PROCEEDINGS OF THE CONFERENCE "ALGEBRA AND LOGIC", CETINJE 1986.

FREE VECTOR VALUED SEMIGROUPS Dončo Dimovski

 $\underline{\text{Abstract}}.$ The aim of this paper is to give a combinatorial description of free vector valued semigroups.

O. Vector valued semigroups are defined in [1], where the question about a suitable description of free vector valued semigroups is stated. In this paper we answer this question, i.e. we think the answer is satisfactory. I thank Professor Cupona for the helpfull conversations during the course of this work.

1. Here we recall the necessary definitions and known results. From now on, let -n, m be integers, such that $m \ge 2$ and $n - m = k \ge 1$.

Het Q be a nonempty set and $[1:Q^n \to Q^m]$ a map. (Here, ϕ^i is the i^{th} product of Q.) Then we say that (0:f) is an (n,m)-groupoid. If $[1((a_1,\ldots,a_n))=(b_1,\ldots,b_m)$ then we set $[a_1^n]=(b_1^m)$, where c_1^j stands for $c_1c_{i+1}\ldots c_j$, if $i \leq j$, and for the "empty sequence" if i > j.

We say that an (n,m)-groupoid (Q;[1) is an (n,m)semigroup if for each $1 \le j \le k$, the identity

(1.1)
$$\left[\left[x_{1}^{n} \right] x_{n+1}^{n+k} \right] = \left[x_{1}^{j} \left[x_{j+1}^{j+n} \right] x_{j+n+1}^{n+k} \right]$$

holds in (Q;[]).

For given (n,m)-groupoid (Q;[1) and integer $s \ge 1$, on (skem,m)-groupoid $(Q;[1]^S)$ is defined by:

$$\begin{bmatrix} \begin{bmatrix} \end{bmatrix}^1 = \begin{bmatrix} \end{bmatrix} \\ \begin{bmatrix} x_1 \end{bmatrix}^{(s+1)k+m} \end{bmatrix}^{s+1} \stackrel{\text{def}}{=} \begin{bmatrix} \begin{bmatrix} x_1 \end{bmatrix} \\ x_{n+1} \end{bmatrix}^{s}$$

By taking Q with all the $[]^s$, $s \ge 1$, we get an m-dimensional vector valued algebra $(Q; \{[]^s \mid s \ge 1\})$. The proof of the following fact is by induction.

<u>Proposition 1.</u> An (n,m)-groupoid (Q; [1]) is an (n,m)-semigroup if and only if for each $r,s \ge 1$, and each $0 \le j \le sk$, the identity

(1.3) $\left[x_1^{j} \left[y_1^{rk+m} \right]^r x_{j+1}^{sk} \right]^s = \left[x_1^{j} y_1^{rk+m} x_{j+1}^{sk} \right]^{s+r}$ holds in the vector valued algebra (Q; $\{ [1^s \mid s \ge 1] \}$).

To each (n,m)-groupoid (Q;[]) we can associate two universal algebras $(Q;[]_1,\ldots,[]_m)$ and

(Q; $\{[]_{i}^{s} \mid s \geqslant 1, 1 \leq i \leq m\}$), defined by $\begin{bmatrix} \vdots \\ i = []_{i}^{1} \end{bmatrix}$ $[x_{1}^{sk+m}]^{s} = (y_{1}^{m}) \iff [x_{1}^{sk+m}]_{i}^{s} = y_{i}$

These universal algebras are called <u>component algebras</u> for (Q; []). The definition of (n,m)-semigroups and Proposition 1. imply:

Proposition 2. (A) An (n,m)-groupoid (Q;[]) is an (n,m)-semigroup if and only if for each $1 \le i \le m$ and each $1 \le j \le k$, the identity

(B) An (n,m)-groupoid (Q;[]) is an (n,m)-semigroup if and only if for each $1 \le i \le m$, $r,s \ge 1$, $0 \le j \le k$, the identity

2. The fact that the (n,m)-groupoids can be characterized by the associated component algebras, allows us to translate all the notions from the universal algebras to the class of (n,m)-groupoids. It is clear that each of these notions can be defined directly for the (n,m)-groupoids. The same is true for the (n,m)-semigroups. Here we do not give explicit formulations of the corresponding definitions.

