to-
gether with a map [ ]:Gm'1 - 6", satisfying the following con-
ditions:

+ - sy

[[x? 1]xm_z] = [xi[xg ?]] (associativity); and (0.1)
for given a€gG, EGG“, there exist E,XEGn, such that

[ax] = b = [ya]. (solvability of equations). (0.2)

Above, xT denotes X XyeooXpj (xT}=§ denotes the vector
(X4 0Xp0e0erX ) [x7] denotes [ ](XT). Because of (0.1),
{[-'TEéXT+1]y1].--)me is denoted by [x?+1yT]. By | ]i wi denote
the i~ component of the map [ ], i.e. [x],=y, if [x]=(¥y}) . The
above definition for n=1 is a definition of ordinary (binary)
group, thus, henceforth we assume that n22.

In [1], Theorem 4.3., it is stated that free (n+l,n)-groups
are nontrivial, i.e. have more than one element. Although its
statement is true, the proof is not correct. In professor Cupo-
na’s seminar at Skopje, we attempted to find a correct proof.
Here we give a satisfactory combinatorial description of free
(n+1,n)-groups, showing that they are nontrivial, in fact they
are infinite.



104 D. DIMOVSXI

The free (n+l,n)-groups are the only known examples of non-
trivial (n+l,n)-groups. In [2] it was shown that some finite
sets do not admit an (n+l,n)-group structure. Professor John
Thompson provided me with an indirect proof that nontrivial fi-
nite (3,2)-groups do not exist. His proof can be generalized to
a proof that finite nontrivial (n+l,n)-groups do not exist.

We need the following result proved in [2].

Proposition 0.1. Let (G,[ ]) be an (n+l,n)-group. Then
(G",0), where zoy = [xy], ie a group with identity element
(e™)=(e,...,e), e€G, sueh that:

(i) for each xz6G, [ze™]=[e"z];
(2i) if [:T]:ren), then [zgx1]=(en) (here m2n+1); and
(iii) there exist a map g:G =~ G, called the [ ]-inverse
map, such that g"+1=£da, and for each x6G, [zg(xz)g?(z)...
...gn(x)]=fe"). O
Henceforth, the number n shall be fixed, and due to techni-
cal reasons, it will be denoted by N.

§1. A COMBINATORIAL DESCRIPTION OF FREE (N+1,N)-GROUPS

Let X be a given (possibly empty) set. We are going to give
a combinatorial description of a free (N+1,N)-group generated
by X.

Definition 1.1. Let X I={x"% | xex} for ie{0,1,...,N}. Let
v=UY_ x"1. pefine h:y - ¥ by hix ty=x"(3*")  gnhere + is the
addition in the group Zy,. .

Note that for X=§, Y=§. Moreover, for X#§, the map h is a
bijection and hN+'=idy.

Next we are going to define a sequence of sets Ak' k=20,
by induction on k.

Definition 1.2. Let A ={e}UY, e@Y. Suppose that A, is de-
fined. Let

A, = B UB, N\, )xMy, where

MN = {1,23--.,“};

1123
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~ o eeh
By, = (x5 1xjeak, n2N+1} and
e r N s
Ciyy = {x €7% Lo |ijA] r X3,.7e, r+l <s<N}.

Let A=(Jy_,A, . (Compare with [3]).

r

J
341 denotes X3 if

Above, x3x§+1 denotes xi if j=0, and xJx

o 8

Next, let S(A) be the free semigroup generated by A,
s'(a)=s(A) U{1}, where 1 is the empty word. From now on, the
letters u,v,w,u.,v.,w. will be used for elements from A.

(L s
Definition 1.3. We say that a=ul€S(A) has dimension n, and
write dim(a)=n. Define the length |a| of a, by induction, as
follows: |e|=1; |y|=1 for yev; [u|=|u,[+...+|u_|;
| (u?,1) |=|uf|. Let dim(1)=0=|1].

Similarly as in [3], we are going to define a map
y:S(Y) = S(A) called reduction by induction on the length. This

will lead us to the description of a free (N+1,N)-group genera-
ted by X.

Definition 1.4. (a) For u€A,, let ¥ (u)=u.
(b) Suppose that § is defined on S where

s={a | aes(n), |al| =m}, i.e. ¥:S = S(¥), and moreover, for
aesm=
lv(a)| < lal; (1.1)
y(a)#a and |y(a)| = |a| if and only if
a=ufeuui+1, ur+1#e, r+l <s <N, and ¢(uj)=uj (1.2)
for each j=1,2,...,5;
vp(a) = ¢(a); (1.3)
dim(a)<N or dim(y(a))<N implies dim(a)=dim(y(a)); (1.4)
dim(y(a))=2N+1 implies that (y(a),i)eA, for each (1.5)
ieMN; and
If a-ue with y(u,)=u; for each je€M,, then: y(a)#a (1.6)

if and only if uj=(v‘,j) for each jeMg.

Moreover, in this case, ¢(a)-v€.
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Remark: (1) (1.1) implies that w(sm);;sm; (2) Definition
1.2. and (1.2) imply that for aeAfism, v(a)#a if and only if
l¥€a)| <lal; (3) (1.1) and (1.4) imply that y(ANS )< ANS .

(c) The extension of m:sm - S{¥) to a map w:Sm+1 - S(A)
is given by the following algorithm, i.e. for a€s_ ..., p(a) is

defined by the first possible application of one of the follo-
wing steps:

(I) If 2 <dim(a)=n<N, then ¢ (a)=y,(a), where v, (u})
is only a notation for y(u )y (u,)...¥(u.).

