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SUBALGEBRAS OF CANCELLATIVE SEMIGROUPS
G.%upona, S.Markovski, S.Crvenkovié, G.Vojvodi&

Abstract., 4 univereal algebra (Z.e. an fl-~algebra) QA=(2;0) is
called weakly cancellative if there exist a cancellative monozd M and
a mappf.agtw--o-a from @ into U {mMP+! I;l) 1} such that ACNami :

w ra . ¥ - 0 (A v nli ) Wel “ws

for any n-ag épcratoy wE N dnd '1""'2 kl f"t.;l Edﬁttion- (T)w, =1
(1 78 the idcntity of ‘the monoid) for any w€ N and k> 1, (ii)w, =1 For
any we 2 and kP 0, (iii) all operators are binary and w,=w,=1 Jkor any. .
wE€ Q - then (A;0Q) is termed: (i) a cancellative QN-algebra,” (ii) a
cancellative Q-assoctative, (iii) a cancellative polysemigroup-respeci-
fvely. Convenient axiom syetems for each of the quasivarieties of
cancellative Q-algebras,cancellative N-asscociatives and eancellative
fi-polyeemigroupe are given in this paper. A dnaariitton of weakly
eancellative N-algebras is given in [P s and such a description is
found in thie paper ae well, but both of them are not suitable enough.

1. Cancellative universal algebras.

. Let O.=(A;7) be an Q-algebra! with a carrier A. A semigroup
$=(s;+) is said to be a CR-semigroup(Cohn-Rebane semigroup) for Q
if AC S and there is a mapping w— T from © into S~ such that ~

m(al,....an)-ﬂaa <eedp : (1 1)
for any w€ 2(n), al,....ane A, np1l. It is well known that any Q-alge-"
‘bra admits a CR-semigroup ([2] ,[1( ). Lols ‘

" We say that an f-algebra QU is cancellative iff- for any N-terms?!
5'n 20 5 r,' th, et "-""z" the following qnsuiidanti.l:y ) is satisfled inQ:

:’n, =€'n2£"=‘-'dn =ch,t . (1.2)
Theorem 1.1. An 9-algebra a--tnm is M&mm uadm;u;aa
cancellative CR-semiqroup. -

Proof. Clearly, if some CR-semigroup of tl is cancellative, then Q. is
cancellative as well.

Let QL be a cancellative n—alqebra and let $€ ﬂ(k) « where k) 2,
Consider the free semigroup (AUQ)” *Yon aUR. An element ug (Ut
is called fQ-word if u€ A or u=wu,u,...u , where w€ Q(n) and Upseeeouy
are g-words. The A-value [u] of an p-word is defined in the usual way.

Namely, if uG A, then [ul = u, ana [u]= h(al,...,anl if u=ou,...u  and
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[“J = ai for 1=1,...;h. n-words can be characterized in another’ way. -
Define first the notion of the potency p{u) of an element ug (AUQ)
Namely, p is the homomorphism from (AU " into the additive semigroup
of integers which extends the mapping p,: AU — 2 defined by
aC A=>p,(a)=l, wéﬂln]:po(w} =1-n. Therefore, if u,vEg (AUQI . then
pluv)=p(u)+p(v). It is easy to show that an element ug (aua )"t is an
frword iff it satisfies the following two conditions:

plu)=1 (1.3)

u=vw =>p(v) <0.. (1.4)

The condition of cancellativity of Ol is now equivalent with *
the following statement. If u'uwu" , u'vu" , v'uv" , v'vv" are 0Q-words,
then:

[u'uu"] = [u'vu*] = [V'uv']= [v'w"]. {1.27)

Now, we are going to find a cancellative CR-semigroup of @ .

Define a relation 2 on (AUM ' in the following way:

(*) ussv iff there exist u',u”€ (AUQ)* ”such that

u'uu”, u'vu" are %words and [u'uu*]= [u'vu"].

