ON A CLASS OF VECTOR VALUED GROUPS Gorgi Čupona, Dončo Dimovski

Abstract. Vector valued groups are defined in [1], and some existence conditions of a kind of finite vector valued groups are given in [2]. Here we consider (2m,m)-groups and show that there is an analogy between the theory of (2m,m)-groups and the theory of binary groups.

O. In [1], (m + k,m)-groups are defined. Let $m \ge 1$ and $G \ne \emptyset$. (G,Γ) is a (2m,m)-group iff:

i) []: $(x_1^{2m}) \longmapsto [x_1^{2m}]$ is an associative map from G^{2m} into G^m , i.e. $[x_1^{\mathbf{i}}[x_{1}^{2m+\mathbf{i}}]x_{2m+\mathbf{i}+1}^{3m}] = [[x_1^{2m}]x_{2m+1}^{3m}]$ for each $\mathbf{i} \in \{1,2,\ldots,m\}$;

ii) $(\forall \underline{a}, \underline{b} \in G^m)(\exists \underline{x}, \underline{y} \in G^m) [\underline{a} \underline{x}] = \underline{b} = [\underline{y} \underline{a}].$ In i), (x_1^{2m}) stands for $(x_1, x_2, \dots, x_{2m})$ and

 $\begin{bmatrix} x_1^{2m} \end{bmatrix}$ stands for $\begin{bmatrix} x_1 x_2 \dots x_{2m} \end{bmatrix}$.

If we define a binary operation " \circ " on G^{m} by

 $(1) \qquad \qquad \underline{x} \circ \underline{y} = [\underline{x} \, \underline{y}]$

then i) and ii) imply that (G^m, \circ) is a group. It is clear that a (2,1)-group is the same as a group, so, usually we assume that $m \ge 2$.

Let $\underline{e} = (e_1^m)$ be the identity element in a given (2m,m)-group (G,C) i.e. in (G^m,o) . Then the equalities $(e_2^m,e_1)\circ (e_2^m,e_1) = (e_2^m,e_1)^2 = \begin{bmatrix} e_2^m e_1 & e_2^m e_1 \end{bmatrix}$ $= \begin{bmatrix} e_2^m e_1^m & e_1 \end{bmatrix} e_1^m \end{bmatrix} = \begin{bmatrix} e_2^m [e_1^m e_1 & e_1^{m-1}] e_m \end{bmatrix}$ $= \begin{bmatrix} e_2^m e_1 & e_1^m \end{bmatrix} = (e_2^m,e_1)$

imply that $(e_2^m, e_1) = (e_1^m)$, i.e. $e_2 = e_1 = e_m = e_{m-1} = \dots = e_3 = e$. Hence, the components of \underline{e} are equal, i.e.

$$\underline{\underline{e}} = (\underline{e}, \dots, \underline{e}) = (\underline{e}^{\mathrm{m}}).$$

Moreover, $\begin{bmatrix} x_1^{i-1} & e^m & x_i^m \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} x_1^{i-1} & e^m & x_i^m \end{bmatrix} e^m \end{bmatrix}$

$$= \left[x_1^{i-1} \left[e^m \ x_i^m \ e^{m-i} \right] e^i \right] = \left[x_1^{i-1} \ x_i^m \ e^m \right] = \left(x_1^m \right) ,$$

i.e. for each $i \in \{1, 2, ..., m\}$, $[x_1^{i-1} e^m x_1^m] = (x_1^m)$.