(ITI) If dim(a)=n=N, then:
(IT.1) If |y (a)| <|al, then y(a)=y (U, (a));

_.r N s oSN
(I1.2) If a=uje ur+1,ur+1#e, r+l £s <N, then ¥ (a)=uje’;

(11.3) If a=bu§c, where b,ces’ (a), uj=(v?,j}, jemy and b
is of the smallest such dimension, then w{a)=w[bv?c);

(II.4) If a=beMc, where b,c€s'(A), dim(bc) >N, and b is of
the smallest such dimension, then iy (a)=i(bc);

(TI.5) If a=bu§+1c, where b,ces’(a), u,=yey, uj+,=h3{y),

jEMN. and b is of the smallest such dimension, then
w{a)=¢(bceN};

(I1.6) If a=bu), culd, where b,c,des'(a), uy=(v%,3), jemg,
v(vE,c)=eN, b is of the smallest such dimension and
c is of the smallest such dimension for this b, then
¥ (a)=y (bae™) ;

(IT.7) ¢ (a)=a.

(III) If dim(a)=1, i.e. a=(uf,j)eA, then y(a)=(y(v9),J).
Here, if y(uP)=w}, then (¥ (u®),3)=(w},j) is only a
notation for wye

Proposition 1.5. (4) (I) to (III) from Definition 1.4._ 1is
indeed an algorithm, which extends the map v:8., - S(A) to a map

$ebo . % S(A).

(B) For each a98m+1, V8, S(A) satisfies (1.1) to
(167

1125
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The proof will be given later.

Proposition 1.5. completes the inductive step in Defini-
tion 1.4, and so we have defined the map ¥:S8(A) - S(A). More-
over, the construction of ¢ together with Proposition 1.5 impli-
es that the map ¢ satisfies (1.1) to (1.6) for each ae€S(A), and
(1.1) and (1.4) imply that y(A)<A.

Next, we need the following theorem whose proof is very
technical and long, and it will be given later. Its main point
is that the order of the steps in the defining algorithm for ¥
is not essentially important.

Theorem 1.6. The map V:S(A) - S(A) satisfies the following

conditions:

For each a€A,, V(a)=a; ().7)

viel) = ¥; (1.8)

V(abe) = y(ap(b)e) for a,c€S'(4), bES(A); (1.9)

v(ae) = y(abe") for a,bes'(4); (1.10)
v(ael) = y(a) for ags(a), dim(a) 2¥; (1.11)
v(u) = w(vB) for u;=(0h,5), FeMy; (1.12)
w(u?+1) =" for u,=y€y, uj+1=hj(yJ, JeM, (1.13)
¢ru§+‘auf) =¥ for uj:(ve,jJ, JeMy and ¢(”€ a)=e”; (1.14)
viab) = ¥ impiies w(ba) = &¥; and (1.15)
If (a,j)€A, then VY(a,j)=(V¥(a),j). (See remark in (1.16)

(III) of Definition 1.4.)

Let Q=¢(A). It is obvious that Q€A <S(A). Let
R={a | aéS(A), dim(a) 2N}. For each i€M,, and a€R, let

6;(a) = (v(a),i), and 8(a) = 8,(a)...0p(a). (1:L7)
Lemma 1.7. 6<R = @ are well defined maps. Moreover
6fa) = y(a) and aie(a) = Bi(a). (1.18)

Proof. (1.4) implies that dim(y(a)) 2N. If dim(y(a))=N, let
v(a)=w. Then yy(a)=y(a) by (1.3), i.e. y(wy)=wh. If y(w,)#w, for
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some i, then (1.2) implies that |y(w;)| < |w,| and so,

1¢(¢1(w§}}| < |¢{w§)|=|w§|. On the other hand, (1.9) implies
that ﬁ(w,!=$(¢,(W§))- So, ¥(w;)=w, for each i€M . Hence,
w;=(y(a),i)€Q. If dim(y (a)) 2N+1, then (y(a),i)€Q because of
(1.5) and (1.16). The fact that the maps 6; and & satisfy (1.18),
follows from (1.12) and (1.3). It is obvious that & is a map
from R to R. {)

Definition 1.8. Let [ ]:08"" = oV be defined by

N+1 5 N+1
b, =y (T (1.19)

The proof of the following main theorem is going to be divi-
ded into several lemmas.

Theorem 1.9. (@,[ 1) is a free (N+1,N)-group generated by X.

Lemma 1.10. (Q,[ ]) s an (N+1,N)-semigroup, i.e. (Q,[ 1)
satisfies (0.1).

N+1 N+1

N
Proof. [[u1+']uN+z]i = 0, ([u] | [PRSNTS £ o
= o, (o) ug, ) = (ee ) g, ), 1)
= (e "), ),1)  (by (1.9)
= ey, 0,0 (by (1.18)) = (v(u)T),1) (by (1.9))
= (plu,p(y™™),4)  (by (1.9))

= (v(u,pe(ut?),1) (by (1.18))

= (v(u,0(u¥*)),1) (by (1.9))

= o, (w0 )*™) = o, (u, [*?]) = [u,[u]"?]],. D _
Lemma 1.11. For a=u}, n2¥, u;6Q, [aeNL=[eHa]i:9ifa) for

each £EMH.

Proof. [aeM] =o, (ae™)=(y(ae™),1)=(y(a),1) (by (1.11))=0,(a).
Similarly, [eNa]i=Bi(a). O

Lemma 1.12. There are maps g;:94 = q, i€M,, such that for

N
each uéq,

(ug,(u)g (w)...gy(u)] = e). (1.20)

1127
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Proof. For yeYcQ, define gi(y)—h (y). For e, define
g; (e)= [e’N '];. Lemma 1.10 implies that [eg,(e)...gN(e}] [e
and (1.11) and (1.8) imply that [e? ]“(e ). Now, suppose that
the maps g; are defined on Q ={u | veq, |u| =m}, and satisfy
(1.20). Let u=(a,]j)= (u ;J)EQ Define g, (u)=8; (b) where:

aN]
r

m+1°
b= (a,j+l)...(a,N)G(a)(a,1)...(a,j-1);

G(a) = G(u?} = G, (u )G, (u _ )...G,(u); and

G, (v) = g,(v}g,(v]...gntv).

