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ON (3,2) - GROUPS
Donéo Dimovski

Abstrect. The goel of this paper is to put together
some known facts about (3,2)-groups. Some equivalent defini=
tion for (3,2)-groups ere given. It is mentioned that finite
(3,2)-groups do not exist. An elementary proof that finite
(3,2)-groups with less than 12 elements do not exist is given.
At tbe end, it is shown that (3,2)-groups do exist, by giving
a combinatorial description of a free (3,2)-group without ge-
nerators. Such a group is countable-infinite.

O. Introduction. Vector valued groups are defined in
[1]. Here we focus on vector velued (3,2)-groups. A (3,2)-gro-
up is a set G together with a map [ J: Go—» G2 satisfying
the following conditions: :
(1) [(xyz] t] = [k[yzﬁﬂ , (associativity); and
(2) For given a,b,c € G, there exist x,y,z,t€ G such that
[exy] = (b,c) = [zta] (molvability of equations).
Because of (1) [[... [[xy2] t]...]u] is denoted by
[xyzt...u]. : : 2
In [1], Theorem 4.3 it is stated that a free (3,2)-
group is nontrivial, i.e. has more than one element. Although
the statement is true, the proof has some gaps. In professor
Cupona’s seminar at Skopje, we tried to £ill up these gaps.
In this paper, a combinatorial description of free (3,2)-gro-
ups witbout generators is given, showing that they are nontri-
vial. sesides this, we give some basic facts, equivalent defi-
nitions, aud nouexistence conditions for (3,2)-groups.
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1. Basic facts. Let (G,[]) be a (3,2)-group.
Proposition 1. (Ga,-) where (x,y)+(z,t) = [xyzt],
is a group with identlty element & pair (e,e). Moreover:

1) (x,e)+(e,y) = [xeey] = (x,¥) ;3

2) [xyz) =[xab) <> (y,2) = (2,b) <= [y2x] = [abx] ;

%) For each x€ G, there exist unique y,z€ G, such that
[xy2z] = [y2x] = [2xy] = (e,e), and if x =y or y = z
or z =x, then x =y =2 ; and

4) For each x¢ G, [xee] = [eex].

The proof of this Proposition is given in [2]. B
We denote the pair [xee] by ({(x),A(x)). This de-
tines maps o,A:G —» G, In this notation, for each x,y,z€G

[xyz] = [x3d(2)A(2)] = [xl(3)B(3)2] = [l(x)A(x)yz] . Moreover

led(e)A(e)] = (eye) = («(e),B(e)) (k(e),A(e)) .

Proposition 2. Let £:G° —»G° be the involution
£(x,y) = (y,x). Then (G,[T), where [xyz]’'= £([zyx]), is =
(342)=group. In the group (G°,o) associated to (G,[T), the
pair (e,e) is still the identity element, and '
£((x,3)e(z,t)) = £(z,t)+2(x,y). Moreover, ol'=/3» and A'=o

i.e. (d'(x),fb'(x')) = [xee]' = (A(x),d(x)) .

Proof.(i) Associstivity: [[xyz1't)’ = [£([zyx])t]’=
£(Tee(£(zyx1))]) = £([t[zyx)]) = £([[tzr]x]) = -
[x£([tz7))]’ = [x[rzt)']’.

(ii) The solvability of the equations for [ 1°
follows from the :olubilitjr of the equations for [ 1 and
the fact thet £ 4is a bijection.

(iii) The operation o on 2 is defined by
(xy3)0(2,t) = [xyzt]' = £(£(z,%t).2(x,y)). Hence,
(xy7)0(o,e) = t(£(e,0)+2(x,y)) = £((e,e)2(x,¥)) = 22(x,¥y) =
= (X-I) s and :
[xeel’ = f([eex]) = £(al(x),A(x)) = (A(x),d(x)) .
Proposition 3. If for some x€G (i)« (x) = x, or
(ii) A(x) = x, or (111) d(GINA(G) £ P , then |G| = 1.
Proof. Because of Proposition 2, it is enough to
congider only (i) snd (4ii).
(i) Let ol(x) = x. Then [xee)] = (A(x),A(x)) =

R on
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= [xA(x)ee]l implies thet [A(x)ee] = (e,e). Now, for each
z€G, (z,8(x)) = [2A(x)ee] = [zee] = [eoz] = [A(x)eez] =

= (8(x),z), implies that 3z =/4(x), i.e.lGl=1.

