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EXAMPLES OF VECTOR VALUED GROUPS

Dedicated to Academician Petar Serafimov on the occasion of his 70-th anniversary

Abstract: The main purpose of this paper is to give examples of
(2m +s, m) vector valued groups with more than one element. First, some
sufficient existence conditions for such groups are given and then concrete
examples are constructed. Using the structure of (2m--s, m)-groups, some
consequences about congruences of certain sums of binomial coefficients
are obtained.

1. In [1] vector valued groups are defined. (G, [ ]) is an (m, n)-group,
m—n = k>0, iff [ ]:G™ - G" is a map satisfying:
associativity, i.e. for each 1</ < k

[[x’;‘] K kl = ["‘i [t:j;ln] xm+k : (1.1)

m-+1 i+m+1

and solvability of the equations
[ax] =b = [y a]. (1.2)

Above, a ¢ G! denotes a vector (a')i.e. (a,,ds, ..., a,) and [x]]
denotes [ ](x{)ie. [x;x,...x]

(2m, m)-groups are discussed in [3]. In [2] it is shown that the exi-
stence of nontrivial (with more than one element) finite (n 4+ 1, n)-groups
requires certain properties on the cardinality of these groups. In particular,
it is shown that some sets do not admit (n+41, n)-group structure. The
existence question of nontrivial finite (n--1, n)-groups, and more generally
(n-t+k, n)-groups for | < k << n, is still open. The aim of this paper is to
give examples of a wide class of vector valued groups, finite and infinite
that include, in a natural way, the “trivial” (2m, m)-groups from [3]. At
the end of the paper, as a consequence of the definition of some of these ex-
amples, certain congruences of sums of binomial coefficients are obtained.
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2. Let m,séN,m > 1 and G and G’ be groups with identity
elements e and ¢’. Supose that f:G™+¢ — G’ is a homomorphism satisfying
the following conditions:

fOTH) =€ =73 x) =¢; @2.1)
f&,xm) =e' & (x) = (e™) ; and (2.2)
(VxEG™9)Qy €G™ f(x) =f(ey). (2.3)
Clearly (2.1) is equivalent to:
J (xt5) = e’ & f(x]", x‘;) =¢' for each 1 <<i< m—2s. 2:19)
Above, Gt denotes the product group, and (et) denotes the vector
{e;e; ..., e)
——  —

t

We are going to show that the above assumptions give a (2m + s, m)-
group structure on the set G. First we state the following facts whose proofs
follow directly from the assumptions.

Fact 2.1. The restriction of f on (ef)xG™ C G™** is a monomor-
phism, whose image coincides with the image of /. M

Fact 2.2. f(x']"”’) f(yrln+s) o f(z;n+‘) 25 f(u:;ws)f(vf‘n--x)_ N
s SO = FOT ) O YD) f @ 2) =
:,f(wgﬂﬂ- ) f O, n). . f(wht, w). E

Fact 2.3. Let 0 < p < m—s, LrEN, |x|=p,

|Xgp—q| = m + s—p, |Xs,| = p, I¥;] = p.  |Yoy—1| = m + s—p and
|¥ej] = p, for each | < i <t 1 < j<r where |x|denotes the length
of the vector x. Then:

(a) S(em270, x) f (X1, Xg) . - . [(Xgp—y, Xg,) =
= (%1 X) [ (Xg, X3) . . . [(€™ 777, X,,); and

(b) [f (™77, X) [ (X1, Xa) -« - [ (Rgp—1, Xgp) =
= ™2 ) 3 Yo - f (YVar—1s Yar)] =
= [f (X X1) f(Xg, Xg) . . . f(xg,, em*P) =
=y ¥ Ve ¥5) o f (Y ™)k !

Now, let G = (J,#, G™+'. The homomorphism £, induces a homo-

morphism f:GU™+% . G’ for each t > 1. (We use the same notation f.) If
X = (X, X) € G so that |x,|=p and |Xy| = 1 (m + s) for some ¢ > 0
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and 0 < p < m + s, we define f(x) = f(em*5—", x,) f(x,), again abusing
the notation f. Using f:G — G’, we define a relation ~ on G by:

X~ ¥&f(x)=f(y) and |x|=|y| (mod m-+s). (2.4)
By Fact 2.3. (b), this definition is equivalent to:

x~y&|x|=|yl=p(mod m+35), 0<p<mts

(2.4
and f(x, emt*=7) = f(y, e™r7).