Now, for each i€M., eituG,(u})=ei(ue1(b}...eN{b})=
8;(us (b)) = (y(us(b)),i) = (v (ups (b)) ,1i)
(¢(uw(b)),i) (by (1.18)) = (y(ub),i) (by (l 9))
(e ,i) (by (1.14), because w(aG(a)}—w(u1 u G, (u )G(u s b
=y "eNe (™)) by (1. 19) and (1.9)) w(u, G[u &
(by (1.10) and (1. 11}) = {e ) (by induction) = (e ) (by (1.8)).
Hence, 8, (uG,(u))= (e¥,i)=e for each iemy, i.e. [ue, (u)]—(e Ve 2B

Lemma 1.13. The equations [az]=b=[ya] have solutions in Q.

Proof. For given a€Q and hGQ let x=[G,(a)b] and
y=[bG, (a)] . Then [ax]=[aG, (a)b]=[e Q]—b by Lemmas 1.10, 1,11,
and 1.12. Using (1.15), we have that [G, (a)a]-(e ), and again
by Lemmas 1.10, 1.11, and 1.1Z,

(ya] = [bG,(a)a] = [be"] =b. O

Lemmas 1.10, 1.11, 1.12, and 1.13 imply that (Q,[ ]) is an
(N+1,N)-group, with identity element e, and [ ]-inverse map
g=g,. This implies that gi=gi for each iGMN, and gN+1=idQ.

The proof that (Q,[ ]) is generated as an (N+1,N)-group by
X is the same as the similar proof in [3]. Here, we note that
(Q,[ 1) as a semigroup is generated by A,={e}UY, where X is
identified by X °
Ax)=x"° is an injection.

. Moreover, the map A:X - Q defined by

In order to complete the proof of Theorem 1.9, we have to
prove the following Lemma.

1128
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Lemma 1.14. Let (4, | }’J be an (N+1,N)-group with identity
element e’ and [ T—inuerse map g':8 = H. Let f':X - H be a gi-
ven map. Then there exist a unique (N+1,N)-homomorphiem f:9 = H,
guch that fo)=f'".

Proof. Define a map f:A - H by induction as follows:
Fle)=e'; T(x°)=f'(x); ?(x‘ =(g) (£ (%)), ieM,, i.e.
T hH=Fm* (x™°)y=(g") (€7 (x)); and F(a,1)=[F, (a)], for (a,1)ea,
where f,(u?)=?{u‘} ?(u ). We have to show that ?(k(a) i)=[%, (a)]i
for each a€R and iEMN where [f (u )] stands for f{u ). The
proof is by induction on the length. Suppose that for each
a€R ={a | a€R, Jal] <m},

T, = [E @]} (1.21)

It follows directly from the definition of f that (1.21) holds
for the initial value m=N. This assumption implies that for
(a,i)eans ,
- — /
fyv(a,1) = [E, ()]} (1.22)
since y(a,i)=(v(a),1i).
Now, let a€Rm+‘, and ¢(a)#a.
(1) 1f |y,(a)| < |a], then E(y(a),i)=E(v(¥,(a)),i) (by
(1.9)) = [y, (@]] (by (1.21)) = [, (@]} by (1.22)).
(2) If y,(a)=a, and a=be™ c, dim(bc)-cﬂ, then (v (a),i)=
-?{w(bce 1) by {31, 10)) f{bce (i) (by (II.7)) since
v, (a)=a) = [E,(b) (e")VE (c)]] (by the definition of F) =
i [— (a)]i
(3) If a=be'c with dim(bc} 2N, then E(y(a),1i)=F (v(be),1)
(by (1.10) and (1.11)) = [E,{b)f (c]]i (by (1.21)) =
= [£, (b) (e’ )NE (c)]i = [‘ ta)]i
(4) If a=bu c with uj—(vP j) for each jEMN, then
T(v(a),i) ?(¢(bvpc) i) (by (1.9) and (1.12)) =
[, ®)E, (VD) E, (c)]i (by (1.21)) =

—[f(b)[f (vp)], [, B 1GE, (@] = [£,(a)]] (by the definition
of f).

1129
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(5) Let a=byh(y) ...hN{y}c for some y=x“ieY. Then
(v (a),i)= ?(w(bceN] i) (by (1.9), (1.10) and (1.13)) =
= [£,(b) (e’)” BE (c}] (by (1 21)) =

= [f,(b)(g & (x)]-..(g V(e () £7 (x)g” (£7(x)) ... (g’ i
(£ (0)F, (1)]; (because (g’ )N '=id, and hd (x"1)=x" (1+J)) -
[E, @];-

(6) Let a—bu curd where U, (a)=a, u. —(v1,3] and ¢(vpc) eN.
Then E(e",i)=e’ for each 1emu, and so E(u(vPe),1)=(%, (VD) E, (c)]i
=a’; .8t [?1(v?1?1(c)]¥((e'] . Now, Pronosition 0.1 (ii) impli-

es that
[[E, (vf }]r+1 JE, OE, (@[5, 0], ... [F, D] = en™),

.00 [E, (ur+1 ' for each 1€\'1I so, E(v(a),1)=F(v(beVd), 1)
(by (1.9) and (1.14)) = [£,(b)(e") N (d}] (by (1.21)) =

e - N .

[f1(b]f1 (ur+1cuf}f1 (d)]i tf“ (a):[i

cu,)]i=e

Hence for y(a)#a, f(v(a),i) = [?1(3)]1-

Now let v(a)=a. If dim(a) =2N+1, then (a,i)€A, and so
?(w(a),i}=[?1(aj]1 by the definition of f. If dim(a)=N, then,
since y(a)=a, (a,i) is only a notation for u, where a=u§. Then
F(v(a),1)=F(u,), and [E,(a)]) is only a notation for F(u;). Thus,
we have completed the inductive step, i.e. we have proved that
for each a€R, E(v(a),i)=[F (a)]’,. Let £:0 - H be defined by
£(u)=F(u). Now, let (W'"")eg"*'. Then f([uN+1]i)=?(ei(u§+1))=
=Fyp ¥y, 1)=[F, (uN+1}]i (£, (¥*")], implies that the map £ is
an (N+1,N)-homomorphism. Moreover, from the definition of f it
follows that foi=f’.