Proposition 2. implies the following:

Proposition 3. An arbitrary nonempty set B is a basis of a free (n,m)-semigroup, and moreover, B can be thought as a subset of the (n,m)-semigroup.

The Proposition 3. is stated in [2], but a suitable description for free (n,m)-semigroups was not given. The aim of this paper is to give a combinatorial description of free (n,m)-semigroups.

In the following, for a nonempty set X, the set of all finite sequences with elements from X will be denoted by X^* .

Let B be a nonempty set. We define a sequence of sets $B_0, B_1, \dots, B_p, B_{p+1}, \dots$ by induction as follows:

 $B_0 = B_{1}$

Let B_p be defined, and let C_p be the subset of B_p^* which consists of all elements u_1^{sk+m} , $u_k \in B_p$, s > 1. Define B_{p+1} to be $B_p \cup C_p \times N_m$, where $N_m = \{1, 2, \ldots, m\}$.

Let B = Up > 0 Bp .

Then $u \in B$ if and only if $u \in B$ or $u = (u_1^{Sk+m}, i)$ for some $u_{\alpha} \in B$, $s \geqslant 1$, $i \in IN_m$.

Remark. By giving different "names" to the elements in B, we may assume that for each p, $C_p \times N_m \cap B = \emptyset$, and B_p^* does not contain elements of the form u_1^r , $r \geqslant 2$, $u_x \in B_p$. Define a length for elements of B, i.e. a map

| |: $\overline{B} \rightarrow \Box$ |, (A)- the set of positive integers) as follows:

If u ∈ B then |u| = 1;

If $u = (u_1^{sk+m}, i)$ then $|u| = |u_1| + |u_2| + \cdots + |u_{sk+m}|$.

By induction on the length we are going to define a map $\varphi:\overline{B} \to \overline{B}$. For $b \in B$, let $\varphi(b) = b$. Let $u \in \overline{B}$ and suppose that for each $v \in \overline{B}$ with |v| < |u|, $\varphi(v) \in \overline{B}$, and

(2.1) If $\varphi(v) \neq v$ then $|\varphi(v)| < |v|$;

(2.2) $\Psi(\Psi(v)) = \Psi(v)$.

Let $u = (u_1^{sk+m}, i)$. Then, for each α , $\varphi(u_{\alpha}) = v_{\alpha} \in \mathbb{B}$ is defined, $|\varphi(u_{\alpha})| \leq |u_{\alpha}|$ and $|\varphi(\varphi(u_{\alpha})|)| = |\varphi(u_{\alpha})|$. Let $v = (v_1^{sl+m}, i)$.

(i) If for some α , $u_{\alpha} \neq v_{\alpha}$, then $|v_{\alpha}| < |u_{\alpha}|$, and so, |v| < |u|. In this case let $\mathcal{Y}(u) = \mathcal{Y}(v)$.

Because |v| < |u| it follows that $\varphi(v)$ is defined, and moreover, (2.1) and (2.2) imply that $|\Psi(u)| = |\Psi(v)| \le |v| < |u|$, $\Psi(u) \neq u$, and $\Psi(\Psi(u)) = \Psi(\Psi(v)) = \Psi(v) = \Psi(u)$.

(ii) Let ux = vx for each d. Then u = v. Suppose that there is $j \in \{0,1,2,...,sk\}$ and $r \ge 1$, such that $u_{j+\gamma} = (w_1^{rk+m}, \gamma)$, for each $\gamma \in \mathbb{N}_m$, and let t be the smallest such j . In this case, let

$$\begin{split} &\varphi(\mathbf{u}) = \varphi(\mathbf{u}_1^t \ \mathbf{w}_1^{\mathrm{rk+m}} \ \mathbf{u}_{t+\mathrm{m}+1}^{\mathrm{sk+m}}, \mathbf{i}) \ . \\ &\text{Because } |(\mathbf{u}_1^t \ \mathbf{w}_1^{\mathrm{rk+m}} \ \mathbf{u}_{t+\mathrm{m}+1}^{\mathrm{sk+m}}, \mathbf{i})| < |\mathbf{u}|. \ \ \text{it follows that} \end{split}$$
 $\varphi(u)$ is well defined, and moreover, (2.1) and (2.2) imply that $\Psi(u) \neq u$, $|\Psi(u)| < |u|$ and $\Psi(\Psi(u)) = \Psi(u)$.