For each $i \in \{1,2,\ldots,m\}$ we define $\Upsilon_i:G^m \longrightarrow G^m$ by $\Upsilon_i(x_1^m) = [e^{m-i} \ x_1^m \ e^i]$. Then

 $(Y_{\underline{i}})^{\, m} \, \left(\, \mathbf{x}_{\underline{1}}^{m} \, \right) = \left[\mathbf{e}^{\, m \, (m-1)} \, \mathbf{x}_{\underline{1}}^{m} \, \, \mathbf{e}^{\, m \, \underline{i}} \, \right] = \left(\mathbf{e}^{\, m} \right)^{\, m-1} \, \circ \left(\mathbf{x}_{\underline{1}}^{\, m} \, \right) \, \circ \, \left(\mathbf{e}^{\, m} \right)^{\, \underline{i}} \ \, = \left(\, \mathbf{x}_{\underline{1}}^{\, m} \, \right) \, .$

So, $(\mathcal{Y}_i)^m = \text{id (identity)}$, and hence \mathcal{Y}_i is a permutation on G^m whose order is a divisor of m.

If for some $i \in \{1,2,\ldots,m-1\}$ $\mathcal{Y}_i = id$, then for each $x \in G$, $(x^{m-i},e^i) = [e^m x^{m-i} e^i] = [e^{m-i} e^i x^{m-i} e^i]$ $= \mathcal{Y}_i (e^i,x^{m-i}) = (e^i,x^{m-i})$, and so x = e. Thus for each $i \in \{1,2,\ldots,m-1\}$ $\mathcal{Y}_i \neq id$ provided $|G| \neq 1$, i.e. G has more than one element.

2. Let (G,\cdot) be a group. It is easy to check that (G,Γ) with $\Gamma: G^{2m} \longrightarrow G^m$ defined by (2) is a (2m,m)-group.

(2)
$$[x_1^m y_1^m] = (x_1y_1, x_2y_2, \dots, x_my_m)$$

Moreover, in this case, (G^{m}, \circ) is the product

$$(G_{\underline{\cdot},\underline{\cdot}})\times (G_{\underline{\cdot},\underline{\cdot}})\times \ldots \times (G_{\underline{\cdot},\underline{\cdot}}) \quad .$$

We call such (2m,m)-groups trivial (2m,m)-groups .

If (G,[]) is a trivial (2m,m)-group, then for each i \in {1,...,m-1} $Y_i(x_1^m) = [e^{m-i} \ x_1^m \ e^i]$

=
$$(e^{m-i}, x_1^i) \circ (x_{i+1}^m, e^i) = (x_{i+1}^m, x_1^i)$$
.

For example, if m=4, the order of \mathcal{S}_2 is 2 and the order of \mathcal{S}_3 is 4. In general, the order of \mathcal{S}_1 is m/g.c.d.(m,i).

(i) For each $p \in \{1, 2, ..., m\}$ and each $(x_1^{3m}) \in G^{3m}$ $[x_1^p [x_{p+1}^{2m+p}]_1 ... [x_{p+1}^{2m+p}]_m x_{2m+p+1}^{3m}]_i$ = $[[x_1^{2m}]_1 ... [x_1^{2m}]_m x_{2m+1}^{3m}]_i$; and

(ii)
$$(\forall \underline{a}, \underline{b} = (b_1^m) \in G^m) (\exists \underline{x}, \underline{y} \in G^m) (\forall i \in \{1, ..., m\})$$

 $[\underline{a} \underline{x}]_i = b_i = [\underline{y} \underline{a}]_i$.

And converselly, if an algebra $(G; [1]_1, ..., [1]_m)$ with m 2m-ary operations satisfies the conditions (i) and (ii), then (G, [1]) is a (2m, m)-group with [1] defined by (3).

In the case of a trivial (2m,m)-group (G,C), $[x_1^{2m}]_i = x_i x_{m+i}$, i.e. all of the operations C_i are essentially binary and are gotten from the operation of the group (G,\cdot) .

PROPOSITION 1. Let (G,C) be a (2m,m)-group, such that for $i \in \{1,...,m\}$ $[x_1^{2m}]_i = x_i *_i x_{m+i}$, where

 $*_{i}:G^{2} \longrightarrow G$ is a binary operation. Then (G,[]) is a trivial (2m,m)-group.