Proposition 2.4. The following are equivalent:
(i) x ~y;

(ii) There are «,8 ¢ N°, (e%, x, ef) ~ (e%,y, ef);
(iii) For any «.8 € N°, (%, x, eB) ~ (%, y, ef).

Proof. It follows directly from the definition of f:G-~G’' that
f(e*, x) = f(x) for any « < N° x € G. This, together with (2.4) and (2.4')
implies that (i), (ii), and (iii) are equivalent. =

Proposition 2.5. For x. y. z€ G.
X~y =>(x, 2~ (y,z) and (z, xX) ~ (2, y).

Proof. It is enough to show this for z € G. Let x ~ y, i.e. |[X|=|y|=p
(mod m-+s), f(em+*—",x) = f(em+*—", y) and f(x, em+4—P) = f(y, em++=P).
Then,

Fle™+573, 2) F(x, em+3—P) = femts, 2) £y, evti=t)
and
) f(?m -s—.ﬂ’ X) .I'(z‘ em _—s-_l} — f((.m —s._.ﬂ'_ y) f(z. em-!-»s_l)_
1.€.
((;ﬂl-hk—]. z. X.eMm --s--.ﬂ) i (em—s_.l. z, ¥. em —s-—ﬂ)

and (gm 4 s_p, X, z, eM+ s_l) ~ (em- L V.. 2, et Sv—l)‘ which togmhcr with

Proposition 2.4. implies that (z. x) ~ (z,y) and (x.2) ~ (y. 2) . ]
Now, let []: G¥+s . G™ be defined by:

[e2m 5] = (pm) & (x3m5) ~ (), 2-9)
or equivalently by:
pant] = (yrye file, x7).f (2 = f(eh D) (2.5)
e filapt) fdnis )= FOT. @)

The conditions (2.2) and (2.3) imply that [ ] is well defined.
Theorem 2.6. (G, []) is a (2m--s, m)-group.
Proof. Let 0<i < m+ s, [x[xmt] xmrz 1 =07, and

[x2misti] = (zm). Then (X375t~ (2) and (x], 27", il | Yol

2m-ts+i+1
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which together with Proposition 2.5. implies that (") does not
depend on . Hence the associativity i.e. the condition (1.1) holds
for [ ]. The proof that [ ] satisfies (1.2) is as follows. Let a € G™+s,
b€ G™ and let ¢ € G™+* be the inverse for a in the product group Gm*e.
Then, the condition (2.3), Fact 2.1. and Fact 2.3. imply that there are x, y
€ G™ such that f(c) f (b, e®) = f(c-(b, %)) = f(x, ¢) and f (e b) f(c)
= f((e% b).¢) =f(e¢*,y). But this is equivalent to f(a)f(x, ef) = f (b, %)
and f(e%, y) f(a) = f(e%,b), ie. [ax] =b =[ya] W

3. In order to be more convenient for constructing concrete examples

of (2m--s, m)-groups, we restate the assumptions from 2. as follows.

Proposition 3.1. Let G be a group with identity element e, and for
k € N let G* be the product group. For given m, s £ N, the following are
equivalent:

(A) There is a group G’ and a homomorphism £ from G™+* to G’ sat-
isfying the conditions (2.1), (2.2) and (2.3).