Clearly,

us=v = plu)=plv). (1.5)

The relation = is reflexive, for if u€ (AUQ} and a& A, then
there exist i,j> 0 such that ¢' ua is an Q-word. Clearly, == is symme-
tric. Assume that uxv and v=w, i.e. there exist u',u" ,v',v"€ (AUn)*
such that u'uu" ,u'vu",v'vv',v'ww" are (-words and Lu'uu] =[utvu] ,
[v've ) =lviw"] . By (1.5), we have p(u)=p(v)= p(w}, ‘and therefore if
a€ A, then there exist i,32>0 such that ¢iuaj ¢ va’ , b waj are 0-words.
Now, by (1.27) we obtain [@iuaj]=[¢ivaj]z[¢iwaj], i.e. u=w. Thus, ==
is transitive.

Let usm:v and wg (J\UQJ+. Therefore, there exist u',u"c(aUn)*
such that u'uu",u'vu" are f~words with Lhe same value. Let a¢ A, and,

by (1.5), we can choocse 1,320 such that ¢tuwal L vwa?d

are {l-words. By
(1.2°) we have that ¢ uwajl-—["w \.rwa’]], and therefore uw=yw. Similarly,
it can be shown that wa=wv. S50, & 1is a congruence on (AU ﬂ}+.
Let uw=vw. Then, there exist u', u" € (AUQ)* such that u'uwu"
u'vwu" are %-words with the same value. If af A, then there exist
i,320 such that ¢ uaj
follows [% ua:'] U' vaJ], which implies uv-!u. Similarly, wurwv=>uzv,
Thus, we have shown that (AU Q) /'.-:: is a cancellative semligroup.

¢*val are f-words (by- (1.5)); and by (1.27) 1%
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If a,b€ A are such that a=b, then tﬂere exist O-words u'au",
u'bu" with the same value, and therefore a=[a] =[b] =b. So, we can az=ume
that AC{AUQ} T Finally, if a=m(a1....,a ) in QL , then aswa, ...a,
in AU *. Therefore, &= (aUM */a is a CR-semigroup for (L.

Further on, if w€ Q, then we will denote by 4 the ==-equiva-
lence class containing w. Thus, if a=w(a1....,an) inqQ, then
a= ﬁai...an in ﬁ .

There remains the case when 0=Q(1) consists of unary .operators
only. The cancellativity of the (unary) 0-algebra A =(AQ) means that
the following quasiidentities are satisfied in Q. :

wix)=wly)=> x=y, 3 (1.2°%)

wl...mplx) =1, ...1 (%)== Wy ey (v)= STy e (y)
where p,q»0, w .'rlé Q

Certainly, it is possible that two different elements «',w"Cn
define the same transformation of A. We can, however, reduce 0 to a
set 'in such a way that different elements of ' induce different
transformations of A. Namely, we can define a relation = on 2 by
wEtT iff (3x€ Mw(x)=t(x) ; by (1.2) we have w=1t iff (Mx€ A)w(x)=1(x).
Thus, we obtain that = is an equivalence on 2, and we can define ©' to
be a subset of O which contains exactly one 'clement from each = -equi-
valence class. Thercfore, we can assume that 9' is a set of transforma-
tions of A such that (1.2) holds. Denote by ' the monoid of transforma-
tions of A generated by 2'. Now, the conditions (1.2°°) reduce to the
following ones;: 7

w(x)=wly)= x=y, 5
wlx)=t(x)=> w=1. L

We notice that the unit of ' is the identity transformaticn

I=1_ : ar+a. Denote by RI the set A*X I and define an operation » on

A by

(a,w)e (be, t)=(aw(b)ec, 1)