<u>Proof.</u> It is easy to show that for each $i \in \{1,...,m\}$ (G, *_i) is a group with identity element e . Next,

 $\begin{bmatrix} x_1 \begin{bmatrix} x_2^{2m+1} \end{bmatrix} x_{2m+2}^{3m} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} x_1^{2m} \end{bmatrix} x_{2m+1}^{3m} \end{bmatrix} \text{ implies that for each } i \in \{1, \dots, m-1\}$

 $(x_{i+1} \times_{i} x_{m+i+1}) \times_{i+1} x_{2m+i+1}$

 $= (x_{i+1} *_{i+1} x_{m+i+1}) *_{i+1} x_{2m+i+1}$

Using this and the fact that $(G, *_i)$ is a group for each $i \in \{1, ..., m\}$ it follows that $*_1 = *_2 = ... = *_{m-1} = *_m$. Hence, $(G, \Gamma J)$ is a trivial (2m, m)-group.

REMARK. Since $[x_1^m e^m] = (x_1^m) = [e^m x_1^m]$, it follows that in every (2m,m)-group, $[x_1^{2m}]_i$ depends on x_i and x_{m+i} , for each $i \in \{1,\ldots,m\}$.

Suppose that (G,[]) is a trivial (2m,m)-group. Then (G,[]) satisfies the following conditions for each $i \in \{1,...,m\}$:

(a) $[e^{i-1} \times e^{m-1} y e^{m-i}]_j = e$ for $j \neq i$; and (b) $[e^{m-i} x_1^m e^i] = (x_{i+1}^m, x_1^i)$.

PROPOSITION 2. If (G,[]) is a (2m,m)-group satisfying the conditions (a) and (b), then (G,[]) is a trivial (2m,m)-group.

Proof. Let $x * y = [x e^{m-1} y e^{m-1}]_1$. Let $(x_1^m) \in G^m$ and $(y_1^i) \in G^i$ for some $i \in \{1, ..., m\}$. Then

$$= [x_1^{i-1}(x_i * y_i) e^{m-1} e x_{i+1}^m y_1^{i-1} e^{m-i+1}]$$

$$= [x_1^{i-1}(x_i * y_i) x_{i+1}^m y_1^{i-1} e^{m-i+1}]$$

implies that

This shows that (G,C 3) is a trivial (2m,m)-group.

A map
$$f: G \longrightarrow K$$
 is called $(2m, m) - \underline{\text{homomorphism}}$ if $f^{(m)}([x_1^{2m}]) = [f(x_1) f(x_2) \dots f(x_{2m})]$,

where $f^{(m)}:G^m \longrightarrow K^m$ is the m^{th} product of f, i.e. $f^{(m)}(y_1^m) = (f(y_1), f(y_2), \dots, f(y_m))$. It is clear that f is a (2m,m)-homomorphism iff $f^{(m)}:(G^m,\circ) \longrightarrow (K^m,\circ)$ is a group homomorphism.

Let $f:(G^m,C) \longrightarrow (K^m,C)$ be a (2m,m)-homomorphism, (e^m) the identity in (G,C), (k^m) the identity in (K,C) and $H = \ker(f) = \{x \mid x \in G, f(x) = k\} = f^{-1}(k)$. Let us examine some properties of H. First of all, H^m is a normal subgroup of (G^m,o) . Moreover, H satisfies the following conditions for each $i \in \{1,2,\ldots,m\}$:

For m = 1, the condition (5) is trivial, and the condition (4) is equivalent to H being a normal subgroup,

provided that H is a subgroup.