(11i) Let of(x) =A(y). Then frbm [xee] = (o(x),A(x))
and [yee]l = (@(¥),A(¥)) = (y),o/(x)) we have that
(A(3),x) = [d(y)xee ] = [l(y)ol(x)B(x)) = [yeea(x)] = (3,8(x)),
i.es y =ol(y). Now, (i) implies that |Gl= 1. B

Froposition 4. (1) If e €d(al(G)), then |G|= 1.
(2) If for sore x€G, x = L(cl(x)), then e €B(G).
(3) If for some x€G, x = A(B(x)), then e € o(G).
(4) It e € A3(A(G)), then IGl= 1, :
(5) If for some x,y€G, x = «((x)) and y =/A(A(y)), then
1Gl= 1. P

Proof. (4) follows from (1) and Proposition 2.
(3) follows from (2) and Proposition 2. (5) follows from
(2), (3) and Proposition 3.(iii).

(1) Let e =ol(dl(x)), 1.0. [ol(x)ee] = (e,B((x)).
Then, [A(d(x))ee] = (e,0l(x)) = e (A((x))),AB(A(x)))), i.e.
o(G)n A(G) # P . Now apply Proposition 3.(iii).

(2) Let x = «L((x)). Then [xee] = (d(x),A(x)) =
= [X(x)eeB(x)] = [ol(d(x))AMA(x)IA(x)] = [xAld(x))A(x)]
implies that A(l(x)) = A(x) = 6, 1.6. e€f(G). &

2. Equivalent definitions of (3,2)-groups. The next
Proposition gives an equivalent definition for (3,2)-groups,
analogous to the definition of (ordinary) groups via a bina-
ry, unary and nullary operations.

Proposition 5. The existence of a (3,2)-group struc-
ture on a set G 1is equivalent to the existence of: maps
L 1:6° —» G2 and g:G —» G, and an element e€G satisfying
the following conditions: (i) The map [ 1 is essociative, i.e,
[Coz16) = [x[yze]) 5 (31) [x(yee]] = (x,3); (111) g = 1d;
and (iv) [xg(x)g°(x)] = (e,e). We say that g is the
[ 1-inverse map.

Froof., Let (G,[]) be a (3,2)-group. Then [ ] and
¢ €G (lroposition 1.) satisfy (i) and (ii). Por x€G, let
g(x) = y, where [xyz) = (e,e). Then Proposition 1. implies
that (dii) and (iv) are satisfied.
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- - Conversely, let [, g, and e€G be given, satis-
fying (i) to (iv). The condition (4) is the auocia.tivity
for [ . Let a,b, c "€G, Then (b,c) = (bceel = [bcg(a)g (a)a]
= leebc] = [as(a)g (a)be]l implies that [axy) = (b, c)-[uta]
tor (x,y) = [s(e)g?(a)be] and (u,v) = [bcs(a)sa(a)] .

Proposition 6. The existence of a (3,2)-group struc-
ture on & set G 4s equivalent to the existence of a group
structure on ¢° and elements e,e’,o(,A € G satisfying
the following conditions: (1) (e’ +€) is the identity element
in the group G (2) (x,e)(e”,3) = (x,3); end (3) W,A)(x,e)
= (B'gx)("s‘g)-

Proof. Let (G,L1) be a (3,2)-group. Then (G2,.) is
, & group (Proposition 1.) and e = e’, o =ol(e), A=7AB(e)
satisty (1), (2) end (3).
Conversely, let G~ be a group and e,e ,ak A € G
satisfy (1), (2) and (3). Define a map [ J: 167 —'rG- by:
[xyz] = (x,e)(tyA)(¥y,2).
Then, (1) |xyz) = (x,0)(etyB)(7,0)(0",2) =
= (x,0)(e”,y)(dyR)(e",2) = (x,¥)(%,A)(es2).
(ii) [[:_qz]t] = [xyz](ot,A)(e’,t) =
= (x,7)(«,A) (e z)(,A)(e’,t) =
= (x,e)(e”,7)(L,A)(d,A)(z,e)(e’ yt)=
= (x,0)(«,B8)(7,0) (&, B)(z,t) =
= (x,e)(,A) [yzt] = [x[yzt]] .
(iii) For given a,b,c€G, [axy] = (b,c) = [uva]