The fact that f is a unique (N+1,N)-homomorphism with this
property, follows from the fact that Q as an (N+1,N)-group is
generated by X. (End of Proof of Theorem 1.9.) [

Corollary 1.15. The (N+1,N)-group (Q,[ ]) is nontrivial

moreover the set @ ig infinite.

Proof. For example, un=(un_‘eN,1), n>1, u1=(eN+',1) is a

sequence of distinct elements in Q . [
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Corollary 1.16. If the gset X is empty, then fQ,f ]) i8 an
initial object in the category of (N+1,N)-groups. Moreover, Q 18

an infinite (countable) set. [

§2. PROOF OF PROPOSITION 1.5.

(1) The right hand side in (I) is well defined, because
|u,| < |a|] . Hence y(a) is well defined. Moreover: y(a)=a or
lyla)| < lal, by (1.1); v(y(a))=¢(a) by (1.3); and dim(y(a))=
=dim(a) . Hence y satisfies (1.1) to (1.6) for aESm+1 with
2 <dim(a) <N.

(2) The right hand side in (II.2) is uniquely determined
by the form of a.

(3) In (II.1) and (II.3) to (II.6) the right hand side is
of the form y(a’) where |a’| < |a|, and so, it is well defined.
Moreover:

(3.1) |p(a)| = |v(a”n)| s |a’| < |a| by (1.1).
Because dim(a’) 2N, (l1.4) implies that
(3.2) dim(y(a)) =N.

(4) The above shows that y(a) is well defined for each
aesm+1 with dim(a) =2N. Moreover, for such a’s | satisfies:
(1.1) - because of (2) and (3.1); (1.2) - because of (3.1) and
(2); (1.3) - because of (2) and the fact that no step of (II.1)
to (I1.6) is applicable on vfeu.for 1<s <N and ¢(v.)=v.; (1.4) -
because of (3.2) and (2), i.e. dim(a) 2N and dim(y(a)) =N;
(1.5) - because of (1.3) i.e. for w(a)=vD, n 2N+l and ¥ (v})=v}
it follows that vD isnot of the form ujeMu ~with u_, #e;
(1.6) - because no step of (II.l), (II.2) and (II.4) to (11.6)

is applicable on uq with w(uj)=uj.

(5) Now let (a,i)ear\sm+1. Then (3.2) implies that
dim(y(a)) 2N+1 or dim(y(a))=N. If dim(y(a)) 2N+1, then (157
from (4) implies that (y(a),i)€A. If dim(y(a))=N, then y(a)=v}
is well defined, and so (wia),1)=qi€a. For (a,i)en, y(a)#a
implies that |y(a)| <|a| by (1.2) from (4). Hence |v(a,i) |<
<|{a,1)|, i.e. y satisfies (1.1), and moreover, y satisfies 6L 2)
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Using (4) it follows that ¢y satisfies (1.3) on Af\Sm+1. The
definition of ¢ shows that ¢ sat%sfies (1.4) . Because
dim((a,i))=1, it is trivial that ¢ satisfies (1.5) and (1.6) on

Ansm-ﬂ =

The proof of (A) and (B) from Proposition 1.5. follows, in
fact is, (1) to (5). O

§3. PROOF OF THEOREM 1.6.

The fact that ¢ satisfies (1.7) follows from Definition
1.4. (a). The only step applicable on eV is (II.7). Hence ¥
satisfies (1.8). '

The rest of the proof is divided into several lemmas.
Lemma 3.1. For a€S(A), vy(alze(y (al)l.

Proof. If dim(a)=1; then y(y,(a))=v(y(a))=¥(a) by (1.3).
If 2 <dim(a) <N, then y(a)=y¢,(a) by (I), and again by (1.3),
y(a)=y(v,(a)). If dim(a) 2N, then: y(a)=¢(v,(a)) if v, (a)#a by
(IT.1); and y(a)=y (v, (a)) if ¢, (a)=a. O

Lemma 3.2. For each a = bue, b,c€5"(4), u€4,
v(a) = Y(by(ule).

Proof. It follows from Lemma 3.1 and (1.3), because
¥ (by (w)e)=v (v, (by (u)e) )=y (¥, (buc))=y(buc). [

Lemma 3.3. w(aenb) = $fabe”)'fbr a,b€5'(4), and
1 <dim(ab) <W.

Proof. By induction on the length. If y,(ab)#ab, then
y(aeb)=y (v, (a)eNy, (6))=y (v, (ab)eMN)=y(abe™). If ¥ _(ab)=ab and
=etv§, where v #e, then w(aer)=aetv?eN=$(abe“) by (II.2). 0O

Lemma 3.4. Let a:buTc, where uj={s,jJ for each jEHN, and
V(z)=z. Then V(a)=v(bze).

Proof. By induction on the length. If ¥, (bc)#bc, then
¥ (bule)=y (v, (b) &y, () )=y (¥, (b)2¥, () )=y(bzc) by Lemma 3.2. If
y,(bc)=bec, then y (a)=a, and so, (II.1) is not applicable on a.
Because uf#e“, (ITI.2) is not applicable on a. Since uj={z,j),
(IT.3) is applicable on a. If b is of smallest such dimension,
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then ¢ (a)=y (bzc) by (II.3). If not, then b=b'w§d, where
w.=(x,j)€A, with b’ of the smallest such dimension. So,
w(a)=$(b'xdufc}=¢{b'xdzc)nw{bzc}, because Ib’xdu?c < |a| and

|bzc| < |a]- I

Lemma 3.5. Let a = beyc, dim(be) 2N. Then V(a)=v(be).