(iii) If $\varphi(u)$ can not be defined by (i) or (ii), let $\varphi(u) = u$. In this case, $\varphi(\varphi(u)) = \varphi(u) = u$ and $|\varphi(u)| = |u|$.

The above discusion and (i), (ii) and (iii) complete the inductive step, and so we have defined a map $\Psi: \mathbb{B} \longrightarrow \mathbb{B}$. Moreover, we have proved the following:

Lemma 4. (a) For $b \in B$, $\varphi(b) = b$.

- (b) For each $u \in B$, $|\Psi(u)| \le |u|$.
- (c) For $u \in B$, if $\Psi(u) \neq u$, then $|\Psi(u)| < |u|$.
- (d) For each $u \in \mathbb{B}$, $\Upsilon(\Upsilon(u)) = \Upsilon(u)$.

Next, we have the following lemmas.

Lemma 5. Let $u = (u_1^{Sk+m}, i) \in \overline{B}$ and let $v_{\alpha} = \varphi(u_{\alpha})$ for 1 5 d & sk+m. Then:

(a) $\Psi(u) = \Psi(v_1^{sk+m}, i)$; and

(b) $\Psi(u) = \Psi(u_1^{\alpha-1} \nabla_{\alpha} u_{\alpha+1}^{sk+m}, i)$ for each $1 \le \alpha \le sk+m$.

Proof. (a) If $u_{\alpha} = v_{\alpha}$ for each α , then (a) is obvious. If there is α , such that $u_{\alpha} \neq v_{\alpha}$, then (a) follows from (i) .

(b) If $u_{\alpha} = v_{\alpha}$, then (b) is obvious. If $u_{\alpha} \neq v_{\alpha}$ then (b) follows from (a), Lemma 4.(d) and (i) . 1

Lemma 6. Let $u = (u_1^{sk+m}, i), j \in \{0,1,...,sk\}$, and $u_{j+d} = (v_1^{\text{rk+m}}, d)$ for some $r \ge 1$ and each $d \in \mathbb{N}_m$. Then $\varphi(u) = \varphi(u_1^j v_1^{rk+m} u_{j+m+1}^{sk+m}, i).$

Proof. By induction on the length.

(A) Let $\Upsilon(u_t) = w_t \neq u_t$ for some $1 \le t \le j$ or j+m+l \leq t \leq sk+m, or $\varphi(v_q) = z_q \neq v_q$ for some $1 \leq q \leq$ rk+m. Then $\varphi(u)$ is defined by (i) and $\varphi(u) = \varphi(w)$ where $w = (w_1^{sk+m}, i), w_{\beta} = \Psi(u_{\beta})$ for each $1 \le \beta \le sk+m$. Because |w| < |u|, by induction, and using Lemma 5. (a), $\Psi(u) = \Psi(w) = \Psi(w_1^j(z_1^{rk+m}, 1) \dots (z_1^{rk+m}, m) w_{j+m+1}^{sk+m}, i) = 0$

 $= \Psi(w_1^j z_1^{rk+m} w_{j+m+1}^{sk+m}, i) =$

 $= \varPsi(\varPsi(\mathtt{u}_1) \ldots \varPsi(\mathtt{u}_{\mathtt{j}}) \varPsi(\mathtt{v}_1) \ldots \varPsi(\mathtt{v}_{\mathtt{rk+m}}) \varPsi(\mathtt{u}_{\mathtt{j+m+1}}) \ldots \varPsi(\mathtt{u}_{\mathtt{sk+m}}),\mathtt{i})$ = $\Psi(u_1^j v_1^{rk+m} u_{j+m+1}^{sk+m}, i)$.