(B) There is a homomorphism g : G° - G™ satisfying:
Image (g) is contained in the centre Z (G™) = Z (G)™ of G™; and (3.1)

g0 = (@) &g (x5 2:) =7, x). (3.2)

(C) There is a homomorphism £ : G™+5 . G™ satisfying:
h(ed, x) = (x™); and (3.3)
h (xmte) = (e™) = h (13, x,) = (e™). (3.4)

Proof: (4) = (B): Let g : G* — G™ be defined by: g (x}) = (2 &
& f(x], z]') = ¢'. Because f(x3,z") = ¢’ is equivalent to f(x%, e™) =
f (et up) for (wy) the inverse of (z") in the group G™, the conditions
(2.2) and (2.3) imply that g is a well defined homomorphism. If f(x*,em)
= f (e, ul") then f (%, (") - (y7)) =1 (&%, ) £ (e, ym = f(x5,e™) f (et ym)=
S, 90 = F @, 7)) 0% = [ ypfeur) = 1 D) ED),
which together with (2.2) implies (3.1). Using the definition of g and (2.1)
we have: g (x)) = ) &f(x], 2) =" S f(x5, 2,, 27, x)) = ' & g (x4, z,)
= (22, x,).

(B) > (C): Let h:G™ts > G™ be defined by:

B Gept) = (2 @)1 (e, e by g (w)-h (xrH) = (xmi),

Then (3.1) implies that / is a homomorphism. Because g is a homomorphism, it
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follows that & (e*, x)=(x7"), i.e. (3.3). If h (x7+5) = (e™), then g(x}) = (x""7),
and by (3.2) g(x}, x42) = (ML X)), iee g(xgt!) = (A Xy). © So;
h (s, x;) = (e™).

(C) > (A): Let G" = G™ and f = h. Then (2.1) follows from (3.4).
(2.2) follows from (3.3). and (2.3) follows from (3.3) and the fact that /1 is a
homomorphism from G™¢ to G”. R

Using Proposition 3.1.. Theorem 2.6. and the fact that in abelian groups
the condition (3.1) is trivially satisfied. we get the following:

Corollary 3.2. Let (G,-+) be an abelian group with zero O, and for
given m, s€ N let g:G* — G™ be a homomorphism, so that /i (x]'*5) =
(O™) implies h (x2'%%, x;) = (O™). Then []:G**+* — G™ defined by [x3"7¢] =
(x7)— g (xm+3) + (x2m4s ) furnishes G with a (2m - s, m)-group structure. B

m+1

Now we are going to show how a solution of a certain matrix equation
can give us a homomorphism satisfying (B) from Proposition 3.1. Let F be
a field or a commutative ring with 1. We use the folldwing notations for certain
types of matrices over F, for given k.1 N: I, — denotes the identity ¢
matrix ;

[ i=1, j=1¢
Jowe = [aslex, where a; = .
oxo = lak 2 {0 otherwise

9 = 1
i.e. with block matrices Jix,=| — — | — — 4
0 | 0 kxt
1 i=j+1
E, = [aylix¢ where a;= )
Lal g ‘0 otherwise ,
ey
i.e. with’/block matrices- B, = | — —'| ——
PR R

Ext
For given m, s € N we consider the following matrix equation over F:
Es‘Xaxm 7 szm‘jm --s‘szm = Jsxm i3 Xr»:m Em- (3-5)

Proposition 3.3. If (3.5) has a solution A=A, over F, then for
each F-module G the map g:G*— G™ defined by g(x}) = (x{)- 4, satisfies
(B) from Proposition 3.1.
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Proof. It is clear that g is a module homomorphism. Because G is
an abelian group it follows that g satisfies (3.1). Let

g (x{) = yp Le. (x)) 4 =07).
Then,
g, ) =05, 3) A=) B+ () Imxe) - A =
) By + ATy A= () By A+ ATy A) =
= (*) Jsxm + 4 -E,) = (&) - Ty + 1) - E,, = (055 %0,
which shows that g satisfies (3.2). M

Remark 3.4. [t is easy to check that the equation (3.5) is equivalent to
the following system of sm equations with sm unknowns over F:

X1 - Xgm = 1; (3.6.1)
Xt X~ Xam =0, Tl i s (3.6.11)
R Xl = X5 gian =12 ..., m—2, m—I1; (3.6.ii)
Xg—1yy + xﬂ-xs; = Xyjs1p i1 and j=Fm. (3.6.iv)

4. In this part we give concrete examples of (2m--s. m)-groups.
For m,s,j € Nand 1 <i < s, let:

ay = (—1)*—"(s+j._"_'l) (S f"ih])- 4.1)
Jj—I i—1 '

Suppose that there is an integer T € N, such that:

R i:] :;:: (mod T). 4.2)
Then we have:

Proposition 4.1. The matrix A=A, = [ay] over F = Zy = Z|1z,
for a;; defined by (4.1) and satisfying (4.2), satisfies the equation (3.5). So,
for T == 1, any nontrivial Zy-module G can be given a (2m -+ s, m)-group

structure by

e 5 271 = () + (@) —03) - 4. (4.3)
Proof. First we show that for each j = Z:

Qyy - Agy = @iy o and (4.4)

Ay + A - Gy = dusp g4y for 1 <i<s—1. (4.5)
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Proof of (4.4).

gy = (ﬂl)s_l(s-k '*l—l)(H l—l)(_l)s_, (s+j:-—s-l)[s+j—l)=
= ol Jj—1 s—1

0 Ll (s+f— l):(_,),_, (s+u+ 1}_1_|)(s+u+ 1) — 1] -
s—1 (£1)=1 =

=i+ L

Proof of (4.5).

Gy + Ao - Gy =

= (— 1)~ T e 5 | el B O (_1)s=i-1 s+1—i—1—1 (-H—l—l
( J—1 )( i—1 ) I ( = )f—!—l——l)'

e l)s_s(s—l-j—sv—l)(s-r—j—l) e it (s+j—1)! :
J—1 1 (s—i)!-j!. il (s—j—i)
- e - (s+j—! x .
N (5—i—1)] =(— 1)8—i—1, R ' TS
lij—s(s—j—D] =(—1) i D (s+j)- (s—i)
s+j)! s+j—i—1)!
SR e NG, O a1 o ST

(s+ji—i. it i s—i—I)!

Now, (4.4) and (4.2) imply (3.6.1); (4.4) implies (3.6.iii); (4.5) and (4.2) imply
(3.6.ii); and (4.5) implies (3.6.iv). H

Example 4.2. For s = 1, mEN, a,,.,=1. So, any abelian group
(G,+) is a (2m + 1, m)-group with [x u ] = (x7) + () —@™).

Example 4.3. For s =2, m € N, (4.2) holds for any divisor
T of m + 2.So0,any Zp moduleisa (2m + 2, m)-group with [x7" uvy y7] =
Xy -+ Yy — uay; — vag, where [x? w v p]; is the i-th component of
X7 u v yyl

Example 4.4. For s = 3, m¢c N, (4.2) holds for any divisor T of

m -+ 3 if m+3 is odd, and any divisor T of m_;—_% if .m 1+ 3 is even.

Example 4.5. For s = 5 and m = 7, (4.2) holds only for T = 1. So,
the discussed procedure gives only trivial (|G| = 1) (19, 7)-groups, and
does not give answer to the existence question for nontrivial finite (19, 7)-
groups.

The following fact is useful for showing existence of (m, n)-groups.
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Fact 4.6. The existence of nontrivial (finite), (km. kn)-groups is
equivalent to the existence of nontrivial (finite) (m, n)-groups.
Proof. If (G, []) is a (km, kn)-group, then (G*, []) is an (m. n)-
group, where
P e (L

If (G[)) is an (m, n)-group, then (G, []) is a (km, kn)-group, where
ryr. .. ey =Iy ... 5k - B

Example 4.7. For s = 6 and m = 4, (4.2) holds only for 7 = I, and
similarly as in Example 4.5., Proposition 4.1. does not give direct constructicn

of (14, 4)-groups, But (14, 4)-groups can be constructed by Fact 4.6. (14 —
2.7, 6 =2-3) and Example 4.4. (s = 3, m = 2).

Proposition 4.8. Let m - s be prime number, Then (4.2) holds for
T—= m + 5. So, any vector space over the field Z , . , can be given a (2m + s, m)-
group structure.

Proof. aypi1) =(— 1) Srmet—ly Stm+1—1Y
m-+ 1—I 1—I

e fEEm—Y o sm—D
1) [ , ) G2 i

" m! (s—1)!

