SOME CONNECTIONS BETWEEN FINITE SEPARABILITY
PROPERTIES OF AN n-SEMIGROUP AND ITS UNIVERSAL
COVERING

Biljana Janeva

Abstract. It is known that for any n-semigroup there exists a universal covering semigroup, and there is a connection between some properties of an n-semigroup and its universal covering. In this paper such a connection for finite separability properties is studied. It is proved that:

1. If a covering semigroup Q' of an n-semigroup Q is residually finite, then Q is residually finite as well.

2. If a cancellative n-semigroup Q is residually finite, then the cancellative universal covering semigroup Q' is residually finite as well.

3. If the universal covering group Q' of an n-group Q has the finite separability property, so does Q.

As a consequence of these results, the results given in [3], some known results for n-semigroups, and the fact that finite separability properties imply solvability of algorithmic problems, some n-semigroup classes with solvable algorithmic problems are obtained.

1. Preliminary definitions

An n-semigroup is an algebra (Q,[]) with an associative n-ary operation $[]:(x_1,x_2,\ldots,x_n)\mapsto [x_1x_2\ldots x_n]$. Then the semigroup Q^* given by the following presentation (in the class of all semigroups)

 $\langle Q; \{a=a_1a_2...a_n | a=a_1a_2...a_n\} \text{ in } Q \} \rangle$ (1) is called the universal covering semigroup of Q. It can be assumed that $Q \subseteq Q^*$, moreover, Q is a generating subset of Q^* and any element $u \in Q^*$ has a form $u=a_1a_2...a_i$, where

 $1 \le i < n$, $a, \in \mathbb{Q}$, and i = |u| is uniquely determined by u. If \underline{P} is an n-subsemigroup of \underline{Q} then there is a (unique) homomorphism $\lambda : \underline{P} \xrightarrow{} \underline{Q}$ such that $\lambda(p) = p$, for any $p \in P$. \underline{P} is said to be compatible in \underline{Q} if λ is injective, and then we can assume \underline{P} to be a subsemigroup of \underline{Q} ([1]).

A cancellative n-semigroup is an n-semigroup which satisfy the cancellative laws. Then the semigroup Q^{\sim} given by the presentation (1) (in the class of cancellative semigroups) is called the universal cancellative covering semigroup of Q. We note that $a_1 a_2 \cdots a_i = b_1 b_2 \cdots b_i$ in Q iff $[a^{n-i}a_1 \cdots a_i] = [a^{n-i}b_1 \cdots b_i]$ in Q, for each $a \in Q$.

An n-semigroup (Q,[]) is called an n-group if $(\forall a_1,\ldots,a_n\in Q)(\exists x,y\in Q)[xa_1\ldots a_{n-1}]=a_n,[a_1\ldots a_{n-1}y]=a_n,$ or equivalently, if \underline{Q} is a group. An n-group \underline{Q} is a cancellative n-semigroup and $\underline{Q}^{\sim}=\underline{Q}$.

We note that every n-subgroup \underline{P} of an n-semigroup \underline{Q} is compatible in \underline{Q} ([1]).

2. Some connections between finite separability properties of an n-semigroup and its universal covering

Let K be a class of n-semigroups and $Q \in K$.

DEFINITION 1. Q is said to be residually finite in K if for each $x,y \in Q,x\neq y$, there is a surjective homomorphism Q from Q to a finite n-semigroup of K such that $Q(x)\neq Q(y)$.

DEFINITION 2. Q is said to have the finite separability property in K if for each $x \in Q$, and n-subsemigroup P of Q, $x \notin P$, there is a surjective homomorphism f from Q to a finite n-semigroup of K, such that $f(x) \notin f(P)$.

Replaceing the words "n-semigroup", "n-subsemigroup" by "n-group", "n-subgroup" respectively, we obtain the corresponding classes of n-groups.

Remark In the propositions below by a residually finite n-semigroup we will always mean a residually finite n-semigroup in a class of n-semigroups. The cinsidered class of n-semigroups will be clearly understood by the context.

PROPOSITION 2.1. If a covering semigroup Q'1) of an n-se-migroup Q is residually finite, then Q is residually finite as well.

¹⁾ \underline{Q}' is a covering semigroup of an n-semigroup \underline{Q} is Q is a generating subset of Q' and $[x_1...x_n]=x_1...x_n$ for any $x_y\in Q$.

<u>Proof:</u> Let a,b be two distinct elements of Q. Then a\neq b in Q', and, by the assumtion, there is a surjective homomorphism $\Psi: Q' \to S$, such that S is a finite semigroup and $\Psi(a) \neq \Psi(b)$. If we put $\Psi=\Psi_Q$ and $T=\Psi(Q)$, then $(T, \Gamma]$ is a finite n-semigroup where $[x_1 \cdots x_n] = x_1 \cdots x_n$, and, thus, $\Psi: Q \to T$ is a surjective homomorphism such that $\Psi(a) \neq \Psi(b)$.

It is not known whether the residual finitness of an n-semigroup $\underline{\mathbb{Q}}$ induces the corresponding property for its universal covering. We will show, now, that we have the positive answer if we consider the class of cancellative n-semigroups and its cancellative universal covering semigroup.

PROPOSITION 2.2. If a cancellative n-semigroup Q is residually finite, then the cancellative universal covering semigroup Q is residually finite as well.

