G. CUPONA, D. DIMOVSKI, A. SAMARDZISKI

FULLY COMMUTATIVE VECTOR VALUED GROUPS

Abstract: In this paper we introduce the notion of fully commutative
vector valued i.e. (i, m)-groups. A pair (Q, f), where Q is a nonempty set,
issaid to be a fully commutative (n, m)-group, n—m=Fk >1, if f is an associative
mapping from Q(") into Q(m), such that for each a € Q(®), b € Q(m), the equa-
tion f (ax)=>b has a solution x € Q(m). Here, Q(P), for p a positive integer, is
the subset {a,. . .ap | a; € Q} of the free commutative semigroup O™ gene-
rated by Q. We show that a nonempty set @ is a carrier of a fully commutative
(n, m)-group for m > 2, ifand only if | Q | << 2o0r Q is infinite, and give a
complete description of the fully commutative (n, m)-groups with two ele-
ments, for m > 2.

§ 0. INTRODUCTION

In [1] and [2] the notions of vector valued (v.v.) groupoids, semi-
groups and groups are introduced, generalizing the notions of (usual, binary)
groupoids, semigroups and groups, and also of n-groupoids, n-semigroups
and n-groups. The notions of fully commutative (f.c.) v.v. groupoids and
quasigroups are introduced in [3]. Here we introduce and examine the notion
of f.c. v.v. groups, generalizing the notion of commutative groups.

In § 1 we give a brief review of the notions and some known results
about v.v. groups. The dzfinitions and the basic results about f.c. v.v. group-
oids and semigroups are given in § 2. In § 3 we introduce the notion of f.c.
v.v. groups, and show (via universal coverings) that they are in fact a spscial
class of (binary) commutative groups. § 4 is concerned with finite f.c. v.v.
groups, where we show that a finite set Q is a carrier of a f.c. (n, m)-group,
m > 2, if and only if | 9| < 2, and give a complete characterisation of f.c.
(n, m)-groups (m > 2) with two elements. The fact that every infinite set
is a carrier of a f.c. (n, m)-group (m =>2) is given in §5, via a spzcific
combinatorial construction.
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§ 1. VECTOR VALUED SEMIGROUPS AND GROUPS

Let Q be a nonempty set.

For a positive integer p, Q7 denotes the p-th cartesian power of Q.
Instead of writing (a;, ..., @,) for an element of Q?, we will use the notations
af and 4, ...a, With this notation, we can identify Q? with the subset
{ai . .ap|a; € Q} of the free semigroup Q+ generated by Q. (Here, @, . . . a,
denotes the product of @y, ..., a, in O*.)

Let m and n be positive integers with n—m=k >>1. A map f:Q" — Q™
is called (n, m)-operation, and (Q, f) is called (n, m)-groupoid. We say that
an (n, m)-groupoid is commutative, if

S (@) = 1) (L.1)

for every a7¢ Q" and every permutation p7 of a. An (n, m)-groupoid
is called (#, m)-semigroup, if for every 1 < i < k, and every x]*k C Qntk

S G FOeEDxgtE ) = £ xath). (1.2)

An (n, m)-semigroup is called (n, m)-group, if for each a € Q%, b€ Q™, the
equations

f(ax) = b = f(ya) (1.3)

have solutions x,y € Q™.

It is clear that the notions of (u,1)-groupoids, semigroups and
groups, are the same as the notions of n-groupoids, n-semigroups and n-groups,
and specially for n=2, are the same as the notions of groupoids, semigroups
and groups. So, from now on, we consider (», m)-operations, groupoids, semi-
groups and groups, only for n—m=k > 1, m> 2, and call them vector valued
(abbreviated v.v.) operations, groupoids, semigroups and groups.