PR s me L e

(s—1)!
S ke L ::;_'"-li)i{_“_-”)- (mod (m+s)) = 1.
For i1, @+ = (— l)“"'(s; ”H_lhfﬁl) (s %-m+l—-1) -
m-+1—1 i—1
Gim— - (hm)

= (— 1y~ ——— =0 (mod (m}s). M

m! (s—i)! (s+m—i+1)! (i—1)!
Example 4.9. For s — |, m — 2, the system of equations (3.6) is:
(%11)® = X195 X4y - X2 = 1. This system has three solutions over the field

1+i {3 1 —iy 3
R
So, any vector space G over C becomes a (5, 2)-group by

14:‘;/*3) :

2

of complex numbers C, one of which is x,; — —

1 4 ‘}-’3—

-, Uy Uy Uy

N~

[”i] = (“1 + Uy 1 Uy -
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5. Now we state some consequences about congruences of sums of
binomial coefTicient, obtained from the definition (4.3) of []:G¥n+s 5 Gm
and its associativity. Let m, s, T be as in Proposition 4.1., and let G = Z,.
First, (4.3) can be stated as:

[_‘-?m—l-s]{ = X{ T Xom+s+i — Z xm+1-a” .
j=1
Then: (5.1)
{[\_mts] \sm__,q]i s

= Xy T X s+t T Xomtagii —jZl (xm-,'—j e xzm-:—s-*"j) a.'H A
The associativity of [], tells us that for 1 < i< mand | <t <m+ s

I‘tl: [’\':.;—fm-:.‘ rsmbrfss l]IE = [[r2m J] X%::Iﬁ l]‘

There are aevcral casses to be discussed. Here we consider only the case:
s<m, t << §5 and i < 1. The rest of the cases are left as an exercise for
the reader. For s<m, t < s, i<t we have:

ef e iimt o et e = X+ Xamrasrs +

1-+2m+5+
1 !
3 | =1 -
T Xmtstit (Z Gis—t -:-U{m—&-f—t)‘aki) = Z Xon+j djg — (5.2)
k=1 j=1

¢
_'Z Xomtaty Qg T Z Xon+ H"(Z Apim—t+i)° al:f)

J=1 1

Now, (5.1), (5.2), associativity of [ ], and the fact that G = Z,, imply that:

D At tixm—t+ry -G = (mod T); (5.3)
k=1
!
Z Aym—t gy g =dt i (rl'lOd T'), for I < r -":-’___‘ s—1, (5.4)
k=1
 §
Z Aim—t gy G =0(mod T), for s—1 < r < s (5.5)
k=1

For example, when m 4 s is a prime number, (5.3) can be stated as:

‘. (e 1yp ik m —!—k—i—-i) s+m—it-+k—I1 (.S'—'r- f—-wk—l) s—é—f—l)ﬂa
,‘2;', m—it-+k—I1 ( §—t-+i—1 ) i—1 ( k—1

= | (mod (m+5)).
8 Tlpunosn
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6. We finish this paper with the following questions. We point out
that examples of nontrivial (2m -+ s, m)-groups are not found for all
m,s € N.

EQnestion 6.1. Do there exist nontrivial finite (2m -+ s, m)-groups,
for any m, s € N? Specially, do there exist nontrivial finite (19, 7)-group?

Question 6.2. Do there exist F and a solution for the matrix equation
(3.5) for any m,s € N?

Question 6.3. For given m, s € N, is there an algorithm for producing
a ring F and a solution for the matrix equation (3.5)?
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Honvo Hqumoecku

IMPUMEPA HA BEKTOPCKO BPEJHOCHHW [PVIIH
(Pesume)

OcroBHa uen va opaa pabora e ga ce nanat npumepn Ha (2m+s, m) BEKTOPCKO
BPEMHOCHH TPYNH CO MOBEKE ON eJeH eneMeHT. Ha noyeTokoT ce AaneHH HEKOKY MOBOIHA
YCIOBH 33 TOCTOEH:E HA TAKBM IPYNH, 4 NOTOA C€ KOHCTPYHPaHH KOHKPETHH HOPHMEpH.
Koprctejku ja ctpykrypara Ha (2m-+s, m)-rpynu, JNOOHEHM Ce HEKOJIKY KOHrPYCHUHH
nomefry OfpencH BHA OI CYMH 0 OHHOMHH KOedHLHEHTH.
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