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G’. CUPONA - S. MARKOVSKI

COHN-REBANE THEOREM FOR VECTOR VALUED ALGEBRAS

Dedicated to Academician Petar Serafimov on occasion of his 70-th anniversary

A vector valued variant of the well-known Cohn-Rebane’s Theorem
is given in this paper.

0. Necessary preliminaries will be given first, and then the main result
of the paper will be stated.

Let A4 be a non empty set, n, m positive integers, and f'a mapping from
A" into A™, where A% is the s-th cartesian power* of 4. Then we say that f
is an (n, m)-operation on A, and write 8 (f) = n, g (f) = m: f will also be
called a vector valued operation on A. If Fis a set of vector
valued operations on 4, then (A4;F) is called a vector valued al-
gebra or, shortly, a v.va.

A v.va. (Q; f) with an (m—+k, m)-operation f, where m, k > 1, is
said to be an (m-+-k. m)-semigroup if the following equation

Flfeem Ty xmi . 5 = f(x] f(-\'f; i -‘}J:',,'_-_Zf,_,) (0.1)
is an identity on Q, for every j € N, where N, ={1,2,....,r}.

Thus: (Q:f) is a (2,1)-semigroup iff it is a usual (binary) semigroup.

The general associative law holds in an (m + k,m)-semigroup.
Namely, if (Q:f) is an (m--k, m)-semigroup, and s is a positive integer,
an (m--sk, m)-operation /¥ can be defined by ! = f, and

I}f‘s »l(xm-{ (s l)k.) 7 fs[_f'(x;lu k) x::_"is-fll ]k}‘ (0_2)
Then:

0.1. The following equation

_ !.g(_\.’; j-g( yT: + 1k }\;i\ !) = fs-rs(x.;‘ J,rln itk ysk (0_3)

J+1

is an identity on Q, for any 5,1 > | and j & Ng,.

* The elements of A* will be denote by (x]), and here we use the abbrevation xi
for Xg Xgii-.. g if <, and xi will be “empty* if & > B.
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0.2. (Q; f®) is an (m+sk, m)-semigroup for every s > 1.

Further, if (Q;f) is an (m+k, m)-semigroup, we will write [x7+s]
instead of f*(x7'* k), and, sometimes, [x71] instead of (x7).

Now we can state the main result of this paper.

Theorem. Let (4; F) be a v.v.a. and let m be a positive integer such
that 8 (f) = m, o (f) = m, for every f = F. There is an (m4-1, m)-semi-
group (Q: [ ]) and a mapping «: /|- f from F into Q such that AC Q
and

S (@) = (BYN) & [f ad] = [b))] (0.4)

for any a,, b, € A, f& F.

We will prove the Theorem in the next two parts. From now on, we
assume that (4; F)is a given v.v.a., and m a positive integer such that
3(f)=m, p(f) = m for every f — F. Also, #: f|->f will be a bijection
from FontoF ={f|f¢ F}, A F=0 and B= 4 U F.

1. Here we will consider the case m — 1.
Let B (B*) be the free semigroup (monoid) on B , i.e.

Bt ={by... elby€E B, 1t = 1}, B*=B+{l}

where | is the empty sequence on B.

Define a mapping dg from B* into the set of positive integers in the
following way:

dg(1) =0; a € A>dg(a)=0; fE€F=dg(f)=1
u, vEB* = dg (uv) = dg (u) + dg (v).

An element v — B+ iscalled reducible iff v has a form u —
ufa, ... agpu'', where o', u” € B*.f € F,a, € A. And, if u € B+ is
not reducible, then we say that v is a reduced element. Denote the set
of all reduced elements of B+ by B~ . We will define a reduction
mapping o :B*—- B”* as follows.

First, if w £ B" then o(u) = u.

Assume now that w & B' is a reducible element, and that for every
v & B* such that dg (v) < dg (u) the reduction ¢(v) € B” is well determined,
and furthermore:

vFEe() &>y € BINB” = dg (p(v)) < dg (v).

From the reducibility of « it follows that there exist uniquely determined
elements w',u” € B* f€ F, ay,..., ays€A such that u = u' fa,. ..
agpy’ and (W' = 1oruw'e B*). If w = u' b,. .. by, where f(a,3/)) =
(bP)), then dg(w) = dg(u) — 1, and thus o(w) is well defined element of
B~ . Now we define o) by

o(u) = o(w)
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Thus ¢ : Bf—+ B” is well determined and, by induction, it can easily
be seen that the following statements are satisfied:

L1. (Wu€B?) [u & BN < ou) # u < dg (e(u) < dg (w).

L2, (Vu, vEBY) ouy) = o(p(w) v) = olup(v) = o(e() ¢(v)).

Define an operation e on B” in the following way:
U, vEB”™ >uev = o(uv)

Then, by 1.2, we find that

1.3. (B” ;®) is a semigroup.