In [4] it is proved that if (Q,f ) is a commutative v.v. group, then |Q|=1.
In [5] is proved that if (Q,f) is an (m+-1, m)-group (m = 2), and Q is a finite
set, then |Q| = 1, and that every infinite set is a carrier of an (n, m)-group
for each n, m (m = 2). If m is a divisor of n, then every set is a carrier of an
(n, m)-group [2]. The generalization of the associative law for the binary opera-
tions is formulated in the following:

Theorem 1.1. (The general associative law: GAL, [4].) Let (Q,f) be
an (n, m)-semigroup, and let a collection of v.v. operations f¢, s = 1,
2 Qm+sk . O™ on @ be defined by:

fr=f; [5Gty = f (f° PR ). 1.4
Then:
(i) For every a,, b,€ 0, sit>1, 0<j < sk.

11 @ £ (@) Bk ) =t @, aptiept); (1.5)

(ii) (Q,r®) is an (m--sk, m)-semigroup
for every s > 1; and
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(iii) If (Q,f) is commutative, then (Q,f®) is commutative as well,
for every s > 1. §

§ 2. FULLY COMMUTATIVE V.V. SEMIGROUPS

Let Q be a nonempty set. Denote by Q) the free abelian semigroup
generated by Q. If p is a positive integer, let Q@ be the subset
{a,...apla; € O} of OW), where a,...a, is the product of a4;,...,a,
in Q). Asin § 1 we will use the notation @? instead of &, . .. a,, keeping
in mind that ¢f = b7 in Q@, for a;, b;€ Q if and only if b, ,..., b, is a
permutation of @, , ..., a,. Considering Q? as a subset of O+ (see § 1), let
Tp ¢ QP — Q@ be the natural projection. Note, that =, (a?) ==, (b?) if
and only if by , . . ., by is a permutation of @, , . . . , @, i. €. a? = b% in QD).

Let n, m be positive integers such that n—m=k > 1. A map
[:0™ — Q™ js called fully commutative (abbreviated f.c.) (n, m)-operation
on Q, and (Q, f) is called f. c. (n, m)-groupoid (see [3]). We say that a
f. c. (n, m)-groupoid (Q,f) is induced by an (n, m)-groupoid (Q, g) if the
following diagram commutes:

g
Qﬂ — Qm
l T @1
b oor
om - Qm

An (n, m)-groupoid which induces a f.c. (n, m)-groupoid is called weakly
commutative (n, m)-groupoid. A commutative (n, m)-groupoid is weakly
commutative, but the converse is not true in general. In [3] it is shown that
each f.c. (n, m)-groupoid is induced by a set of weakly commutative (n, m)-
groupoids. some of which are commutative.

A f.c. (n, m)-groupoid (Q,f) is called f.c. (n, m)-semigroup, if for each
1 <i<k, and each x7+k € QUi+h),

FfC) sty = £ f (dimyate ). (2.2)

It is easy to check that: a f.c. (n, m)-groupoid is a f.c. (n, m)-semigroup
if and only if for each x7+k € QU+h),

f(f &) x5t = f (f Ggtxithn); (2.2)
and a f.c. (n, m)-groupoid induced by a commutative (n, m)-semigroup is a
f.c. (n, m)-semigroup.

If (Q.f) is a f.c. (n, m)-semigroup, and for each a € O™ we choose
only one element @ & Q7 such that =, (@) = g, then a straightforward compu-
tation shows that (Q, g), where g(a) = f(a), is a commutative (1, m)-semi-
group, inducing (Q, f). Using this, and T. 1.1. (GAL), we obtain:

Tn
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Theorem 2.1. (The general f.c. associative law: GALFC.) Let (Q, 1)
be a fc. (n, m)-semigroup induced by an (m, m)-semigroup (Q,g),
n—m =k>1, and for each s => 1, f®: QU+sk) _, QU™ be defined by

f® = f; fE+D(gn+ekpk) =L £ (fO(am + k)b, (2.3)

Then:

(i) For each s = 1, (Q,f®) is a f.c. (m+-sk, m)-semigroup induced by
(2,g°); and

(ii) For each s,t > 1, ay,b,€ 0,

f(t)( f(‘)(a';"r’*)b'{‘) = f(3+t)(arln+skbrlk)_ H 2.9

If (Q,f) is a f.c. (n, m)-semigroup, then we say that the f.c. (m+sk, m)-
semigroup (Q,f®) is derived from (Q,f).