(a,w)e (1,1)=(a,ur) (E28)
for any a,c€ A*, bEA,w,1€ I'. It is easy vo check that OL {:\ is
a cancellative semigroup with an identity (1,1) and that the mupplnq
w— (1,w) is an injective homomorphism from I' into flj. Moreover, it

b=w(a), then we have (l,w)e*(a,l)=(w(a),1)=(b,1).Thus, by identifying
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w with (1,») and a with (a,l), we see that AU Fcﬁl. and w(a)=b in
Q. implies wa=b, If w€Q, then there is an ¢ o' such that(Wx€M v (x)=u'(x),
and therefox:e we have a mapping w——uw' from Q into A such that
¥x€ A)w(x)=dx. In such a way we obtain a CR-monoid’ 3) ﬁ. for O
Clearly, 'if u,v{-,f. ‘and uv=(1,1), then u=v=(1,1), and thus the set A
of nonidentity elements of a'l is a subsemigroup of ﬁ. - The semigroup
Q=(As) is a CR-semigroup for OL . 4

This completes the proof of Theorem 1.1.
Proposition 1.2. Let OL=(A;0) be 2 cancellative f-algebra and O be the
cancellative CR-semigroup for @ obtained in the previous proof. If
§=(8; *) is an arbitrary cancellative CR-semigroup for ® , then there
exists a (unique) hmanogghism $: at—h such that- ¢(a)=a, ¢(8)=w for
every aC A, wg n. FEHT :
Proof, Define a mapping tg* AUAY—>S by ¢0(a)—a. Qolmh u for every
att A, w€ @, and extend $y to the unigue homemorphism $,: aua*t —+S .

Then ¢ is the unique hommorphir.m from O into S such that
¢ﬂat-.- s "1 . We wlsh to shqw that ¢ is we.ll defined, AL I

u,vE (Aum and u~v, then @1(1.1)-1;1(\'). Now, u=v impues that
there. exist u' ,u* € (I\UQ)* such that [u'uwu) =[u'vu'] in Q. Thus we
have 3
4 6y (u' g ade, )=, (u'uu")=g, ([u uu“])-¢ (fu' vu] )=
=¢ {u' vu“l—¢ (u' NIWM (u ). ;
f.e. ¢, (=g (v). . _
: Proposition 1.2 sugests that G is the universal CR—semigro_up
for O, - tic ’
Proposition 1.3. Assume 'thar. a¥ a(1). ;; @ is an g-algebra, thed ‘there

is a CR—group, for O iff a, is a ubsemigroug of a group. - :
"Proof. Certainly, if G is a subsemigroup of a group G, then G- is a _

CP-group for @& . _ ; i
2 Assume now that there is a CR-group for (X , and consider the
group G with the following presentation <AUq; {a—mal...a | a=w(a, veeed )
in & }>in the variety of gruups. Then G is a CR-group for [l

Let F=AUA UFUQ , and define a relation = in 3 by usv .
iff v can be obtained from u by a finite number of applications of the

following types:

i -1 - " 4 ' .o "
wloc s e S P VWA AU — utart
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where a=m(al...a ¥ 40 , c€ AUQ, u' ,u"€ Fi. Clea.rly, G’P+/9 3

Extend the notion of potency. Namely, let p:F'— 2 be the
hcmomor.;phism from P into add.ltive semigroup of integers generated by
p(a)=1, plu)=1-n, pla” Yy=-1, pw Y)=n-1, for any a€ A,wg Q(n). It is
clear that u=v implies p(u)=p(v). If u,v€ (AU MY and u=v, then ugzv,
for G is a cancellative CR—semigroup for A .

Assume now that u,v€ (AUQ) and u 2v. Then p(ul=p(v), and therefore
there exist 1,330 such that 4 uaj ¢ vaJ are 0-words, where ¢£ 2{n)
for some n» 2, a€A. Also, from u=v it follows ¢ uaj- ¢ va3. g2 2 ¥
[ﬁiuaj]=[¢ivaj] . which implies u=v.

Therefore, the mapping ar—»s a,wr»w induces an injective homo-
morphism from ﬂ. into G, i.e. we can assume that ﬂ is a subsemigroup
of the group G.

This omplel:es the proof.