Proof. By induction on the lenght. If y, (bc)¥bc, then

v(a)=y (v, (b)eNy_ (c))=v (v, (bc))=v (bc), because

|¢‘(b)eN¢1(c}] <lal. If ¢, (bc)=bc, then (II.1) is not applicab-
le on a, and since dim(a) 2N, (IT.2) is not applicable on a. If
(I1.3) is applicable on a, then the conclusion follows from Lem-
ma 3.4 and the inductive hypothesis. If (II.3) is not applicab-
le on a, then (II.4) is applicable on a. If b is of the smallest
such dimension, then y(a)=y(bc) by (II.4). If not, then b=b’end,
for some des’'(A) or b=b’e® for some 0 <t <N, and with b’ of the
smallest such dimension. In both of these cases, the conclusion
follows from (II.4) and the inductive hypothesis. ||

N}

Lemma 3.6. w(ae'b) = ytabe') for a,bes'(4).

Proof. If 1 <dim(ab) <N, then w[aer)=$(abeN) by Lemma 3.3.
If dim(ab) >N, then y(ae’b)=y¢(ab)=y(abe") by Lemma 3.5. I

Lemma 3.7. w(auf+1b) = w(abeﬂ) for u,=y€Y¥ and “f+1:th5J'

Proof. By induction on the lencght. If y,(ab)#ab, the conclu-
sion follows from Lemma 3.2 and the inductive hypothesis. Let

w‘{ab)=ab. Then (II.1) and (II.2) are not applicable on au§+1b.

If (II.3) is applicable on au§+1b,_then a=a’v§a", or b=b'v§b"
where vj=(z,j)€h. Then the conclusion follows from the inductive
hypothesis and Lemma 3.4. If (II.4) is applicable on auyt'p,
then a=a’e a" or b=b'er“, and the inductive hypothesis and Lem-
ma 3.5 imply that y(auy' 'b)=y(abe¥). If (II.1) to (II.4) are

not applicable on au§+1b, then (II.5) is. If a is of the smal-
lest such dimension, then y(au}''b)=y(abe") by (II.5). If not,
then a=a'v¥+1a“ or auf=a'v§+' where v,€Y and vj+1=hj(v1}, with
a’ of smallest such dimension. In the first case the conclusion
follows from the inductive hypothesis and (II.5); in the second
one the conclusion follows from (II.5) and the fact that in this

case v1=ht{u1)- O
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Lemma 3.8. (a) y(abe) = y(av(ble);
(b) y(ab) = e implies y(ba) = e¥;
(e) v(ze) e implies wfau£+1cufd) = ¢(ade”) for

s = (2,7)6A for each jGHN.

Proof. By induction on the lenght, for (a) of abc, for (b)
of ab, and for (c) of au§+‘cufd. The proof is divided into se-

veral steps.

]

I

Step 1. v(au) = y(Y(a)u) for a€S(A), ufA.

Proof. (1) If y, (au)#au then Lemma 3.2 and the inductive
hypothesis imply that y(au)=y(y, (a)y, (u))=v (¥ (¥, (a)) ¥, (u))=
=y (v(a)y, (0))=y(y(a)u).

(2) If y(a)=a, then y(au)=y(y(a)u).

(3) Let ¢1(au)=au, dim(a) 22, and y(a)#a. Then (I), (II.1l)
and (III) are not applicable on a.

(3.i) Let a=vfeNvi+1, r+l £s <N. Then w(a)=v?en. and
m[w{a)u)=w(vfeNu). If s <N-1, then by Lemma 3.3 ﬁ(vfeNu)=
=¢(vfue“}=w{vfeNv§+‘u)=w(au}. If s=N-1 then w(vfenu)=¢(v?u} by

Lemma 3.5, and y(au)=y(v5u) again by Lemma 3.5.

(3.ii) Let a=buc, u;=(z,j). Then Lemma 3.4 and the induc-
tive hypothesis imply that ¢ (v (a)u)=¢(y(bzc)u)=¢(bzcu)=y (au).

(3.1ii) Let a=be“c, dim(bc) >N. Then by Lemma 3.5 and the
inductive hypothesis (¥ (a)u)=y (¥ (bc)u)=y (bcu)=y (beNcu)=y (au) .

(3.iv) Let a=bu’''c, u =yey, uj+1=hj(y]. Then by Lemma 3.7
and the inductive hypothesis, w(w(a)u}=¢($(bce")u}=¢(bce“u)=
=¢(bcueN)=¢(bu?+1cu)=w(au). Here we have used inductively (a)
from Lemma 3.8 for bece u, because |bce™u| < |au].

(3.v) Let a=bu§+1cufd with uj=(2;j?o W(zc}=en, b of the
smallest such dimension, c of the smallest such dimension for
this b, and (II.l) to (II.5) are not applicable on a. Then by
(II.6) y(a)=y(bde"), and

y(y(a)u) = w(y(bdeM)u) = y(bae™u) = v(bdueV)

by the inductive hypothesis and Lemma 3.3.
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Now, we examine ua. It is obvious that (I), (II.1), (II.2),
(11.7) and (III) are not applicable on au.

(3.v.1) Let (II.3) be applicable on au. Since (II.3) is not
applicable on a=bu§+1cufd, it follows that (II.3) is applicable
on du or on ufdu. In the first case, let du=d'w?, with wj=(x,j)EA.
Then by Lemma 3.4 and the inductive hypothesis, ¥ (au)=
=y (b, cuTarx)=y (ba’xe™)=y (ba’wye")=y (baue™)=y (¥ (a)u) . In the
second case, let ufdu=u§. Hence, in this case u=u . Then ¢ (au)=

=¢(bu§+1cz) (by Lemma 3.4) = ¢(hu§+1e) (by Lemma 3.8 (a) and (b),
cz| < |aul) = ¢ (bdue®) .