Because of the GALFC, we use the notation [ ]: Q™ — QU®,
instead of f: Q™ — Q, and [a"+*¥] instead of [ ]® (x]+5¥).

As an application of: the fact that every f.c. (n, m)-semigroup is induced
by a commutative (7, m)-semigroup; T.2.1; and Post Theorem for commutative
v.v. semigroups [6]; we obtain the following corresponding Post Theorem
for f.c. v.v. semigroups.

Theorem 2.2. If (0, [ ] is a f.c. (m+sk, m)-semigroup, then there

exists a f.c. (m-+k,m)-semigroup (P, [ 1), such that Q C P, and for every
x'i”""k 6 Q(m +sk),

[ = ey [

Cancellative f.c. v.v. semigroups are a special subclass of f.c. v.v.
semigroups. Namely, a f.c. (n, m)-semigroup (Q, [ ])is said to be cancellative
if for each a € O®, b,c € Q™

[ab] = [ac] = b =c.
We say that a f.c. (n, m)-semigroup (Q, [ Dis a f.c. (n, m)-group, if
for each a € Q®), b & Q, the equation [ax] = b has a solution in Q™.
Since f.c. (n, 1)-groups are commutative (n, 1)-groups, further on, we
will always assume that m = 2, and by a f.c. v.v. group we will mean a f.c.
(n, m)-group, for m = 2.
Using GALFC similarly as in (T.5.b), [6]) we obtain the following:
Proposition 2.3. If (Q, [ 1) is a f.c. (n, m)-semigroup, n—m=k = 1,
then the following statements are equivalent.
(i) (2, [ D is a fc. (n, m)-group;
(i) (@, [ 1) is a f.c. (m+sk, m)-group for some s > 1; and
(iii) (@, [ ] is a f.c. (m+sk, m)-group for each s > 1. -

(We note that a corresponding statement for cancellative f.c. v.v.
semigroups holds; as well. Compare with [4]).
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§ 3. UNIVERSAL COVERING ABELIAN GROUPS

In this section we assume that (Q, [ ]) is a given f.c. (n, m)-group,
n—m=k=>1, and p is the least non negative integer, such that
m+p=0 (mod k).

For an arbitrary ¢ € 0 we define an operation * (which depends
on ¢) on QU by:

axb = [ach], (3.1)
and for p=20
axb = [ab]. (3.2
P.2.3. implies the following:
Proposition 3.1. (Q,*) is a commutative group. §
As a corollary of P.3.1. we obtain the following:
Proposition 3.2. (Q, [ ]) is cancellative. &

If x € 0@ C Q¢), we say that dimension of x is «, and write dimx = «.
Define a relation =~ on Q) by:

u=ve (Ja€ QM) [au] = [av]. (3.3)
As a direct consequence of the definition of ==, we have the following:
Proposition 3.3. (i) u =~ v = dimu = dimv (mod k).

(i) == is a congruence on the fres commutative semigroup Q), and
Q)= is a commutative group, denoted by Q™ (i.e. QW =Q)/~). R

The following statements can be easely proved.

Proposition 3.4.