We noticé that it is not known whether the same result holds
in the case when Q=Q(1) consists of unary operators only.

The set O(a)=( On(M |In>1} of (non-nullary) finitary operati-
ons on a set A is a semiqroup under the usual operation 0 of super-
position, i.e.

mot(xl,...,xm"_n l) u(‘r(xl,...,xm) !""'xm-l*n—l) (1.2}
where wé 0 (a), <€ O (A). Any nubsemigroup I of the semigroup
(D) ,0) is called a gemigroup of qperatmn_s on A. In such a way we
get a universal algebra (A,I'). We say that Tis a cancellative semigroup
of operattions if I is cancellative and (A,T) is a cancellative T -

. —algebra. The following regult is stated in[5].
Proposition 1.4. A semigroup I' of operations on a set A is a cancella-

tive semigroup of opm ations iff there is a semigroup § and an inject-

sfiDd for any al,...,ane A and .-lny n-ary operation uE S

Proof. We can assume that IAE I , 1.e. that I is a monoid. Tha case
when |' is a semigroup of transformations on A is considered in the
second part of the proof of Theorem 1.1.

% If there is a k» 2 and a k-ary operation ¢€ ' , then we
consider first the monoid M= A*lJr which is the free product of A* and
T in the class of monoids, Then we define the notion of l-words simi-
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larly as in the préof of the first part of Theorem 1.l. Finally, we
define in the same manner the corresponding congruence £ and we
obtain the desired cancellative semigroup S=M/x .

2. Cancellative associatives.

‘an f-algebra (A=(A;0) is said to be an N-associative if it
satisfies any identity E£=n for any f-terms £,n which admit the same
sequences of variables,' i.e. V(E)=V(n). An QO-algebra "{1=(A;m is
called an Qi-subuseoctative of a semigroup S if ACS and

wla re--,a )=a,...a, (2.1)
for any w€ Q(n), n>1, a€ h. We notice that the class of fl-subassoci
atives of semigroups is a quasivariety, which is a subquasivariety of
the variety of {i-associatives. (Different problems concerning R-
associatives are treated in several papers, and a review of these
papers can be.found in [1). The main result of this part of the paper
is the following !

Theorem 2.1. An Q(-associative ( is an 0-subassociative of a cancellati
I‘_@ semigroup iff (| is g' cancellative p-associative.

Procf. Clearly, if @ is an (-subassociative of a cancellative semi-
group , then UL is a cancellative Q-associative.

1.) Let W=(A;Q) be ah-0-associative. If n>1 and w,7€ 0(n),
then we have :

u(al,...,an}wrtal,...,an) :
for every al,...,anE A, and thus we can assume that |fl(n) fé L,
Specially, if w€ 2(1), then w({a)=a for every a€ A, i.e. w=1,.

If 0=0(1), then (L is an Q-subassociative of any cancellative
semigroup § generated by A. For this reason we can assume that Q# Q(1)

Denote by'Jn the subset of positive integers

Jo={n-1] a(m)# ¢, n31} , \
and let élﬂ be the greatest common divisor of Jn.omrther. let K=K, be
the additive semigroup generated by Jg and let K GKQU{OI.

We can now define m+l-ary operation [ ],n-on A for any m€ x®
in the follcmi.ng :Lnductive way: -

[a] o R : :
m=m, +m, ;m, ’m2€K =,-‘»[a R N [[a cevd Tpan yeeean ]
The fact that & is an ﬂ-associa.tive 1mp.’£ie& tl‘iat[ )2 gs well
defined and moreover if m=mg+m, +...+m E Ko, m, € x° " pE}( , then
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O S e [y N

This implies that we can wrlta { %7 Giveend of [ 1, Also, instead

of "an f-associative", further on, we shall use " a K- associative

i Now, the condition of cancellativity has following form:
[x'z2) =[x'z, 2] =>[y'z,¥] = [y'2,¥1 (2.2)

for any x',x", y', y*, z;, 2,€ A* such that

B P N P T P R PR P e T R P

lg*l+ 12,1 + [y"l€ x7+1.