: il N
since y(zc)=e , and |bur+1

(3.v.2) Let (II.4) be applicable on au. Again, since (II.4)
is not applicable on a, it follows that du=d’eN. Then
t(buN curdu)=¢(bnN curd'}=w(bd’eml=¢[bd'eNeN]=¢[bdueN} by
b 5 1 SR iy o B !
Lemma 3.8 (c) inductively, and Lemma 3.5.

(3.v.3) Let (II.5) be applicable on au. Again, since (II.5)

is not applicable on a, it follows that du=d'yh(y)...hn{y). Then
N = N ra, N, _ , NN, _ 2N B N
ﬁ(bur+1cu1du)—$(bur+1cu1d e )=y (bd’e e )=y (bd’e )=y (bdu)=y(bdue”)

by Lemma 3.8 (c) inductively, Lemma 3.7 and Lemma 3.5.

(3.k.4) If (11.3), (II.4) and (II.5) are not applicable on
au, then (II.6) is applicable on au, and the assumptions in (3.v)
imply that ¢(au)=y (bdue®) by (II.6).

The above discussion shows that ¢ (au)=y¢(¢y(a)u), i.e. we
have completed the inductive step for Step 1.

Step 2. y(ual) = vluplal).

Proof. (i) If w‘(ua}#ua, then the conclusion follows from
the inductive hypothesis and Lemma 3.2.

(ii) If y(a)=a then y(ua)=y(up(a)). If dim(a)=1, then
¥(ua)=y¢(uy(a)) by Lemma 3.2.

(iii) Let ¢ (ua)=ua, dim(a) 22, and y¢(a)#a. Then (I),
(Xr.1), (Ir.7) and (III) are not applicable on a.

N_s
Y

eN). The

(iii.l) Let (II.2) be applicable on a, i.e. a=v
r+l <s <N, vr+‘¥e. Then w(a)=vfeu, and Y (uy(a))=y(uv

allak
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conclusion follows from Lemma 3.3. in the case s <N-1, and from
Lemma 3.5 in the case s=N-1.

(1ii.2) Let (II.3) be applicable on a, i.e. a=bulc,
uj={z,j], jGMN.'Then by Lemma 3.4 and the inductive hypothesis
y{up (@) )=y (uy (bzc) )=y (ubzc)=y (ua) .

(iii.3) Let (II.4) be applicable on a, i.e. a=be“c,
dim(bc) 2 N. Then by Lemma 3.5 and the inductive hypothesis
v (up (a) )=y (wp (bc) )=y (ubc) =y (ube™c) .

(iii.4) Let (II.5) be applicable on a, i.e. a=byh(y)...h (y)c,
y€Y¥. Then by Lemma 3.7, and the inductive hypothesis y (uy(a))=
=w(uu(bceN}=¢(ubceN}=¢(ua).

(1ii.5) Let (II.6) be applicable on a, i.e. a—bu L, cuid,
with uJ—{z,J}GA, plze)= e and b,c are of the smallest such di-
mensions. If dim(d) =1, then by Step 1, w(ua)”w{w(ubu cufd')v}
(where d—d'v, vEA)—wJ;(qJ(Ubd'e )v)—w{uup(bu cu1d)) w{uw{a}). So,
let a= bu cuf. It is obvious that (I), (II 1) (IT.7) and (III)
are not applicable on ua, since we have already assumed that
(I1.1) to (II.5) are not applicable on a, and y A (ua)=ua.

(i1i.5.1) Let (II.2) be applicable on ua. Then ub=el

and so, by Lemma 3.4 and the inductive hypothesis y(uva)=
=y (b"u], cuf)=y(b’eM) =y (eMbe™)=y (ube™)=y (uy (a).

bt

(iii.5.2) Let (II.3) be applicable on ua. Then
ub—w b’ with w. —{x j)EA or ub=u,. In the first case Lemma 3.4
and the inductive bvpothesis 1mplv that y(ua)=y¢(xb’u N cuf}=
=y(xb’e ) w(wa'e )-¢[ube )= w(uw[be Y)=y(uyp(a)). In the second
case, Lemma 3.4 and the inductive hypothesis imply that
¥ (ua)=y (zcul)=y (¢ (ze) ul) =y (e"ul) =y (ufe™)=y (ube™)=y (ui (be
=y (uy(a)). (In this case b=1,)

Ny_

(iii.5.3) Let (II.4) be applicable on ua. Then the only
possibility (since (II.4) is not applicable on a) is ub—er'
So, by Lemma 3.5 and the inductive hypothesis ¥ (ua)=y (b’ u ,cu )-
=y (b'eM)=y (eNb’eMN) =y (ube™)=y (uy (be™) )=y (uy (a)) .

(iii.5.4) Let (II.5) be applicable on ua. Then
ub=yh (y)...hN(y)b’, for ye€Y. So, by Lemma 3.7 and the inductive
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hypothesis ¥ ()= (b" oY, cufe™)=y (breMe™) =y (eMbre™) =y (ub)=
—¢[ube )=¢(u¢{be Y)=y (uyp (a)) .

(i1i.5.5) If (II.1) to (II.5) are not applicable on ua,
then (II.6) is applicable on ua. If ub is of the smallest such
dimension, then by (II.6) 14-(ua}=¢(U.beN)W(\Iw{beN}F'Hu'Ha}). If
not, then ua=v§+1gvfa', where vj=(x,j}eh, w(xg)weN, and g is
of the smallest such dimension. Now, there are only two possibi-
lities for vN

5 2
N — — r LU
(a) Vs, = ub’ where b = b’b"; and
N - N - =
(b) Vess ™ ubur+1. In this case uj —vj, and b=1.