where (x,y) = («,4) " (a,e)"(b,c) and
(u,v) = (byc)(e’,a) Y(et,@)"L , N
Proposition 7. The existence of a (3,2)-group struc-
ture on a set G 1is equivalent to the exiltencg of a group
structure on a set H and XS H, such that [|X|=|G)and each
element from H is a unigue product of two elements from X.
Proof, Let (G,[]) be a (3,2)-group. Define

X = {(d(x),A(x)) | xeat.
Then troposition l. implies that each element from the group
,+) i3 a unique product of two elements from Xy and Ix|=1G|,
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Conversely, let H be a group and X< H satisfies the
condition from the Proponition. Then the map I.I‘? —» H
defined 'by £(x,y) = xy, is a bi:}ectionu Define f. Jon X by
2] = £70ga). Ten [ayel = £ (E(Gx)e) = £ Hxt(y,m),
and so: [[xyzlt] = £~ (r([x;yz])t) =7 1(:751:) = [x[{zt]].
Moreover, for given a,b,c €X, f l(a )y r (bca )ex
and so [af” l(a'lbc)] = (bye) = [f'l(bca Ja] . Hence,
(%,L1) is & (3,2)-group. Since there is a bijection from X
to G, it follows that there is a (3,2)-group structure on G. il

Proposition 8. The existence of a (3,2)-group struc-
ture on a set G 1is equivalent to the existence of inclusions
P, ¥: G —'_rPern(Ga) satisfying the following conditione:

(1) P(x)(a,y) = ¥(3)(x,a) for each x,y,a€G; and
(2) P(x)e¥(y) = ¥Y(y)e¥(x) for each x,y€G, where o is
the composition of permutations.

Proof. Let (G,L1) be a (3,2)-group. Define ¥ and
Y by P(x)(s,b) = [xab] and V¥(x)(a,b) = [abx]. The (3,2)-
group structure on G 4implies that ¥ and ¥ are inclusions
from G to Peru(Ga) and satisfy the conditions (1) and (2).
Conversely, let ¥ and ¥ are given and satisfy
(1), end (2). Define 1:6° - G° by [xyz]l = P(x)(y,2). Then
(1) implies that [xyz] = Y (z)(x,y), and (2) implies that
[ 1 is sssociative. Por given a,b,c€ G, [axy] = (b,c) =[uva],
where (x,y) = (‘P(a))'l(b,c) and (u,v) = (‘i’(a)—l(b,c). |

3. (Non) Existence conditions for (3,2)-groups. In
[2] it is shown that the existence of a (3,2)-group structure
on a finite set G, implies that 6 is a divisor of |G| or
[Gl= 1. (Here |G| is the number of elements in G.) The next
Proposition gives &n elementary proof that on & set with 6
elements there does not exist a (3,2)-group structure. Profe-
szor John Thompson provided me with a proof that finite
(5,2)~groups do not exist. He proved that if G is a finite
group and X€G such that XX = {xylx,yeX} = G and |X|%=lcl,
then |Gl= 1. Then we apply Proposition 7. His proof uses
ioun algebras over the field of complex numbers, Wedderburn’s
ihcoren, and representations and characters of finite groups.

1071



68

1072

Proposition 9. A set with 6 elements does not admit
a (3,2)=-group structure,

Proof. Let |Gl= 6, and let (eye) be the identity
element in the group (Ga,-). Propositions 3. and 4, imply
that |{e,d(e) ol(l(e)),A(e),8(A(e))}| = 5. Proposition 4.
implies that o (d(cl(e))) £ e # B(A(A(e))), o (t(l(e)))hd(x(e)),
and A(B(A(e))) # A(A(e)). Since «(«(«(e))) # A(A(A(e))) and
IGl = 6, it follows that «(d(d(e))) = d(e) or A(A(A(e)))=A(e).
By Proposition 2., we can assume that o (d(«(e))) = o/(e). Then
Proposition 4. implies that A(A(A(e))) ¢ A(e), and so:

G = {e,d(e),d(d(e)),Ale),B(A(e)),A(A(A(eI)Y} .
Now, of(al(al(e))) =ol(e) implies that A((e)) = A (t(e))) = e.
It A(A(A(A(e)))) =A(A(e)), then Proposition 3. implies that
1Gl= 1. Hence, A(B(s(A(e)))) = A(e). Then [ese] = (d(e),Ale))
and |eee] # | eeB(3(2(e)))] imply that oL(BA(B(A(e))))=d(el(e)).
Now, [eeB(R(B(e)))]=[(d(e))d(B(e))d(A(B(s)))BB(S(e)))]
implies that [(d(e))d(A(e))d(B(R(e)))] = (e4e). This, toge-
toer with [ed(e)A(e)] = (e,e) snd:-{(d(e))ﬂe,d(e),a(e) implies
that of(A(e)) # e,d(e),B(e) , and mince Jd(A(e))~A(B(e)),
od(A(e)) # A(A(A(e))), it follows that o(A(e)) = d(L(e)), and
by Proposition 1., J(A(B(e))) = o(l(e)). Now,
(eye) = [d(d(e))dlalle))d(d(e))] =[d(e)ed(e)ed(e)e] =

= [ed(e)ed(e)ed(e)] implies that (A(e),B(e))=(e,dle)).l

4. I'ree (3,2)-groups without generators. In this
section we give a combinatorial description of a free (3,2)-
group without generators, i.e. generated by the empty set ¢.
This group is an initial object in the category of (3,2)-gro-
ups, and is countable-infinite.

Let A, ={ aYi It Ay, X%0 is defined, let

Ak+l - '{(xgniﬂxjé Ak’ nz3, i= 112} U'A'k\

\{(eex,i)li = 1,2, x €Ay, x # e} s
Above, xy stends for X;XsessX, 1X .

Let A = U::o Ay, and let S(4) be the free semigroup
generated by A. We say that xg = a€S(A), xaen has dimen-
sion n end write dim(a) = n. Define a length |a| of
g = x’i' e 5(4), x5 € A, by induction, as follows:

]E“ = Ji lﬁl ~ Ixill - ’xll"' szl + ses + lxnl; and
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[(x,i)] = |x]l. Roughly put, & length of xeS(A) is the
number of appearances of e in x.

Let 8, ={x|xes(h), |x|¢x}.

Define a map ‘¥Y:S(A) —» S(A) by induction on the
length, as follows:

(1) ¥P(e) = ey

(2) Suppose that ¥ is defined on Sy_p « Let

W ={x|xe8(), |x| = k, din(x) = 1¥;
N = {eeulml = x-2, diw(u) = 1, P(u) = u # e};
R = {1.113":l lujek, nz2, ]u§| = X, ?(uj) = ud}\ N,; and
Ty = SN(8,_JUM UN, UR.).
Then N, NR, = Mkn(Nl:URk) = Tk“(Nx”qu"x) =@
and S =8, VK UNUR VT ..
' The extension of ¥ on S
(a) P(een) = uee,
Next, the extension of ‘P on 8y, JUN UR_ is defi-
ned as followeg: Let ugé R, . Define "P(ulll) to ba:
(5.1) PP Du)  dr 1Pl h|g [utY
(B.2) Y(u,P(u3))  ir |PuD)| < |ul;
(2.3) v (=¥(¥D)) if n=2, ue=(F,0), 41,2, £323;

x-1Y Ny is given by

(B,4) P(uvr) if n = 4, o uvee, or R ueev, or
1 21

u; = eeurv;
(B8.5) ee if w; = (75,2), u, = (v'{,l),\P(r{ug'l) = ee anc
t 233

(B.6) 11111 otherwise. '

The next extension of ¥ on S, ;UN UR VT  is
given by
(¢) \P(ujua...un) =‘?(qu1)vru2)...4kun)).

At the end, the extension of ¥ on Sy is given by
(D) ‘P((u’i‘,i)) = (‘P(ug).i). nz3, i = 1,2, (Here we use the
notation (“1u2’i) = u;, i'= 1,2, It is necessary, because
dj.m(‘f(u}?)):} 2 for nz2.)