We note that there is an s,> 1 such that s> s)=>sd € K([s] ,[a])

2.)Assume now that QL=(A;Q) is a cancellative Q-associative and
K=K, d=d, are defined as above, i.e. (L is an cancellative K-assoca-
tive,

Consider the free semigroup A* on aA. 1f w€ A" and lal€ K°+1,
then [u] is a uniguely determined element of A, i.e.[ ] is a partial
mapping of A* in A. Define a relation = on At in the following way:

umve>(3i> 0,a€ A) (Jul+i, [v]+1€ &° i1, [atul =[ald] ). ATAVE:

By (2.2) we have

uzve>Yid> 0,a€ mnu[+1,|v|+1ex +,0<iLL =>

=% [auniT3) ol adva 5]}. (2.37)
Clearly, = is reflexive and symmetric. Also, notice that if u=sv, then
|u|= |v| (modd) . Now, let uzv, vaw, and let |u| =|v|Z|w|=i(modd) for

0£i<d. Then there is some s> 1, such that|u| +d- ~i+sd+l, [v|+d-1+sd+l,
|w| +d=-i+sd+1€ K°+1, and for any ag€ A we have g -

[od-itsd+l 7 [ d-itsd+] ]=[ d-i+sd+1 ]' 2
i.e. u=w, Thus, o= is transitive.

In the same manner it can be easuy seen t'.hat 2= is a congru-
ence on A* and that a*/z =@ is a cancellative semigroup.

Let b,c€ A and b=c. Then, for a€ A, [a el a%c), which
implies, by (2.2), that b=c. Thus, we can assume that AC Q. .

Finally, if as[ao...am] in U., then aﬂao...am,.!.".'a.
a=ag...a. 1:1&. :

Thi.s completes the proof of Theorem 2..-;.

We notice that in the definition of cancellative O-associative
we have an infinite set of defining quasiidentities. But, in fact, all
those quasiidentities are consequences of only one (or two) quasi-
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identity, as the following proposition shows.
Proposition 2.2. Let Ol=(A;f)be a K-associative, and let n€ K, n>2.

The following statements are equivalent:
(i) Ol is cancellative.

(ii) The quasiidentities

[le...zn]=[yzl...zg=bx=y

[21‘ ; .:nxlz[sl:1 o2 Y SOxmy
are true in QL. '

(iii) There is an r€ {2,...,n} such that the guasiidentity

2y-eez %z ..oz J=lz .02 vz .. -z J=> x=y
is true in Q@ . 4

The cancellative semigroup W obtained in the proof of Theorem
2.1 is called the universal cancellative covering semigroup for the
K-associative (L . Namely, the following proposition can be proved in
the same way as Proposition 1.2.
Proposition 2.3. If (lis an Q-subassociative of a cancellative semi-
group §=(S;-), then the identitli mapping av+ a can be extended in a
unique way to a homomorphism #:[l—> S.

The following analogy of Proposition 1.3 can be 'also proved

in the same way.
Proposition 2.4. If (L is a cancellative D-associative, then it is an
fi=subassociative of a group ;_{_g_.ﬁ, is a subsemiaroup of a group.

3. Cancellative polysemigroups

An Q-algebra QL =(A;2) with binary operators only is said to be

a polysemigroup iEf the followina equation,

wla,(b,c))=7(w(a,b),c), (3.3)
is satisfied for any u,t€ @, a,b,c€ A. Then we will write xwy instead
of w(x,y). It can be easily scen, by a usual induction, that-if
ao,al,...,ane A,wl,...,-mng ft, then the “continued product"
anmlalwz...an_luna‘n is unicquely defined. A polysemigroup QOL=(n}) is
said to be eancellutive iff the following quasiidentities .are satisfi-

i ed in (L for any w,t€ Q:

XOY=XWZ = y=2, =

yux=zuwx =P y=z,

xuz=ytz=>xuz'= y1z', {3.2)

xuy=xrz=>x'uwy=x"1%2.