In the case (a) there are four possibilities for b’.

oL LN . = o
(a.1) b = b’gv.b’’’, i.e. b"=gv,b'’’;
(a.2) b" = gvi, Vigy = Bpgle t:>r€
(a.3) g = b"u_,_c’, where ¢ = c'v,c"; and

§+1
(a.4) g = b"u ,c, tsr.

In the case (b) there are two possibilities:

gvfc"; and
g, t<r.

b.l) ¢
(b.2) c

In the case (a.l) the inductive hypothesis and (II.6) imply

that y {uat);b.;,{‘}:ﬁ‘gvtbr ' 'u§+‘cuf)=m (b’ ”u§+1cufeu}=w(b' ’ ,eNeN}=
- rrs

v(vy t+1TV4 )=y (uy(a)).

In the case (a.2) vj=uj for each j, and so (II.3) is

applicable on a which contradicts our assumption.

In the case (a.3) ua=vt b" ur+1c vtc"ur. Then ¢ (ua)=
=y (c"uFeM) (by (11.6)) = w{c“u Tyl c'xb ) (because
¥ (xb"u N cr)=eM ana using inductively S 3.6 (a) o58 () 5

r+1

p (c"uk = ¥+1 c’'xb") (by the 1nductive hypothesis) = y(c"zc’'xb")

(by Lemma 3 4} vic®zcr v b"} (by Lemma 3.4) =
v(p(czc’v§)v), b") (by the inductive hypothesis) = v (e, b™)
(by Lemma 3 8 (b} inductively since |c"zc'v, £l < |ua|)= w(v§+1b“e )=

—¢(Vt+,¢(vt+ prel ))=p (v, v(a))=v(uv(a)).

In the case (a.4) u,=v., and ua= u§+ b"u cur Then

r+1
p(ua)=y(uf, eM=y(uf, v b eM))=y(ul, b“eNJ—¢{Ht+1beN}=
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=y (u £ @)= ¢(uw[a)), because e uw(zb“ §+1c)—¢(u czb")w
zw(u b“e )= w(b“ r } ¥ (b" §+1e ), using the fact that

]zb“uN

N £ t+a

In the case (b.1l) ua=u t .Sy, c'u;

=y(zc'ulc") implies that v (u' c"e“)—eN and by Lemma 3.8 {b)
indictively, w(c"ute )~eN. Then w{ua)ﬁw(c"u5+1en) w(ut+1e )=

. Then ¢{zc')=eN=

=y (uy(a)).
In the case (b.2) ua= u:+ cut+1. Then w(ua)=¢(ut+1en)=
=¥ (u ,,¥(a))=v(uy(a)) by (II.6).

Thus we have proved Step 2.
Step 3. ylabe) = ylavible).

Proof. If c=c’u, ueld, then by Step 1 y(abe)=y(v(abec’)u)=
=y (v(ab(b)e’)u)=v(av(blc’u)=y(av(b)ec). If a=ua’, u€A, then by
Step 2 v(abc)=i(ud(a’bec))=v(up(a’d(b)e))=¢(ua’v(b)c)=v(ay(b)ec).
If a=l=c, then ,(b)={(y(b)) by (1.3).

With Steps 1 to 3 we have just completed the inductive step

for (a) from Lemma 3.8.

Step 4. Proof of the inductive step for Lemma 3.8 (b).

Let w{ub)zeN, where u€A. We are going to prove that
w(bu)=eN. Several applications of this fact will imply the in-
ductive step for Lemma 3.8 (b).

If [y(b)| < |b|, then eN=y(ub)=y (uy(b))=y (¥ (b)u)=y (bu).
If [y(uw)| < |u|, then eN=¢(Ub)=¢(w(U}bl—¢(b¢{u)]=w(bu)- Let
[4(b)| = |b| and y(b)#b. Then b—vrewvi+ , T+l <s <N, and
v(b)=veN. so, e —w{ub]=¢(uw(bj} v(uvSeN). This implies that
s=N-1 and w(uv,)~eN. But then e —¢(v u) by the inductive hypo-

thesis, and so, e —w{v1u} v (vie Nu) (by Lemma 3.5) =
= ¥ (¥ (vSeM)u)=y (¥ (b)u)=y (bu) .

Now let ¥ (b)=b=b’'v, v€A, and y(u)=u.

If |y(ub’)[=|ub’| and ¥(ub’)#ub’, then ub’=ufe™uS, ,

r+l <s <N, and e=y (ub)= w(use v) implies that s=N-1 and
v (uSv)=e —¢(uzvu )=y (u] eNvu )=y (b’vu)=y (bu).
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Next, we assume that y(b)=b=b’v, |y(ub’)|< |ub’| and
¢ (u)=u. Let b=cd, where c is of the smallest dimension with
| (ue) | < |ue|. It follows that 1< dim(c) < dim(b’). From
¢ (u)=u, ¢(b)=b, it follows that ¢ (uc)=uc, and so (I), (IIL.1),
(Ir.2), (I1.7) and (III) are not applicavle on uc.

(1) Let (II.3) be applicable on uc. Then uc=u? where
uj=(z,j}. So, eN=y (ucd)=y (zd). Now we examine cdu=u§du1. The
assumptions imply that (I), (II.1) and (III) are not applicable
on cdu. Furthermore, (II.2) is not applicable on uEdu,, because
dim{ufdu.) =2N. If (I1.3) is applicable on u::]élu1 , then it must
be applicable on d, but then y(b)#b. If (II.4) is applicable on

ufdut, then it mus£ be d=eN, i.e. eN=¢(zeN)=¢[z), but then

¢(w#u. If (II.5) is applicable on uldu , then d=d’yh(y)...h"(y)a",

but then ¢ (b)#b. Because w(zd)=eN, it follows that (II.6) is

applicable on uEdu,. For ufdu1, the b of the smallest such di-
mension in (II.6) is the empty word. Now, let u?du1=u§d'u‘d"u1,
where d’ is of the smallest such dimension. Then w(b)=¢(u§d}=
=¢(u§d’ud“)#u§d=b. Hence d is of the smallest such dimension,
and v (uddu,)=e¥ by (11.6).