(1) dimy =dimv < m = (uv=u=1v);

(ii) dimu < dimv < dimu + k = (u =2 v = dimu = dimy);

(iii) If = 1 and j is the smallest non negative integer such that

a=m-+j(mod k), then for each u € 9@, v € Q) there exists a unique w £ Q™
such that u =< vw. (In the case j=0, v is the “empty symbol®, i.e. u =2 w.):

(iv) Qm+p= QM™+P/= is a subgroup of Q. &

We say that QW) is a yniversal covering group for (Q,[ ]). Next, we
will give more convenient description of Q. For this we need the following
notations. Let (G, -) be a multiplicatively denoted commutative group, and
Q C G a nonempty subset. We define a family {Q, |« > 1} of subsets of
G by:

Ql = Qs Q¢+1 = Qu:‘ Q! (34)
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where M.-N={xy| x€M, y€ N} for M, NCG. For ¢, a positive inte-
ger, we denote by 7 the canonical map Q@ — Q; defined by:
(@) =a,-as ... -Gt -Gt 3.5
———— Theorem 3.5. Let (G, -) be a commutative group, and Q be a nonempty
subset of G such that the following conditions are satisfied:
(a) The map 7,,: O™ — Q,, is bijective;
(b) For each x€ Q4 Qn=x-Qu(={x} Om);
) fO<i<j<kand Quii() Qpuis# ), theni=j;
@) G =U Q.
lle

Then, (Q, [ 1), where
[@]] = b} & 7y (a]) = T (B]) (3.6)
is a f.c. (n, m)-group. Moreover, Q¢ is isomorphic to G.

Proof. (b) implies that for each # >0, Q, = Qu+t& and (3.5)
implies that, if 7,(a7) =7,(07) and 7,(b7ait’)="1,, (c]), then Ty (a1t®) =
=7, (7). This, together with (a) and the fact that (G,) is a commuta-

tive group, implies that (Q,[ 1) is a f.c. (n, m)-group.
Next, we show that the following generalization of (c), holds.

() 0. N Qp# D > a=p (mod k).

For « >m, B > m, (¢) follows from (c) and (b).

Without loss of generality, we may assume that o <. Let o <m. f
¢ € Q—2, then @, O # (@ implies that 7, _,(€)+ QuNTm_al€) QB # s
which by (a) implies that QM Qu+p—q 7~ . Now (¢) for a=m, =m
implies that B —a =0 (mod k) i.e. e =f (mod k).

Next, we show that G and Q™ are isomorphic. Denote by = the canoni-
cal map from Q) into G, defined by

7 (a}) = 7ia)), for t > 1. (3.7
Now, (3.7) and (d) imply that = is a surjective homomorphism. To show

that £ : QW G defined by Eu=)=r< (w), for u=={v|v€ QD uz=zv},
is an isomorphism, we need to show that:

usye T @ =7 () 3.8)
If u==v, then there exists w £ Q) such that [uw] = [vw], i.e.
= (uw)= 7 (vw), which implies that = () - T (w) = <(v) - = (w). Since (G, ") is

a group, it follows that = (¥) = 7 (v). For the converse, let u € 0@, v ¢ o®,
and =(u) = =(v). Then Qy N Qp # (J, and (¢) implies that o= B (mod k),

1114
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i.e. there exists y > 1, such that a 4y =m + rk, B 4y = m - sk, for some
r, s >1. Let w € OO be an arbitrary element. Then, = (uw) = 7 (vw), implies
that = ([uw]) = = ([vw]), which by (a) implies that [uw] = [vw], i.c. u=2v. §—

If (Q,[ ) isa f.c. (n, m)-group, then directly from (3.3) and the defi-
nition of QW it follows that Q™ and Q={a=:|a€ Q} C QW satisfy the
assumptions from T. 3.5, and the f.c. (n, m)-group defined in T.3.5, coincides
with the given one. Because of this, further on we will not distinguish Q™
and G, for any G satisfying the assumptions of T.3.5.

Assuming that G is a universal covering group for a given f.c. (n, m)-
group (Q, [ 1), where, n—m=k and m+p=0 (mod k) are as above, P.3.3,
P.3.4, and T.3.5 imply the following:

Proposition 3.6.