We will show that (0.4) is satisfied.

Assume first that £ (a,3")) = (b,°()) in (4;F). Then we have:
foalo. <. 0 AJ 5y = (P(fﬂl i {f&”) 2bl. v b.ﬁ{f))ch(bl- . .bp(f})zbl. ves @ 6’:-({)‘
ie. [fa,3)] = [b,P] if we use [ ]-notation.

Conversely, if f€ F, ay, b, € A are such that

foaye...0ay ) = bye...eby

then we have
o (fa;... a&(f)) =o(b;... bocry)s i.e. f(als(f)) = (b,"1).

This completes the proof of the Theorem in the case m = 1.

2. We assume that m > 2 in this part of the paper.
Definea dimension dmofthe elements of a monoid X* as follows:
dm() =0 x S X > dn(x) = 1; u, v EX*= dm (wv) = dm (W)+dm(v).

Let B,=B, C,={u € B,*|dm (u)>>m+1}, B,;=B,|JC, X Nm and B= U B,.
p=o
Thus we have:

ucB iff (w€B or u=(v,i), vEB*F, dmn(v) = m-+1, i€ Np).

In what follows we will use the following notations:

(i) a, b, ¢ (with or without indices) € A.

(ii) f, g, h (with or without indices) € F.

(i) x, y, z, u, v, w (with or without indices) € B*.

(iv) (x, i) will always mean that i€ N, and x € B* is such that
dm (x)>m, i.e. (x,i)€B.

10 Ipunosn
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Define a degree dgand a length || of the elements of B* as
follows:

dg (@) = 0; dg (f) = 15 dg (wv) = dg (u) + dg (v); dg (u, i) = dg(u).
lal=Ifl=1; |uv|=|ul+|v]; | i)|=]u].
An element u € B is said to be reducible iff

1) there is an appearance of fa,. . . ags,in u, for some f, a,,. . . , ag(sy, or
2) there is an appearance of (y, 1) (, 2) . . . (y, m) in u, for some y.
And, if € B is not reducible, then it is called reduced. The

set of reduced elements of B will be denoted by B~ : We note that BC B* .
Define a reduction mapping o :B > B~ as follows:
First, if u € B” , then we put ¢ (1) = w.

Let u = (x, i) B\ B” and assume that for every vEB which
satisfies the condition

dg (v) < dg(u) or (dg(v) = dg (u) & |v| < |ul) 2.1

@(v) is a well determined element of B” , and that the following statement
holds:

) FvevEB\B &
& [dg (o(v) <dg (v) or (dg(e() =dg (M &|e(®|<|v])] (2.2)

Let x = x, x,...x,, x,€B. Then o(x;) is well defined for any
J € N,. Denote g(x;) @(xy) . .. o(x,) by o(x). If o(x) = x, and if we put
v = (@(x), i), then (2.1) is satisfied, and thus o(v) is defined. Then we put
o) = 9(») = 9(p(x),i).

Assume now that o(x) = x, but x has the following form: x = x’fa,
.« . a3n)x"’, where x’ is chosen in such a way that it has the minimal pos-
sible dimension.. Let f(a,5)=(5,°") in (A4:;F). If o(f)>m or x'x" =1
then v = (x"by, ... bypx",i)€B and dg(v) < dg (u). Thus we can
put o) = ¢(v). If p(f) = m and x'x” = 1, then we put o) = o(fa, . .
ascry 1) = by

The case remains when @(x) = x, but x has not the form x = x’ fa,. . .
aycyx”. By assumption u = (x, i) is reducible. The reducibility of ¥ = (x, i)
implies that x = x" (y, 1) (», 2) ... (», m) x”, and X/, y, x” are uniquely
determined if we assume that x has the corresponding property of minimality.
Then the length of v = (x’ yx”, i) is less than |u«|, and dg (v) < dg (u). There-
fore, p(v) € B* is well defined, and in this case we define () by ¢ (1) = ¢ (¥).

In such a way all possible cases are exhausted, and thus we have obtained
a well defined mapping ¢ : B - B".
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By using an induction on the degrees and the lengths it can be proved
that ¢ admits the following properties:

21. ucB\ B"@ou)#us
&> [de (p(u) < dg (u) or dg (p(u)) = dg (u) & |o(u)| <iu[]

2.2. olx, i) = 9lo(x), i); olxyz, i) = olxp(y) z, ).
2.3 f(als(f)) = (bll'Jl.."]} = t?(xfat <o A3HYs l') = tp(xb,. e bp(ny,.j,};«"
24. o(x(y, ) (3 2) ... (p, m)z,i)= glxyz: i).

Define now an (m + 1, m)-operation [ ] on B”~ by

/,..