(2) Let (II.4) be applicable on uc. Then it must be:

2N N

(a) uc=uc’eN, dim(c’)=N-1; or (b) uc=e®"’, d=1; or (c) uc=e'c’,
dim(c’) >N. In the case (a) eM=y(ucd)=y(uc’eMd)=y (uc’d)=y(c’du)=
=¢(c'eNdu}=¢(bu). In the case (b) uc=ub=eN, and so w[bu]=eN. In
the case (c) eN=¢{ucd}=w(enc'd)=¢{c’d) implies by Step 3 that

v (cdu)=y (N "y (crd)e) =y (e2N) =€V,

(3) Let (II.5) be applicable on uc. Then u=y€Y and
c=h(y)...h%(y). Then y(ucd)=y(yh(y)...h"(y)d)=v(eMa)=y (aeV)=eV.
If d=1 then y(bu)=y(cu)=y¢ (h(y)...haN(y)y)=eV. If d#1 then
¢(d)=eN. and so w{bu)=¢{h(yi---hN(y]dy)=w{h(y}...hN(y}¢(d}y)=
=y (h(y)...hN(y)eNy) =y (h(y) .. .nN (y)y)=eV.

(4) Let (II.6) be applicable on uc. Then uc=uz:+1c'ur with
¢’ of the smallest such dimension, u.=(z,j) and y(zc’)=e . More-
over, since (II.3) is not applicable on uc it follows that r 21.
Then y(uc)=e™ by (II.6). Now, e'=p(ucd)=y(ed)=y(de") implies

that dim(d) 2N and v(d)=eY, or d=1. Let dim(d) =N. If dse’, then
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¥ (b)#b. Hence d—eN, and so ¢ (bu)=y (cdu)=¢ (ce™u)=p (cu)=e". Now,
let a=1. Then ub=u)  c’ul and bu=u}, c’ul*'. If r+1#N, then
w(bu)=e by (II.6), because, of our assumptions, (II.1l) to
(II.5) are not applicable on bu. If r+1=N, then by Lemma 3.4
and the inductive hypothesis {lp(zc')=eN=w[c'z) because
lerz| < [ubl), v (bu)=p (c'u})=y (c’z)=e".

Hence for |y(ub’| < |ub’| we have proved that y (bu)=e™.

Now let ¢ (ub’)=ub’. If ub=e2?N, then y (bu)=e". So let

ub#e®N. Then, the assumptions imply that (I), (II.1), (II.7)

and (III) are not applicable on ub. Since w(ub)=eu, (X1.2) is
not applicable on ub. If (II.3) is applicable on ub, then

ubzu? for uj={z,j} and ¢ (z)=z; hence ¢(ub)9éeN. If (I1.4) is appli-
cable on ub, then ¢ (ub’)#ub’ or ¢(b)#b. If (II.5) is applicable
on ub, then ub=yh(y)...h"(y), and then ¥ (bu)=y¢ (h(y)...hN (y)y)=
=e". If (11.6) is applicable on ub, then ub=ul, c’uf with

uj=(z,j} and ¢{zc]=eu. Then, if r#N-1, no step of (II.1) to
(II. 5) is applicable on ul c’u}'', and by (II.6) t(u crult)=

=y (eV)=eV, i.e. y(bu)=eV, since c’ is of the SROATESE - such di-

mension. If r=N-1, then by Lemma 3.4 and the inductive hypothe-
sis ¥ (bu)=y (c’u)=y (c’z)=y (zc’)=eN

Thus we have completed Step 4, i.e. y(ub)=e" implies

Yy (bu)=e, which in turns implies that if *(a.b}=eN then w(ba)=en.

Step 5. up(zc}-fe” implies that lp(au£+1cufd)=wfaden) for
uJ.:(z,jJ, r21,

Proof. If ad#1, then using Lemma 3.8 and the above steps

inductively, we have ¢ (aur+ cufd) =y (ay (ul:+ : cuf) d)=v¢ (ae“d)=i' {adeNl .

If a=1=d, then eN—¢(zc) If ¢(z)=z, then by Lemma 3.4 and Step 5,
—w(zc) w{u c)= w(u cur) Now, let t(z)—wN. Then ¢ (u,)=w., and

r+a

eN=y (ze)=y (¥ (2z)c)= w(ch} =p (v, (u )e)= w(u c)= ﬁ(ur+1cur). The last
case is when q;(z)-wf, t 2N+1. 'l‘hen w(u )= (w, fd) e and

“¢(ZC)=¢(¢(Z)c} =p(w,c)=v(v(v, (u ))e)= ﬂ(u c)= ﬁ(u LSy, Ay

In the above steps the show that if ¢ satisfies Lemma 3.8
for words with lenght less than or equal to m, then ¢ satisfies
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Lemma 3.8 for words with lenght equal to m+l. Hence, by induction,
¥ satisfies Lemma 3.8, i.e. we have proved Lemma 3.8. ||

Lemma 3.9. ¢faufb) = Y(azb) for ujzrs,j).

Proof. ¢ (au'b)=y¢(ay (u))b) (by Lemma 3.7)
v(ay (v, (W))b) (by Lemma 3.1) = v(a¥, (u)b)
v(aw'b) (where ¥(z)=w5)=y(a¥(z)b)=v(azb). Il

]
nou

Proof of Theorem 1.6. (1.9) is Lemma 3.8 (a); (1.10) is
Lemma 3.6; (1.11) is Lemma 3.5; (1.12) is Lemma 3.9 for a=b=1;
(1.13) is Lemma 3.7 for a=b=1; (1.14) is Lemma 3.8 (c); (1.15)
is Lemma 3.8 (b); and (1.16) follows from the definition of y. ||
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