(i) Qm+3} isa Subgfoup of G: and G’Qm+p oo {Qﬂl! Qm-i'l! sony Qn-—l}
is a cyclic group, with a generator Q,.p,+1, and order k.

(ii) For « > 1 let j be the smallest non-negative integer such that
a=m+j (mod k). Then, for every, u€ Q;, Oy =4Q,, (Qo={1} where
1 is the neutral element of G).

(iii) If a € Q, then QW = 0, a0y, UG*QpU - . . Ud* ™! Oy, where
a' denotes the element a...a € QO.

t

(iv) For every 1 < i < m, the canonical map 7;: QW— Q; is
bijective.

V) O C Qum+ptrs O-1C Om+p—1, (for p = qs 0-1c Qn—l) and
Q0-'C Qpip Where O~ ={a-'| a€ Q, a~! is the inverse of air G}. f§

§ 4. FINITE F.C. V.V. GROUPS

In this section we give a complete description of finite f.c. v.v. groups.

Theorem 4.1. If (O, [ ]) is a f.c. v.v. group, and Q is finite set i.e.
| Q] < oo, then |Q] < 2.

Proof. Let (Q, [ 1) beaf.c. (n,m)-group, and | Q| = g+1. (Note that
we consider only m > 2). Let QW =G, 7: 0® — G and m+p =0 (mod k)
be as in § 3. We note that for every r > 1,

q-+r (g+r)!
IQ"’1=( 4 )(=—-——q!r! ) (4.1)
Thus, P.3.6, implies that
G =T qg+m
IQ;I=( £ ); IQ.I=iQmI=( - ) (4.2)

for every 1l <r<m, m<s<n—1.
Consider the following subsets H, K, L of G:
H ={a*.v(a7"|ac Q, a7~ € 2"}
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K={a.7(ap")|a €Q, ap—' € Q™D aZ{as, ..., an—1}} (43)

L={z(ap-?)|ap2€ 0" D} = Qm-»

It is clear that K \) L = H. We will show that K " L = (/j. Suppose
the converse, i.e. a 1.z (ap—") == (by—?) for some a€ Q, a—' € Q™™
br-2€ Q- and ad{ay,..., Gm_1}. Then, ¢ (af)=a.v b7 )=
=7 (ab?—?). Since, 7,,_, is bijective (P.3.6 (iv)) it follows that ap—! =abp—2
in Q-1 which implies that a€ {a, , . . ., @,_1}. Contradiction.

Now, K UL—=H and KN L= imply:

|K|+ |L| = |H] (4.4)

P.3.6. (v), i.e. Q71-Q C Qp+p implies that HC Opipim-2-
Then, (4.2) implies that
|H| < (@™, |L]=@tm3D), |Kl=(q+ D@ 4,5
Now (4.4) and (4.5) imply that
@nh + @+ DEH <),

which implies that mg <q+m—1,ie g¢<1. Hence |[0|<2. K

The next example shows that f.c. (n, m)-groups (Q, [ 1) with | Q|=2,
do exist.

Example 4.2. Let Q ={a, b}, a=b. Let, Z,, 1, ={0,1, ... ,m—1,m}

be the cyclic additive group of integers mod (m--1), with the addition deno-
ted by @. For a fixed e € Z,,,,, define [ ] on Q by:

[a%b"=%] = qrDepm-@De), (4.6)
for every 0 < a < n.

It can be easily proved that (Q, [ ]) is a f.c. (n, m)-group. We denote
this f.c. (n, m)-group by 4 (m, k; €) where k =n—m.

Thus, there exist f.c. (n, m)-groups with two elements.

We note that an analogous result to the fact that every f.c. (n,m)-
semigroup is induced by a semigroup, does not hold for f.c. (n, m)-groups
and cancellative f.c. (7, m)-semigroups. It is known that finite (m 4 1, m)-
groups (with more than one element) do not exist, and the finite cancellative
(m-+1, m)-semigroups are (m+-1, m)-groups, while finite f.c. (m--1, m)-groups
with two elements do exist.