[+ 1] = () <5 (¥ § € N)v; = !, i), where u,, v € B” .
25 (B™: [)Dis an (m-+1, m)-semigroup.
Proof: Let u,, v,€ B~ . Then we have:
[l Num o] = (] )2
ve=o(p (u‘l’” e D e C?(“T'Ha m) Upg i)
=@((@pt!, 1) ... ¥, m) tmys, 0)
= ou+2, i)
=@ (uy (u*2, 1) ... (ug+2, m), i)
= uyp(u 2, 1). .. @y+2, m), i) for all i € N
& [uy [wy 2] ] = (o),
which implies that (B~ ; [ ]) is an (m-+1, m)-semigroup.
We have to show that (0.4) is satisfied.
Let £, a,, bs bz such that f(a,3) = (b,*") and p(f) > m.

Then
[fa, 3] = (ur) (V i € Nin) g = @ fa0,i) = (b,PD,i) & [b,PD] = (upy).
Conversely, [fa,3)] = [5,°)] = (u) implies
ug = o(fa, b, i) = (f(a,dN), 1),
1= qa(blf’(f}, = (blP(fJ,;')
for all i € N, i.e. f(a3) = (b,°0).
Suppose now that o(f) = m, f(a,%)) = (7). Then
[fa,3] = (u) = u; = (a3, i) = by, for all i€ Ny
& [fa,3] = (b7).

1o*
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This completes the proof of the Theorem, since (B ;[ ]) is the desired
(m+1, m)-semigroup. i

3. Here we make a few remarks.

3.1. The fact that an (m-+~1, m)-semigroup (Q; []) induces an (m-+k, m)-
semigroup (Q;[ 1¥) implies that the following generalization is a corollary
of the Theorem.

Theorem 1. Let (4;F) be a v.v.a. and let m, k be positive integers.
Suppose that for every f € F there exist integers sy, ry such that.

1 4+8(f) =m+ksy, p(f) =m—+kry, ry=0, 5> 1.

Then, there is an (m-+k, m)-semigroup (Q;[]) and a mapping
a:f|— f from Finto Q such that 4 C Q and (0.4) is satisfied for any
a, by A, fEF.

3.2. If (A;F) is a usual universal algebra, i.e. if o(f) =1 for any
f € F, then m = 1 is the unique positive integer such that p(f) > m, and
in this case the result of the Theorem is the well known Cohn-Rebane’s
theorem ([1], [4]). That is why we call our Theorem Cohn-Rebane theorem
for v.v.a.“. The original Cohn-Rebane’s Theorem can be “translated for
v.v.a. in the following way.

Theorem 2. If (A4; F) is a v.v.a. then there is a semigroup (Q; -) and a
mapping o&: f|— f1 fo. . . focry from F into Q+ such that AC Q, f; € Q and

f(als(f)) = (blp(ﬂ){q b‘ "—"-_f‘ dy ... 43

for any fCF, a;, b;€ A.
We note that if m > 2 or (3f € F)p (f) = 2, then the assertion of
our Theorem is not a consequence of Theorem 2.
3.3. The (m-1, m)-semigroup (B ; [ ]) obtained in the proof of
the Theorem has the following universal property. If (P;[ 1) is an (m--1, m)-
semigroup and o' :f|— ' a mapping from F into P such that 4 C P and

f(a8(lf)) = (V) & [f'aS(lf)]' = [b*Y], 0.4")

then there exists a unique homomorphism & : (B” ; [ ]) = (£; [ ]) such that
E@)=(f"), E(@ = a, for any fEF, ac A.

3.4. Throughout the paper, it was implicitly assumed that F 30,
and if we allow the case F = (), then the (m-1, m)-semigroup (B" ; (D
obtained in the proof of the Theorem would be the free (m+1, m)-semi-
group with a basis 4. A convenient description of free vector valued semi-
groups is given in paper [2], and we would like to note that in the above proof
of the Theorem some ideas from that paper are used.

1043



1044

Cohn-Rebane Theorem 149

REFERENCES

1. Cohn, P. M.: Universal Algebra, Now York 1965.
2, Dimovski D.: Free vector valued semigroups (in print),
3. Kypom A. I'.: Obwaa aazeépa, Mockea 1971.

4. Peb6ane H. K.: O npegemasaenuu yHUsepcatsiulx aizedp 6 KOMMYmMaGmuensix
noayzpynnax, Cnb. Mart. Kyp. 7(1961) 878—885.

5.Yynona I': 3a iieopemaiia na Kon-PeGane, Ton. 360p. TIM® Ckonje 20 (1970)
15—24.

I". Yyiiona — C. Mapkoécku

TEOPEMATA HA KOH-PEBAHE 3A BEKTOPCKO BPEIHOCHM AJITEBPH
(Pesnme)

Bo paGotapa ce nokaxysa ciieJJHaBa
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f(@BN=(b,LN) < [fa 8] = [5,0UN)

3a cexou ay, by €A, fEF.
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