We say that a polysemigroup (=(A}q) is a polycubsemigrpup
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of a semigroup S=(S;*) if ACS and there is a mapping w»—sw of 2 into
$ such that i
awb=a «» w-b (3.3)
for any a,b€ A,w€ Q. It is known ([3],[6] ) that any polysemigroup is
a polysubsemigroup of a semigroup.
Theorem 3.1. A polysemigroup is cancellative iff 1t is a polysubsemi-

—_— — —

groap of a cancellative semigroup. ‘
Proof, It is clear that if R =(A]02) is a polysubsemigroup of a can-

cellative semigroup, then (L is a cancellative polysemigroup.

Assume now that (A;Ql) is a cancellative polysemigroup and let
w+—© be a bijection from 0 into 0={ w|w€ Q}, where aNn T=¢ =aN7.
Consider the free semigroup (AU @ * on AU 7. Every element
u=a, G’lal...ﬁnanc (aUm ¥, where w E G NA EA, is called an Q-word.
Then, [u] n{a A ol ark A is uniquely determined value of u in @ .
Clearly, an element V=e C,...C G (AUM ™ is a "subword" of an 0-word
iff for any i€ (2, 3,...,9—1}, the following implications hold:

' ¢, € A=c,€0; ¢, €E0=DcEA; (pP2)

e4€ A=y 00y, € 00 ¢y “*"1 175541 € 2
It is also clear that if u€ {AUQ)  then there exists a unique
sequence u,,U,,...,u such that usu, . ..up, and “1"“'“;: are maximal
subwords of u where each of them is a subword of an ﬂ-word Then we say
that ul...up is the canonical decmposit.ton of u. ;

" Define a relation = on (AUM ' in the following.way.

Let u=u ...u , v=v. . Vo be the canonical decompositions of

1 m 1
u,v respectively. Then: _
umv iff m=n and there exist u"J :, such that uv“\n"‘v'
r N
v ul are f-words and [ulu u¥]= [uvv uf], is

satisfied for v€ {1,2,...,m}. _
= It can be shown that & is a congruence on (AU5)+ such that
A=aUM /& is a cancellative semigroup. Moreover, if a,b€ A and
a—-b then it follows from (3.2) that a=b, and a=buc in ‘.'l. implies
a = bwc, which means that QL is a polyéubsemigroup of M .

It is clear that the semigroup 'd. has the corresponding
property of "universality".

The answer to the question whether it is true that any
cancellative polysemigroup is a cancellative universal algebra" is
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negative. Namely, if a polysemigroup @ =(A;Q) is cancellative as a
universal algebra, then it has to satisfy, for example, the following
quasiidentity:

mtxlaxz)-uiyl,y2)==>t(xl.leﬂt(yl,yz).
f.e.

X wX o= ylmy2=>x TX,™ ¥, TY 5

for any w,T€ Q. Consider the symmetric group4§; on [1,2,3} , and put
w=(1l), T=(12). Then we have .

1 1) (13 t (12) (12) (12)=(12), ¥
(12) (1) (12)=(13) (1) (13)but (12) (12) ( il

Now, if u-*xﬂ%. Q={wrt} and @(x,y)=xy, 1(x,y)=x(12)y, then the algebra
(&iw,7) 1s a cancellative universal algebra.

4. Weakly cancellative universal algebras

Let S=(8;°) be a semigroup, and Q be an operator domain.

Assume also that mr—-ﬁB(Go.....ﬁn) is a mapping from Q(n) into s"*!
for any n3 1. An (-algebra (S;Q) can be defined as follows:

wla ,e..a)= moa mlaz-..an_x A_n (4.1)
for any n> l,mE n(n}, a,s.--.a € S. Every subalgebra & =(A;Q) of the
algebra (S;R) is said to be a polylinear subalgebra of the given

F -

semigroup.