Proposition 4.3. If (Q,[ 1) is a fc. (n, m)-group with Q ={a, b},
a = b, then there exists an element e<=Z,,.,, suchthat (Q, [ 1)=4(m, k; e).

Proof. Consider the universal commutative group QO), where the
operation is denoted additively. P.3.6. (iii) and (iv), and (4.2) imply that
|QW| = k(m + 1), and

oM = {jataa+(m—o)b|0<a<m, 0<j<k}=
={jat+a(@a—b) |0<a<<m 0<j<k}, 4.7
where a —b = a + (—b) for (—b) the inverse of b in QM.
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P.3.6. (v) implies that a—b ¢ Q,4p. where m+ p=0 (mod k) is
as in § 3. Now, (4.7) implies that Q,,1, = {pa +mb -+ o.(a—b) |0 < « <m},
i.e. Qpip is a cyclic group of order m + 1, with a generator a— b. For
0 <a<<n, let [a%b® D] =aPp™B, for some 0 <B <m. Then, in QW,
va+(m+k—a)b=0Ra+ (m—PB)b, ie. kb= B O «)-(a—>b) =e(a—b),
where e = B O « € Z,,4,. Therefore, [a*h"~®]=a*Depm- D9 je (0,[ =
=A(m, k; e).

From the definition of A4 (m, k; e), it follows that:

[a%b™ +8k=%] = gBpm=B = B =aPse, (4.8)
(where se = e(f). .. De) which implies the following:
——
.

Proposition 4.4. (i) 4 (m, k; d) is derived from A (m, k; e) if and
only if se=d in Z, ;.

(ii) For every d€ Z,, ., there exists e~ Z,, .. such that 4 (m, ks;d)
is derived from A4 (m, k; e) if and only if s and m--1 are relatively prime. i.e.
m+D)=1. g

P.4.3. implies that there are m + 1 f.c. (n, m)-groups on Q= {ab}.
To find the maximal number . of non isomorphic f.c. (n, m)-group on Q=
={a, b} we need the following:

Proposition 4.5. A (m, k; e) is isomorphic to A (m, k; d) if and only if
e=d or k(De@®d=0. (The notions of homomorphisms and isomor-
phisms of f.c. v.v. groups have the usual meanings; see [3].)

Proof. A (m, k; e) is isomorphic to 4 (m, k; d) if and only if there exists
a bijection f: {a, b} — {a, b} such that for every 0 < « <n: (i) a*Depm-aDe —
= q@Dapm-2Da_ o (jj) gm-aDbEDe — g-DDapm--DDE, which is equi-
valent to: (i) e=d, or (i) kDePd=0. §

To find the number u we consider the equation 2x () k = 0 in Z,,.;.
Namely, if 2eDk =0, then f (a)=>b, f (b)=a is an automorphism of
A (m, k; e). Now, it is clear that:

() If m+1 is odd, then 2x(Dk = 0 has a unique solution, and thus,
p=g 4 1=|5 41 (4.9)

(II) If m+1 is even, and k is odd, then 2x (5 k = 0 does not have
solutions in Z,,, and thus

—} +1. (4.10)
(III) If m~+1 and k are even, then 2x Dk = 0 has two solutions in Z,,.,,

and thus,
m—1 5 m-1 B m-+3 m 5

I

(4.11)
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At the end of this section we give several examples.

Examples 4.6. (1) A (2,1;0) and 4 (2,1; 2) are isomorphic, and f:a+>b,
b +>a, is an automorphism of 4 (2, 1; 1).

(2) 4 (2,2;0) and 4 (2, 2; 1) are isomorphic, and f'is an automorphism
of 4 (2,2;2). 4 (2,2;0), A (2,2;1), 4 (2, 2; 2) are derived from
A2,1;0), 4 (2,1;2), A(2,1; 1) respectively.