Let us show (4). Because $e \in H$, it follows that $[e^i \ H^m \ e^{m-i}] = H^m$ for each $i \in \{0,1,\ldots,m\}$. Since H^m is normal in (G^m,\circ) it follows that $[x_1^m \ H^m] = [H^m \ x_1^m]$. Now, $[x_1^{i-1}H^mx_i^m] = [x_1^{i-1} \ H^m \ x_i^m \ e^m] = [x_1^{m-1}H^m(x_i^m \ e^{i-1})e^{m-i+1}] = [x_1^{i-1} \ x_i^m \ e^{i-1} \ H^m \ e^{m-i+1}] = [x_1^m \ H^m]$. This shows that (4) follows only from the fact that H^m is a normal subgroup of (G^m,\circ) .

The condition (5) is a consequence of the following equivalences:

We say that a subset H of a given (2m,m)-group (G,C] is a (2m,m)-subgroup if H^m is a subgroup of (G^m,\circ) . A (2m,m)-subgroup H of (G,C] is called normal (2m,m)-subgroup if it satisfies the condition (5) and H^m is a normal subgroup of (G^m,\circ) .

Hence $\ker(f)$ is a normal (2m,m)-subgroup of a given (2m,m)-group (G,C.1) for any (2m,m)-homomorphism f from (G,C.1) to some (2m,m)-group (K,C.1).

(G,[)). We define a relation \sim on G by

(a \sim b \iff [a m H m] = [b m H m].

It is easy to check that \sim is an equivalence on G. We denote the factor set G/ \sim by G/H, and its elements by aH . Next we define [] on G/H by:

(7)
$$[(x_1H)(x_2H)...(x_{2m}H)] = ([x_1^{2m}]_1H,...,[x_1^{2m}]_mH).$$
PROPOSITION 3. (i) $(G/H,CJ)$ is a $(2m,m)$ -group.

(ii) The natural map $\mathfrak{I}: G \longrightarrow G/H$ defined by $\mathfrak{I}(x) = xH$ is a (2m,m)-homomorphism.

(iii) $ker(\pi) = H$.

 $\frac{\text{Proof.}}{\text{j}} \text{ (i) Suppose that } x_j H = y_j H \text{ for each } j \in \{1,2,\ldots,2m\} \text{ , i.e. } [(x_j)^m H^m] = [(y_j)^m H^m] \text{ . Then } (5) \text{ implies that } [x_1^m H^m] = [y_1^m H^m] \text{ and }$

The associativity and the condition \underline{O} . ii) for $\Gamma: (G/H)^{2m} \longrightarrow (G/H)^m$ follow directly from the associativity and the condition \underline{O} . ii) for $\Gamma: G^{2m} \longrightarrow G^m$.

(ii)
$$\pi^{(m)}([x_1^{2m}]) = \pi^{(m)}([x_1^{2m}]_1, \dots, [x_1^{2m}]_m)$$

 $= ([x_1^{2m}]_1^H, \dots, [x_1^{2m}]_m^H) = [x_1^H, \dots, x_{2m}^H]$ $= [\pi(x_1) \pi(x_2) \dots \pi(x_{2m})].$

(iii) $\ker (\pi) = \{x \mid \pi(x) = eH\} = \{x \mid xH = eH\}$ = $\{x \mid x \in H\} = H$.

The (2m,m)-group (G/H,[]) is called

(2m,m)-factor group of G by H .

PROPOSITION 4. Let (H,[]) be a normal (2m,m)subgroup of a given (2m,m)-group (G,[]). Then $(G^m/H^m,\circ)$ is isomorphic to the group $((G/H)^m,\circ)$ via an isomorphism
g defined by $g((x_1^m)H^m) = (x_1H,...,x_mH) = \pi^{(m)}((x_1^m))$.

<u>Proof.</u> g is well defined because $[x_1^m H^m] = [y_1^m H^m]$ implies that $\pi^{(m)}((x_1^m)) = \pi^{(m)}((y_1^m))$. Since $\pi^{(m)}$ is an

epimorphism it follows that g is an epimorphism. If $g((x_1^m)H^m) = (eH)^m$, then $\mathfrak{T}^{(m)}((x_1^m)) = (eH)^m$, which implies that $[(x_1^m)H^m] = H^m$. Hence, g is a monomorphism.