Above, $\varphi(u_x)$ was denoted by w_x , and $\varphi(v_x)$ by z_x . (B) Let $\Upsilon(u_d) = u_d$ and $\Upsilon(v_b) = v_b$ for each $1 \le \lambda \le j$, $j+m+1 \le \lambda \le sk+m$ and $1 \le \beta \le rk+m$, $\Psi(v_1^{rk+m}, \lambda) \neq (v_1^{rk+m}, \lambda)$ for some $1 \leq \lambda \leq m$. Then

 $\Psi(v_1^{rk+m}, \lambda)$ must be defined by (ii), since $\Psi(v_3) = v_3$ each β . So, there is $0 \le t \le rk$ such that $v_{t+\gamma} = (w_1^{pk+m}, v)$

for each $\forall \in \mathbb{N}_m$. By induction, since $|(v_1^{\mathbf{rk}+m}, \nu)| < |u|$, we have that $\Upsilon(v_1^{rk+m}, \chi) = \Upsilon(v_1^t w_1^{pk+m} v_{t+m+1}^{rk+m}, \chi)$ for each χ . Then, by induction, and using Lemma 5.,

 $\Psi(\mathbf{u}) = \Psi(\mathbf{u}_1^{\mathbf{j}} \Psi(\mathbf{v}_1^{\mathbf{r}\mathbf{k}+\mathbf{m}}, 1) \dots \Psi(\mathbf{v}_1^{\mathbf{r}\mathbf{k}+\mathbf{m}}, \mathbf{m}) \mathbf{u}_{\mathbf{j}+\mathbf{m}+1}^{\mathbf{s}\mathbf{k}+\mathbf{m}}, \mathbf{i}) =$

 $= \varphi(u_{1}^{j}(v_{1}^{t} w_{1}^{pk+m} v_{t+m+1}^{rk+m}, 1)...(v_{1}^{t} w_{1}^{pk+m} v_{t+m+1}^{rk+m}, m)u_{j+m+1}^{sk+m}, i)$

 $= \Psi \left(\mathbf{u}_{1}^{\mathbf{j}} \mathbf{v}_{1}^{\mathbf{t}} \mathbf{w}_{1}^{\mathbf{pk+m}} \mathbf{v}_{\mathbf{t+m+1}}^{\mathbf{rk+m}} \mathbf{u}_{\mathbf{j+m+1}}^{\mathbf{sk+m}}, \mathbf{i} \right) =$

= $\forall (u_1^j v_1^t(w_1^{pk+m}, 1)...(w_1^{pk+m}, m)v_{t+m+1}^{rk+m} u_{j+m+1}^{sk+m}, i) =$

= $\forall (u_1^j v_1^{rk+m} u_{j+m+1}^{sk+m}, i).$

Above, we have applied Lemma 6. on w and z where possible, since |w| < |u| and |z| < |u|.