(3) A (2, 3; 0) is derived from each of 4 (2, 1;0), 4 (2,1; 1) and
A (2, 1; 2). Thus, neither of 4 (2, 3; 1), 4 (2, 3; 2) is derived from a f.c.
(3, 2)-semigroup. Moreover, 4 (2, 3; 1) is isomorphic to 4 (2, 3; 2), and f
is an automorphism of 4 (2, 3; 0).

(4) A(3,2;0) and 4 (3, 2; 2) are isomorphic and f is an automor-
phism of 4 (3, 2; 1) and of 4 (3, 2; 3).

§ 5. EXISTENCE OF INFINITE F.C. V.V. GROUPS

The following result will be shown in this section.

Theorem 5.1. If Q is an infinite set, and n, k arbitrary positive integers,
(m = 2) then there exists a f.c. (m + k, m)-structure on Q.

The proof of this theorem is via a special combinatorial construction
of f.c. (m + 1, m)-groups, similar to the construction of free (m - 1, m)-groups,
m > 2, explained in [5], which will be in fact the proof of T. 5.1, for k=1.
Then we apply P.2.3.

Now, we give the construction.

Let B be a set, possibly empty. For each b € B, choose a set
Dy={b,,...,by}, such that D,NB = () and D,N\ D, =} for b, c € B, bz~c.
Let B'=B\, U D, Note, that B = ¢ implies B'=(). Let €;, ..., €,

bEB

be new, not necessarily different elements, let £ be the set of all the distinct
ey, and ENB' = (). Now we will define by induction a sequence of sets
{B,, « > 0}. First, B,=B' | E.

Suppose that B, is well defined. Let C, C U BS =B, be the set of
tm+1

all the elements from B',, which do not have any one of the following
forms:

(a.1) epd;, where d, € B,, s > m;
(a.2) bbyd;, where dy€ B,, b€ B;
@3) (1, x) (2,x)... (m, x) di, where d,€ B, and x € B'y_;.
Set, By =By U NpXCh,
where N, ={1,2,3,..., m}.
By choosing different notations for the elements of B,, if necessary, we
can obtain: (By+1\B,) N (Bg+1\Bp) = for a 7% B.

Est' @ ="\ B,.
>0
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Define a norm | | on the elements of Q) by induction as follows:
[x|=1 for x¢€ B,.

If | | is defined on B,, and x =(1,u5) € By4,\ B, then

[xX] =lwa] +. . .+ |u].

Next, we define a map f: Q9 — Q) by induction on the norm, as
follows:

(b.1) If u has the form (a.l), then f(u)= f (@);
(b.2) If u has the form (a.2) then f (u)=f (erdD);
(b.3) If u has the form (a.3), then f (u)= f (xd5); and

(b.4) If u does not have any one of the forms (a.1), (a.2), (a.3), then
f @ =u.

Using the fact that B'NE = (%), and (B,+:\B,) N (Bg+1\Bg) = (7 for
« 7 B, it can be checked by a straightforward inductive proof that:
(c.1) fis well defined;
(c.2) f () 7 u if and only if | f(u)| < |u|;
(€3) fFf W) =S (u);
(c.4) If, dimu > m, then dim f (v) > m;
(c.5) If, dimu < m, then f (¥) = u; and
(c6) fw)=f(f W)m).
Define [ ]: QU*+D . QM) by;
=1, f@ith) . .. (m, fQup+h), (5.1)
where (1, v[").. . . (m,»}") is only a notation for v in Q™.
Using (b.3) and (c.6), for u, v€ Q, x € ™D, we have:
[[ux] = [(1L, f @x)) . . . (m, £ @x)) vI=(1, £ (1, f(@x)) .. .(m,f @x) v))...
conm F((Lf@X) ... (my f@x)v))=(,f(f (ux), v)). ..
oo (m, f(f@x) )=, f (uxv)) . .. (m, f(uxv)) =(1, f (xvu)) ...
co (m, f Gewn)) = [ [evlu] = [[vx] u] = [u[vx]] = [u [xv] ).
Hence, (Q,[ ] is a fic. (m + 1, m)-semigroup.
By induction on the norm, we define a map g : Q = QO as follows:
(d.1) g (&) =epe~ter |, for e € E;