The essential parts in the definition of ¥ are (4’
(.31, (i5.4) and (B.5). The part (A) implies the fact
[xec) = [eex) (Proposition 1. 4)), the part (B.3) implies the
csgociulivity, the part (B.4) implies that (e,e) is the iden-
tity eleuent in the associated group (Proposition 1.) and the
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pert (B.5) implies that each x has unique y,z such that
[xyz] = (eye) (Proposition 1. 3)). The other parts are given
only because of the'technical difficulties in the proof of
the following:
Lemma 10, The map ¥ is well defined and satisfies
the following conditions:
1. Y(e) = e;
2. dim(¥(x)) = 1 if and only if dim(x) = 1;
3a din(?(u u,)=2 if and only if ?[uluz) -‘P(ul)YTuz)
4. Y(eeu) =‘P(u)ee;
5. ¥(uee) = Y(u)ee;
6o (¥ () < |u]]s
7.1 uy # ceu andn ?(ua) = uy, then l‘P(ug)l = |u]| if
and only if \P(u = ul H
8. Y(ul) = P(u]~ Wu.)uul) for each l€r¢s<n;
9. \P((ul’i)) = (‘P(ul)gi) for nz3, i= 1,2; and

10, %Kug) = (eye) if and only if 'P(ugul) = (eye) « 1
The proof of this Lemma, although straightforward
by induction on the length, is very long, so we do not give
it here. It will appesr in & paper sbout free (n+l,n)-groups.
v Let G =‘Y(A). Define maps B1:85:¢ — G by induc-
tion on the length as follows:
(a) gi(c) = (ece,i) , 1 =1,2;
(b) Ei((“rfsl))z\P((“Rf?)ﬁlcun)sa(“n)'"51(“1).52(“1)'1)‘ and
() &5;((u],2)) =Y¥(g (v, )Es(u) e o8y (uy)E,(u, ) (0T,1),1).
Lemus 11, For each x €G, ‘P(xg,(x)g,(x)) = ee.
Proof. The following equations, using induction on
the length and lLemma 10, imply Lemma 11,
Y(e(eece,1)(eee,2)) = Plecee) = ee;
‘P((nl.l)ﬁ,]((ul,l))sa((ul,l)))-‘Kulsl(un)sz(un)...51(1: Jes(uy))

te = ?(51(%)52(%).'.sl(ul)szcul)ul) -
= (g, ((u],2))g,((u],2))(u],2)) =
- ‘P((u';,?)glt(u“,znsg((u‘{.e)}). i

befine a map [): 63 by
[uvw] = (\P(uw,l),‘P(uw,E)).
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Theorem 12, (G,[7) is a free (3,2)-group generated
by the empty set .

Proof, (i) [[uw] z) = [P(uww,1) P(uww,2) z] =
= (P(uvwz,1),P(urwz,2)) = [uP(vwz,1)P(vwz,2)] = [ulvwzll.

(ii) Let a,b,c € G, Then [ax;x5] = (bye) = [¥yy752],
where (xy,%,) = [gl(a)gz(a)bc] and (yl,ya) = [bcgl(a)gz(a)].

(iii) Let (G",L1") be a (3,2)-group, (e’,e’) the
identity eleuwsnt in the associated group, and g“:G° —» G’
the [ ) -inverse mep. Define f£:G —p» G° by induction on the
length as follows: f(e) = e”; f((ug,i)) = a5, i = 1,2,
nz3 and (a),8,) = [r(ul)r(ue)...t(un)]' « The map f
is well defined, and the proof that f is a (3,2)-homomor-
‘phism, i.e. (£,£)(Txyz]) = [£(x)2(y)2(z)]’, is by induction
on the length snd using Lemma 10, Moreover, f is a unique
(3,2)-homomorphism from (G,L1) to (G’,I[1).

lemark 13. Since (G,[1) is a (3,2)-group and
[xg(x)g,(x)] = (eye), it follows that g = g, is the
[ 1-inverse map.

Remark 14, The set G is infinite (countable). For

exeuple, u, = (un_lee,l), u, = e, n>1, is a sequence of

disbtinct elements in G .
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