An G-algebra M =(A;0) is called weakly cancellative iff it is
a polylinear subalgebra of a cancellative semigroup. Cancellative
universal algebras and cancellative polysemigroup are Special kinds
of weakly cancellative universal algcbras.

A universal polylinear covering semigroup can be associated to
any universal algebra in the follewing way.

Let OL=(A;%) be an fi-algebra, and define a set § by

A={(u,1) Ju€ %(n), n»1, 0< i< nl. (4.2)
Further on, we shall write w; instead of (w,i). Consider the free
semigroup (AU )" on AU, and we define the notion of an f-word and
its value in QL as follows. First, if u€ A,then u is an Q-word with
a value ['u}-= u. If u€ AUH Y ana u @n, then u is an fQ-word iff

uLw . where w€ 2(n), u,u M are Q-words with values

n-1 > Sfedindin
[u ]~ al,...,[unj= a_, and the valuc of u is
[ul=w( fay,..,a ).
The notion of maximal O-subwords of words (i.e. of clements of

aUT*y 15 clear.

u*mou ol
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it can be easily shown ([6]] that if u€ (AU§1+, then u can be repre-
sented uniquely in the following form

=a0ula1u2...up_1 5% (4.3)
where a 6 Q*, p>0, and Uyseeesu are maximal Q-subwords: of u We say
ghat (4.3) is the canonical factorization of u. Let vE& (AU 7' nave
the following canonical factorization

v-Bovlﬁl...quq. ! (4.37)
then o

umv>p=q, o =6 ,[ul=[v ].

It can be shown ([6]) that ~ is a conaruence on (AUM ™, and
it is clear that

a=w(a;,...,a ) in 0.:::» a...mo ...anEn,

a,b€ A=>(amb=>a=b), (4.4)
which implies that [+ B can be embedded as a polylinear subalgebra in
the semigroup o-aum* /o3 . We say that @ is the universa? poly-
linear covering semigroup of the given Q-algebra (L.

The following assertion is clear:
Theorem 4.1. Let a be the universal polylinear covering semigroup of
a universal Q-algebra W =(A;Q), and let = be the least conaruence on
ﬁ such that ﬁ/g be cancellative. Then (U is a weaklv cancellative
g-algebra iff the following implication is satisfied:

a,bEA=>(a=b=a=b). ; (4.5)

We point that Theorem 4.1 is not the most satisfactory

description of the quasivariety of weakly cancellative universal
algebras, although a descfiptiqn of relation = is known ([1]);naumly,
we do not know an axiom system for that quasivariety. Rebane’s
description is not explicit enough either.
Proposition 4.2. If an f-algebra QL=(A;Q) is weakly cancellative and
if u,v € (AU D7, u',ut et v € (AU are such that u'uu”, u!vu®,
viuv", v'vv" are 9-words, then the following implication is tru inQ:
futou] =[ut vt ]=> [vr vt ) =[vt v}, - (4.6)
Remark that in each of the special cases considered in the

first three parts of the paper, the corresponding quasivarieties were
defined with quasiidentities of the form (4.6) {together with a set of
identities in 2 and 3).
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Proposition 4.3. Let @=Q(1) consist of unary operators only. An -
algebra A=(a;0) is wea_klg cancellative iff it satisfies the following
guasiidentity

wx)=ulyl=> x=-y p (4.7)
for any w€Q, i.e. iff the transformations on A induced by 0 are
injective.
Proof. Assume that any quasiidentity (4.7) holds, ‘and- 1etﬁ be the
universal polylinear covering semigroup of (L . We are going to show
that O is cancellative.

Define a reduced form u of a word u & (AU iyt as follows. Let

u= uoulul...upup be the canonical factorization of u, and [u ] = a, for
i€ {1, 2,....9]. Then

u==c;0 e .apa .
It is easily seen that if u ,VE {AU m then

uzv@uw, : Tu?=uv. % ; (4.8)

Now, it follows from (4.8) that it is enough to_show if u,vE€ (aU ot
wEé AUT, then .