(C) Let $\varphi(u_d) = u_d$ for each $1 \le d \le sk+m$. Because of the assumption in the Lemma, it is possible to apply (ii). If the given j is the smallest such number, then by (ii) $\varphi(u) = \varphi(u_1^j \ v_1^{rk+m} \ u_{j+m+1}^{sk+m}, i).$ If not, let t be the smallest such number. Then for each $y \in \mathbb{N}_{m}$, $u_{t+y} = (z_1^{pk+m}, y)$, and because t < j and $u_{j+x} \neq u_{t+m}$ for each 1 = 4 < m-1, it follows that t+m < j. Then by induction and (ii), $\gamma(u) = \gamma(u_1^t z_1^{pk+m} u_{t+m+1}^j(v_1^{rk+m}, 1)...(v_1^{rk+m}, m)u_{j+m+1}^{sk+m}, i) =$ = $V(u_1^t z_1^{pk+m} u_{t+m+1}^j v_1^{rk+m} u_{j+m+1}^{sk+m}, i) =$ = $\gamma(u_1^{t}(z_1^{pk+m}, 1)...(z_1^{pk+m}, m)u_{t+m+1}^{j} v_1^{rk+m} u_{j+m+1}^{sk+m}, i) =$ $= \varphi(\mathbf{u}_1^{\mathbf{j}} \ \mathbf{v}_1^{\mathbf{r}\mathbf{k}+\mathbf{m}} \ \mathbf{u}_{\mathbf{j}+\mathbf{m}+1}^{\mathbf{s}\mathbf{k}+\mathbf{m}}, \mathbf{i}) \ .$ Above, we have applied Lemma 6. on $w = (u_1^t z_1^{pk+m} u_{t+m+1}^{sk+m}, i)$ and $w' = (u_1^j v_1^{rk+m} u_{j+m+1}^{sk+m}, i)$; It was possible since |w| < |u|and |w'| < |u|. Now, let $Q = \varphi(B)$. By Lemma 4.(d), Q . {u | u ∈ B. Ψ(u) = u}. Define a map [1:Qn - Qm, by $[u_1^n] = (v_1^m) \iff v_i = \varphi(u_1^n, i)$ for each $i \in \mathbb{N}_m$. Because $u_i \in Q$, it follows that $(u_1^n, i) \in B$, and so: $\gamma(u_1^n,i) \in Q$ for each $i \in \mathbb{N}_m$. Hence [] is well defined. Theorem 7. (Q;[1) is a free (n,m)-semigroup with a basis B. $\frac{1\text{roof.}}{\left[x_{j+1}^{j+n}\right]} = \left(a_1^m\right), \text{ and } \left[x_{j+1}^{j+n}\right] = \left(a_1^m\right), \text{ and } \left[x_{j+1}^{j+n}\right] = \left(b_1^m\right). \text{ Then } b_{\alpha} = \Psi(x_{j+1}^{j+n}, \alpha) \text{ and }$ $a_i = \Psi(x_1^j \ b_1^m \ x_{j+n+1}^{n+k}, i)$ for each \checkmark , $i \in \mathbb{N}_m$. Lemmas 5. and 6. imply that $e_i = \Psi(x_1^j(x_{j+1}^{j+n}, 1) \dots (x_{j+1}^{j+n}, m) x_{j+n+1}^{n+k}, i) = 0$ = $\Psi(x_1^{n+k},i)$ for each $i \in \mathbb{N}_m$. On the other side, let $\left[\begin{bmatrix} x_1^n \end{bmatrix} x_{n+1}^{n+k} \right] = (c_1^m)$ and $\begin{bmatrix} x_1^n \end{bmatrix} = (d_1^m)$. Similarly as above, Lemmas 5. and 6. imply that for each $i \in \mathbb{N}_m$, $c_i = \gamma(x_1^{n+k}, i)$, i.e. $a_i = c_i$. Hence, for each $1 \le j \le k, \ \left[\begin{bmatrix} x_1^n \end{bmatrix} x_{n+1}^{n+k} \right] = \left[x_1^j \left[x_{j+1}^{j+n} \right] x_{j+n+1}^{n+k} \right], \text{ i.e. } (Q;[]) \text{ is}$ in (n,m)-semigroup.

(B) Because $\varphi(b) = b$ for each $b \in B$, it follows that $B \in Q$. Let $u = (u_1^{sk+m}, i) \in Q$, and suppose that for each $1 \le a \le sk+m$, $u_a \in \langle B \rangle$, where $\langle B \rangle$ is the (n,m)-subsemigroup of (Q;[]) generated by B. Since $u_a \in \langle B \rangle$, it follows that $[u_1^{sk+m}] = (a_1^m) \in \langle B \rangle^m$, i.e. $a_i \in \langle B \rangle$ for each $i \in \mathbb{N}_m$. But $a_i = \varphi(u_1^{sk+m}, i) = \varphi(u) = u$, since $u \in Q$, i.e. $u \in \langle B \rangle$. Hence, $\langle B \rangle = Q$, i.e. (Q;[]) is generated by B. Here we have used (1.2) and Proposition 1.