Proof: Let $a \neq b$, $a = a_1 \cdots a_i$, $b = b_1 \cdots b_j \in Q^-$, a_{ν} , $b_{\lambda} \in Q$, $1 \leq i \leq j < n$. If $i \neq j$ then $||\cdot|: c \mapsto ||c||$ is a surjective homomorphism from Q^- to $(Z_n, +)$ such that $|a| \neq |b|$. Assume, now, that i = j. Then $a' = \left[a_1^{n-1}a_1 \cdots a_i\right] \neq \left[a_1^{n-i}b_1 \cdots b_i\right] = b'$, and, thus, there is a surjective homomorphism \forall from Q into a finite cancellative n-semigroup S, such that $\forall (a') \neq \forall (b')$. Then \forall induces a surjective homomorphism $\forall : Q^- \to S^-$, where S^- is a finite cancellative semigroup. Moreover, we have $\forall (a) \neq \forall (b)$, for if $\forall (a) = \forall (b)$, then $\forall (a') = \forall (a_1^{n-i}a_1 \cdots a_n) = \forall (a_1)^{n-i} \ \forall (a_1 \cdots a_i) = \forall (a_1)^{n-i} \ \forall (a_1 \cdots a_i) = \forall (b') \cdot a_1 \cdots a_n = \forall (a_n)^{n-i} \ \forall (a_n \cdots a_n) = \forall (a_n)^{n-i} \ \forall (a_n)^{n-i} \ \forall (a_n$

As a consequence of these two properties we obtain:

COROLLARY 2.3. The universal covering group Q of an n-group Q is residually finite iff Q is residually finite.

As for the finite separability properties we have the following results.

PROPOSITION 2.4. If the universal covering group Q^of an n-group Q has the finite separability property, then Q also has the finite separability property.

<u>Proof:</u> Let \underline{P} be an n-subgroup of \underline{Q} and $x \in \mathbb{Q} \setminus P$. Then \underline{P} is a subgroup of \underline{Q} and $x \notin P$. Therefore, if \underline{Q} has the finite separability property then there is a finite group \underline{G} and a surjective homomorphism $\Psi:\underline{Q} \to \underline{G}$ such that $\Psi(x) \notin \Psi(\underline{P})$.

The restriction $\Psi_{\mathbb{Q}} = \Psi$ of Ψ on \mathbb{Q} is a surjective homomorphism from $\underline{\mathbb{Q}}$ into a finite n-group $\Psi(\underline{\mathbb{Q}}) = \underline{\mathbb{G}}'$ and $\Psi(x) \notin \Psi(\underline{\mathbb{P}})$ $\subseteq \Psi(\underline{\mathbb{P}}')_{\mathbb{Q}}$

PROPOSITION 2.5. If each n-subsemigroup of an n-semi-group Q is compatible in Q, and the universal covering semi-group Q^ has the finite separability property, then Q also has the finite separability property.

Proof: The proof is the same as the proof of 2.4. n

3. Some n-semigroup classes with solvable algorithmic problems

Certain connections between the finite separability properties and solvability of algorithmic problems are given in [3]. To be able to state them for n-semigroup classes, let me note that if \mathcal{P} is a property for n-semigroups, then a class \mathcal{K} of n-semigroups is a \mathcal{P} -class if each finitely presented member of \mathcal{K} has the property \mathcal{P} . Now, if a class \mathcal{K} of n-semigroups is residually finite (has the finite separability property), then \mathcal{K} has a solvable word problem (has a solvable generalized word problem).

Also, a table of some varieties and classes with solvable algorithmic problems and with some finite separability properties is given in [3]. Among others, the following results are given:

- (i) The variety of commutative groups (commutative semigroups) is residually finite.
- (ii) The class of free groups (free semigroups, free commutative semigroups) has the finite separability property.

Using these results, the results given in 2., as well as known results for n-semigroups and n-groups, some corollaries are obtained.

COROLLARY 3.1. The variety of commutative n-groups is residually finite.

COROLLARY 3.2. The variety of commutative n-semigroups is residually finite.

<u>Proof:</u> Let Q be a finitely presented n-semigroup. The semigroup Q' given by the presentation (1)(in the class of

commutative semigroups) is the universal commutative covering semigroup of Q ([7]). Q' is finitely generated commutative semigroup, so ([5], Th 9.28, pg.172, II) it is finitely presented and is residually finite. Now, by 2.1, Q is residually finite as well. n

COROLLARY 3.3. The class of free n-groups has the finite separability property.

Using the connections between finite separability properties and solvability of algorithmic problems, it follows immediately that:

- 1) The variety of commutative n-groups (commutative n-semigroups) has a solvable word problem.
- 2) The class of free n-groups has a solvable generalized word problem.

Remark: The result 1) could be obtained as a direct consequence of the results in [2] for connections between solvability of the word problem in n-semigroups (n-groups) and their universal covering. It could be proved that: if Q° is the universal covering group of an n-group Q with solvable generalized word problem, them Q has a solvable generalized word problem as well. The proof of this last property essentially uses the fact that each n-subgroup of Q is compatible in Q, so this result could be proved for n-semigroups in which each n-subsemigroup is compatible.

REFERENCES

- 1. G.Čupona, N.Celakoski, On representations of n-assiciatives into semigroups, MANU, Contributions VI. 2 (1974) 23-34
 2. G.Čupona, N.Celakoski, Polyadic subsemigroups of semigroup, Algebraic Conference Skopje (1980) 131-152
- 3. T.Evans, Word problems, Word problem II, North Holland (1980) 87-100
- 4. B. Janeva, Word problem for n-groups, Proc. Sym. n-ary structures, Skopje (1982) 157-160
- 5. А.Клиффорд, Г.Престон, Алгебраическая теория полугрупп, I,II, "Мир" Москва 1972 (превод)
 6. R.Lyndon, P.Schupp, Combinatorial group theory, Springer-Verlag, New York 1977
- 7. Г. Чупона, Полугрупи генерирани од асоцијативи, Год. 36. на ПМФ Скопје, 15(1964)5-25 ПМФ Скопје,

Biljana Janeva Matematički Fakultet-Skopje "Pirinska" bb 91000 S k o p j e