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THE PROBLEM OF SOLVABILITY OF POLYLINEAR
REPRESENTATIONS OF UNIVERSAL ALGEBRAS IN SEMIROUPS

G. Cupona, S. Markovski, B. Janeva

The problem of effectivness of different kinds of embeddings of uni-
versal algebras in semigroups is treated in this paper.

1. Consider an Q-algebra A =(4;Q), ie. Q=U{Qm)|n=>1}is
a set of finitary operators such that n£ m = Q(n) N Q (m) =0, and eve-
ry n-ary operator ® € £ (n) induces an n-ary operation wa on 4. (We will
use the same notation for an operator and the corresponding operation in
the algebra, i.e. we will write @ (a,, ..., a,) instead of wa (ay,...,4a,).) We
associate three semigroups to the algebra A as follows:

Ap =<A4UQ|{a=wa...anla=0 (a,...,a3)inA> (L.1)
Ap=<AU Q" |[{a=wpa0,... apopla=o(a,...

cvs) @nin A} > (1.2)
Ap =< AU Q {a=ay0a;...a0|la=w (81, ..., ay)inA} > (1.3)

It is assumed in (1.2) that for any o € Q (1), ©"* = {wgs ..., Wy} is
a set with n+1 elements such that o” N7*" 0> w0 =17 and
Q* =) {o” o Q). It is also assumed that Q (1) =@ in (1.3).

We notice that, in all the above presentations, the right-hand sides
of the defining relations have greater lengths than the ones on the left-hand
sides. So, we can define reduced words to be those words which have no sub-
words which are the right-hand sides of the definig relations. It is clear that
for any word u there is a reduced word #, such that # is obtained from # by
a finite application of the defining relations.

It is easy to prove the following

Theorem 1.1. The irreducible representative # for any word u is uni-
quely defined in (1.1) and (1.2) for every algebra A. Every word has a unique
irreducible representative in (1.3) iff the algebra A statisfies the identities

995



996

64 2

AR e X e = M s i g Xy N = S =Py )
where © € Q (n), = € Q(m).}

An Q-algebra A is said to be recursive iff 4 and Q are recursive sets,
and every operation s : A" — A induced by » € Q(n) is recursive. As a
consequence of Theorem 1.1 we have:

Corollary 1.2. If the algebra A is recursive, then the semigroups Ap
and A$ are also recursive; furthermore, if the algebra A satisfies the identi-
ties (1.4), then A{ is recursive as well. i

Since the elements of the set 4 are reduced in all of the presentations
(1.1), (1.2) and (1.3), we have:

Corollary 1.3. For any (-algebra A there exists a semigroup S such
that A1) QC § and the equality

(@8, ...,0) =0 810y ...0p

holds for every o & Q(n), ay,...,a,€ A.
Corollary 1.4. For any Q-algebra A there exists a semigroup S and

a mapping © = 0" = (@, . .. .wo,) of Q into CI S" such that o € Q (n)

n=1

> " € S™', 4 C S and the equality
m(ala---:an)imoalml”-aﬂmn

holds for every w € Q(n),ay,...,a, € A.

Corollary 1.5. If the algebra A satsfies the identities (1.4), then there
exists a semigroup S such that 4 U Q C § and the equality

© (@, as,...,8) =0, 08,...0,

holds for every © € Q(n), ay,as,...,an € A. i

Namely, we can take S to be the semigroup A2, A$ and A$ in the
corresponding cases.

Remark that Corollary 1.3 is the well known Cohn-Rebane’s theorem-
([2], [7]) and Corollary 1.5 is proved in [3].

2. We will consider Fere morc general representations of (-algebras
into semigroups, and (1.1), (1.2) and (1.3) will be special cases of them.

Let Q be a set of finitary operations, C be a given set and e &
& Q U C. Assume that for any w € Q(7) we have a sequence w2 = (o,
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Wy, . . . » o), Where o € C U{e} . If Ais a given Q-algebra with a carrier 4,
then we consider the semigroup A& given by the following presentation:

AL=< AU C;{8=0pa10;...0n1830p |@=
=0 (@....0)inA} > i

We suppose that e is the empty word in (2.1), i.e. if w; = e for some i, then
we do not write w; on the corresponding right-hand side of the defining re-
lation. (We say that /\ is the kind of the polylinearity)

It is clear that (1.1), (1.2) and (1.3) are special cases of (2.1). Namely,
if C=Q and 02 = (0,6 ...,€) (@2 =(e,0,¢ ...,€), we obtain (1.1)
((1.3)). f w;% e for every o € Q (n), i€ {0,1,...,n} and o;=71;&
w=7,i =j, then we obtain (1.2).

The reduced words could be defined as above, and so we have
Theorem 2.1. Let the algebra A be defined such that for any word u
in the presentation (2.1) there exists a unique reduced representative z.

Then, if the algebra A is recursive, the semigroup A2 is recursive as
well. B

We are looking now for conditions under which we can have a unique
reduced representatives for a given word.

Define the set of Q-words, which isa subset of (4 U C)+7Y, in this
inductive way:

(i) every element of 4 is an Q-word;
(i) if vy, tyy . .., un are Q-words and @ € Q(n), then wou; 0 U, . ..
oo Op_qlip 0y is an Q-word;

(iii) a word u £ (4 | C)* is an Q-word iff it is obtained by a fi-
nite application of (i) and (ii).