(C) Let $(G; \mathbb{E})$ be an (n,m)-semigroup and let $f: B \longrightarrow G$ be a map. Define a map $g: Q \longrightarrow G$, by induction, as follows: for $b \in B$ let g(b) = f(b); and

 $g(u_1^{sk+m},i)=x_i\iff (x_1^m)=[g(u_1)\dots g(u_{sk+m})].$ This map is well defined, since $(u_1^{sk+m},i)=(v_1^{rk+m},j)$ for elements from Q implies that i=j, s=r, and $u_{\alpha}=v_{\alpha}$ for each $1\le \lambda\le sk+m$. Let $h:\overline{B}\longrightarrow G$ be the map $g\circ \Psi,$ i.e. $h(u)=g(\Psi(u)).$ It is clear that h(Q=g). Now we are going to show by induction, that $h(u_1^{sk+m},i)=[g(u_1)\dots g(u_{sk+m})]_i$ for each $(u_1^{sk+m},i)\in \overline{B}$ with $u_{\alpha}\in Q.$ Since $u_{\alpha}\in Q,$ it follows that $\Psi(u_1^{sk+m},i)$ is not defined by (i).

If $\psi(u_1^{sk+m},i) = (u_1^{sk+m},i)$, then $h(u_1^{sk+m},i) = g(u_1^{sk+m},i) = [g(u_1) \cdots g(u_{sk+m})]_i$.

If $\psi(u_1^{sk+m},i) \neq (u_1^{sk+m},i)$, then $\psi(u_1^{sk+m},i)$ is defined by (ii). Let p = rk+m and $u_{j+\gamma} = (v_1^p, \gamma)$ for each $\gamma \in \mathbb{N}_m$. Then $g(\psi(u_1^{sk+m},i)) = g(\psi(u_1^j v_1^p u_{j+m+1}^{sk+m},i)) = [g(u_1) \cdots g(u_j) g(v_1) \cdots g(v_p) g(u_{j+m+1}^j) \cdots g(u_{sk+m}^j)]_i = [g(u_1) \cdots g(u_j) [g(v_1) \cdots g(v_p)] g(u_{j+m+1}^j) \cdots g(u_{sk+m}^j)]_i = [g(u_1) \cdots g(u_j) [g(v_1) \cdots g(v_p)]_1 \cdots \cdots [g(v_1) \cdots g(v_j) g(v_1^j,1) \cdots g(v_j^p,m) g(u_{j+m+1}^j) \cdots g(u_{sk+m}^j)]_i = [g(u_1) \cdots g(u_j) g(u_j) g(u_j) \cdots g(u_j) g(u_j) \cdots g(u_{j+m+1}^j) \cdots g(u_{sk+m}^j)]_i = [g(u_1) \cdots g(u_j) g(u_j) g(u_j) \cdots g(u_j) g(u_j) \cdots g(u_{j+m+1}^j) \cdots g(u_{sk+m}^j)]_i$

= $h(u_1^{sk+m}, i)$.

The above implies that g is an (n,m)-homomorphism, since $g([u_1^{k+m}]_i) = g(\Psi(u_1^{k+m},i)) = h(u_1^{k+m},i) = [g(u_1)...g(u_{k+m})]_i$, i.e. $g^m([u_1^{k+m}]) = [g(u_1)...g(u_{k+m})]$.

Remark 8. From the construction of Q, it follows that \overline{B} is a free algebra with signature $\{[\]_i^S|s \geqslant 1,\ i \in \mathbb{N}_m^2\}$ generated by B, where $[\]_i^S$ denotes an sk+m operation. If $u \in \overline{B}$, then we can say that $\Psi(u)$ is an "irreducible representative" of u. The definition of Ψ implies that $\Psi(u)$ is obtained from u by a finitely many transformations of type

 $(\dots(v_1^{rk+m},1)\dots(v_1^{rk+m},m)\dots,i) \sim (\dots v_1^{rk+m}\dots,i)$, and Lemmas 4.,5., and 6. imply that $\Psi(u)$ does not depend on the order of those transformations.

References

[1] G. Čupona, <u>Vector valued semigroups</u>, Semigroup Forum, Vol. 26 (1983) 65-74.

D. Dimovski Inst. za Matematika Prirodno-Matematički Fakultet P.F. 162 91000 Skopje