Suppose that (G,Γ) is a trivial (2m,m)-group gotten from a group (G,\cdot) . Let H be a normal subgroup of (G,\cdot) . Then H^m is a normal subgroup of (G^m,\circ) . To show that H satisfies (5), let (x_1^m) , $(y_1^m) \in G^m$. Then $[x_1^m H^m] = [y_1^m H^m] \iff x_i H = y_i H$ for each $i \in \{1,\ldots,m\}$

 $\iff \left[\left(\mathbf{x}_{i} \right)^{m} \mathbf{H}^{m} \right] = \left[\left(\mathbf{y}_{i} \right)^{m} \mathbf{H}^{m} \right] \quad \text{for each } i \in \left\{ 1, \ldots, m \right\}.$ Hence, (H,Cl) is a normal (2m,m)-subgroup of (G,Cl).

Converselly, suppose that H is a normal (2m,m)-subgroup of a trivial (2m,m)-group (G,CJ). If $h_1,h_2\in H$, then $[h_1 e^{m-1} h_2 e^{m-1}] = (h_1h_2,e^{m-1}) \in H^m$, and $(h_1,e^{m-1})^{-1} = (h_1^{-1},e^{m-1}) \in H^m$. Hence, H is a subgroup of (G,\cdot) . Because H^m is a normal subgroup of (G^m,\circ) , it follows that $(x,e^{m-1})H^m = H^m(x,e^{m-1})$ i.e. xH = Hx for each $x \in G$. Hence, H is a normal subgroup of (G,\cdot) .

The above discussion shows that the notion of normal (2m,m)-subgroups makes sense only for "pure" (2m,m)-groups, i.e. for (2m,m)-groups that are not trivial (2m,m)-groups. Otherwise, it is the same as the notion of normal subgroups.

Z. A (2m,m)-group can be thought of as an algebra $(G,e; \{[\]_i,\ [\]_i,\ [\]_i\}_{i=1,\ldots,m})$ where $(\]_i,\ [\]_i,\ [\]_i$ are 2m-ary operations, e is a constant, and the following identities are satisfied for each $i\in\{1,\ldots,m\}$:

 $[x_1^p[x_{p+1}^{p+2m}]_1 \cdots [x_{p+1}^{p+2m}]_m x_{p+2m+1}^{3m}]_i =$

$$\begin{split} &= \left[\left[x_{1}^{2m} \right]_{1} \, \ldots \, \left[x_{1}^{2m} \right]_{m} \, x_{2m+1}^{3m} \right]_{i} \quad , \\ &\left[x_{m+1} \, \ldots \, x_{2m} - x_{1} \, \ldots \, x_{m} \right]_{i} \, = \, x_{i} \quad , \\ &\left[x_{1} \, \ldots \, x_{m} \, / \, x_{m+1} \, \ldots \, x_{2m} \right]_{i} \, = \, x_{i} \quad , \quad \text{and} \\ &\left[e^{m} \, x_{1}^{m} \right]_{i} \, = \, x_{i} \, = \, \left[x_{1}^{m} \, e^{m} \right]_{i} \, . \end{split}$$

Hence, the class of (2m,m)-groups is a variety of algebras. So, for better understanding of the (2m,m)-groups it is needed to obtain canonical forms for the elements in free (2m,m)-groups.

We note that free (2m,m)-groups are not trivial (2m,m)-groups.

References

- [1] G. Čupona, <u>Vector valued semigroups</u>, Semigroup Forum, Vol. 26 (1983) 65-74.
- [2] D. Dimovski, <u>Some existence conditions for vector valued groups</u>, Godišen Zbornik na Mat. Fak., 33-34 (1982-1983) 99-103.

G. Čupona, D. Dimovski Matematički Fakultet, P.F. 504 91000 SKOPJE