Let A be an Q-algebra. For every Q-word u let us define its value
[4] € A as follows:

a€ A= [al=a;
if o € Q(n) and uy, uy, . . ., 4, are Q-words with values

) =by, i=1,2,...,m then b = (b, b,...., by) is one value of the
Q-word % = Uy @y . . . Wy_y Un p. Thus the value of an Q-word need not
be uniquely defined.

It is clear what we mean by ,,an Q-word u is a maximal Q-subword

of a given word v*. (Note that # can have both maximal and non maximal
appearences in 1.)

We can formulate now the wanted condition:
1) B+ is the free semigroup on B.
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Theorem 2.2. Let the algebra A and /\ satisfy the conditions:
1) Every word v € (4 U C)* can be represented uniquely in the form

V=g Uy Oy Uy . . Oy Up Oy (2.2)
where a, € C*V and uy, uy, . . . , up are maximal Q-subwords of v. (We say
that (2.2) is a canonical representation of v.)

2) Every Q-word « has a uniquelly defined value [u].

Define a relation~on (4 U C)* as follows: v & w iff v has a cano-
nical representation of the form (2.2), w has a canonical representation

W=y Uy Gyl ... Oy Uy
and [u}) = [w] for i=1,2,...,p.
Then /&~ is an equivalence on (4 U C)*+.
If it is satisfied the condition
3) &~ is a congruence on the semigroup (4 U O)*,

then A>is isomorphic to (4 U C)* / =~ and every word v with a cano-
nical representation (2.2) has uniquelly defined reduced representation

y =080, 0;. .. Op—1 Gp Up 2.2)

where [u] =a;, i=1,2,...,p.

The condition 3) is independent from 1) and 2), Namely, let Q =
= {1,0}, where ® € Q (3), T € Q (4), and let 02 = (¢, ¢, ¢, €), T2 = (e,
e,e,e,e,),C=90. Thenifu € Aoru=a,a,...ay,p > 3,uis an Q-word,
and if u = ab, a,b € A, then a and b are maximal subwords of u. Thus,
1) is satisfied for any algebra A = (4:w, 7). The condition 2)is satisfied
iff A satisfies the general associative law, i.e. iff A is an associative ([1], [4]).
But, there are associatives which do not satisfy 3).

For example, let 4 = {a,b, ¢} and © (x,, X,, X;3,) =a for every
X1y Xay X3 E A, © (xl) X3, X3 Xg) =@ for CVELy Xy, Xg, Xg, X4 G A such
that x; 5= ¢ for at least one i, and v (c,cc,¢) =b. Then (4;w, t) is an
associative ([4]), but the relation & is not a congruence, since ¢®* = a% c*=~b,
a®c ~ a, but a and b are not equivalent.

Notice that the condition 1) depends on /\, but not on the conside
red algebra, and that 2) is satisfied iff the algebra A satisfies some correspon-
ding system of identities. Thus 2) is satisfied in (1.3) iff the algebra A satis-
fies the identities (1.4).

3. Assume that the Q-algebra A has a presentation

A=<B:A> (3.1)

1) B* is the free monoid on B.
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in the class of all Q-algebras, or in some variety of {-algebras, We want to
give a presentation of the semigroup A%, for a given /\.

Define the set Q4 of Q-terms without variables to be the intersec-
tion of all subsets H of (4 \U C)* with the properties

(i) ACH
() o € Q@), &,...,8 € H2 0k, ..., CH.
For cvery Q-term £ without variables we have an Q-word £2, the ,,trans-
lation* of &, obtained in this inductive way:
a’ =a, for every a € A,

(mﬁl.-.ﬁn)&=moif> Wyy...88 o, for every

Jm E Q(ﬂ), Elxiza LR ’Eﬂ E -QA-
The translation A2 of A is defined by

AL ={EA =8 |E=n € A}

Now, we have the following results:

Theorem 3.1 If the algebra A has the presentation (3.1), then the se-
migroup A% has the presentation

As=<BC|A2>] (3.2)

Theorem 3.2. Suppose that the conditions of Theorem 2.2 are satis-
fied. Then the presentation (3.1) is solvable iff the presentation (3.2) is sol-
vable. i

We notice that an n-group is recursive iff its universal covering is

recursive ([6], [5]), but it is not known whether the same result is true when
n-semigroups are considered.
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IMPOBJIEMOT HA PEINUIMBOCT HA ITOJIMJIMHEAPHUTE ITPETCTABYBABA
HA VHHUBEP3AJIHU AJITEBPU BO ITOJIVI'PVIIH

I'. Yyiiona, C. Mapkoecku, B. Janesa

Enna Q-anre6pa (4, Q) e nomummeeapua noganre6pa on momyrpyna (S, . ) akko
ACS m 3a cexor w €L, a,ay,...,4, €A, 2

*) © (@, 83, ...,08,) = 08080y .. Ay Wy,

Kajge Ha cexoe o € () (n) My oarosapa Hm3a (w, ..., ®,) OJ €JIeMEHTH oA S, OPH WITO ce
[I03BOJTYBA HEKOM w; Ja He ce jaBysaat Bo (*). Po paGorasa ce pasrienysaat noseke BHIO-
BH NOIUIMHEADHH CMECTYBaha HA YHMBEP3aJHH anreOpu BO HONYTPYNH, NPH IITO ITABEH
aKIEHT € CTaBeH Ha e(HKAcHOCTA HA CMecTyBameTo. OCHOBEH pe3ynTaT Ha paGorTasa e
Teopema 2.2.