1119
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(d.2) g(b):-b'l", for b¢ B;

(d.3) g (b ) =bbi—'b ., for bEB.

i1

(d.4) g (Lw)) =(1, w) ... (i—1.w}) (i + Lw)) ... (m, wi) g (wy)... g(wy).
By an easy inductive proof, it can be shown that for each u €0,

S (ug (u))=ep. (5.2)

Now, let u ¢ O and x € Q. Then, f(ug (1) x)= f(f(ug 1)) x) =

= f(ex) = f(x). If x does not have the form (a.3), then f(x) = x, and so

[ulg@)x)]]=x. If x =(1,y)...(m, y), then f(x)=f() =y, since
»y does not have any one of the forms (a.1), (a.2) and (a.3). Then [ug(u)x] =
= (L, flug @) x))...(m, flugW)x))=(1,¥) ... (m y) = x. Hence, for
every uc Q, w& O, the equation [ux] = w, has a solution, which shows
that (Q,[ ]) is a f.c. (m + 1,m)-group.

We note, that if e, =e,=...=¢,, then g(g) =g (e) =em™2,
for every i.

From the construction of Q it is clear that if B is an infinite set, then
|B| =|Q]|, i.e. |B| and | Q| have the same cardinality.

This completes the proof of T.5.1. M

The f.c. (m+1, m)-group (Q, [ 1) constructed above for |E| = m, is
generated by B, and for each f.c. (m+4-1, m)-group (H,[ 1) and a map
g : B— H, there exists a homomorphism g : (Q,[ )~ (H, [ T) which
is an extension of g. But g is not unique with these properties, in fact there
are infinitely many such extsnsions. So, we can say that (O;[ 1) is a free
(m--1,m)-group.

Recently, K. TrenCevski obtained the following set of f.c. v.v. groups.
Example 5.2. Let F be an algebraically closed field and let
[ ]=F®™+) » F™ be defined by: [x7] = yi* if and only if
E—x) (t—xy) ... (1—x,) =t®+L L g ¢ et At Gy
(—y)(t—ys)...(t—y,) = t™tLa,t™ 11, vt 1 t+ag,
Then, (Fi[ ]) is a f.c. (m + 1, m)-group.
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I'. YVITIOHA, JI. JHMOBCKH, A. CAMAPIIHCKH
MOTITIOJTHO KOMYTATUBHM BEKTOPCKO BPEOHOCHW I'PVIIN
(Peazume)

Bo paGotara ce BoBelyBa MOMMOT 3a NOTIONHO KOMYTATHBHM (i -+k, m)-rpyms,
Kane mTO m M k ce No3MTHBHM uemn GpoepH. Bunejkn normonuo xomyraruenn (1 +k, 1)-
TpymH ce O6HYHH KOMyTaTHBHM k--1-rpyms, BO TekOoT Ha paboTara ce mpeTmocTaByBa
hexa m>2, M BO TOj cly4aj ce BeiM Jeka ce paGOTH 3a NMOTNONHO KOMYTATHBHH Bek-
TOPCKO BPENHOCHM (1. K. B. B.) rpymd. Bo paGorarz ce mokakysa [ieKa eIHO HENpPa3HO
MHOXecTBO () e HOCHTE/l Ha IL K. B. B. Ipylla aK0 M camo axo | Q| =2 wm Q e 6ec-
KOHeYHO. IIpHTO4 ce /8B4 KOMIUIETEH OMMC HA IL K. B. B. IPYIH CO 2 EIEMEHTH.
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