G > U=V, wa=wv =>u=v.
The only nontrivial cases are w=uw, for the first implication, and
w=w, for the second one, where w€ Q.

1f u=u' Woas vwm 0P where a,b€ A, it follows from uml i'r?n'l
that u'= v' and m(a)nw{b} But, we have from (4.7) that a=b, i.e.
T=v. ' _

The second case is treated in the same manner, i.e. we obtain

“that ﬁ, is cancellative.

5. Subalgebras of commutative cancellative semigroups
We can identify the cancellative and the weakly cancellative universal
algekras when cemmutative cancellative semigroups are considered. A
universal G-algebra O.=(A}Q) is said to be commutative 1iff any
equality £=n, where {,n are Q-terms such that any symbol z€AUR

' occurs equal number of times in § and n, is an identity in G,
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Theorem 5.1. An Q-algebra (L=(a;2) is commutative and cancellative
iff it admite a commutative cancellative CR-semigroup.

proof. Let O# 0{1), i.e. N does not consist of unary operators only.
hAssume that C is the free commutative semigroup generated by the'sat.



AUQ, and define a relation = on C by

u= v (Jwe ©) [uw]=[ww],
where [ ] denotes the partial operation of evaluation of some
elements of ¢ in QA . (If u,vE (AY m+, v is an Q-word defined as in
the proof of Theorem 1.1 and u=v in C, then [ul=[W). Now, it can be
easily seen that = is a congruence on C such that S=C/= is a
commutative cancellative CR-semigroup of (L.

Consider now the case when 0 consists of unary operators only.
1f L=(A;0) admits a commutative cancellative CR-semigroup, then the
formulas

wywy (X)=wsa, (%),

w(x)=wly)= x=y, (5.1)

Wyee .up(x)=‘rl.. .‘rq(x)$ Wy .wp(y)*:tl. 1 .Tq(y}
are true in (L. ..

Suppose now that the formulas (5.1) are true in A, and let
W+ o be a bijection of Q onto 0={w|w€ 0}. We are going to show that
there is a commutative CR-group for (L. For proving the preceding ge
statement, we will use the model theoretical methods, rather than the |
algebraic methods used till now. Therefore, let J be a first order
theory with the language Q'={(-, -l,e}Uﬂuﬁ, where - is a binary,
and Q1 are unary, e and © are nullary operators, and with nonlogical
axioms x({yz)=(xy)z, xy=yx, xx 1= e, wi{x)=wx; for every wg 0.

It is known {[9] ,['}']) that a universal algebra WL=(A;0) admits
a. commutative CR-group iff every quasiidentity in 3' ;, which is in

the language 2, holds in . 1et muE 2, uj,ﬁ B be nonnegative

o
s"i]'irs
integers, and consider a quasiidentity in =

o o i3 #
wy l...m Ip(x Y= ‘1...w Ip{x. YR
P 11 1 p ERY
o o, @ A ;
o s T L I e . 8 (5.2).

oz 31 @ B
- W, "'wpp(xi):m]

w
1 p
el LY
P J
Then
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o [+1 B B
~*11  ="1p ~"11 =F1p
Iml ...mp ] ili wy ...mp le&...
i d . Byl - _B
e SR % e R ey
1 2 ik l E S
o o 8 5
O, e e T i Bt Bl
:::;> ml ...mp Xi ml ..:mp Xj

is a guasiidentity in the variety of commutative groups, which can be
written as

P AL ¢ o e 25 i
w ll...m ip xi xj 1= e &,,.8 mlkl...u Ep Xy x.1= i
Y ¥
ey o W ot 108
::-—w> (ﬂl .--NP i J = e, (5-3)

where y vy are inteqers.
The meaning of "(5.3) is that the consequence in the last
~implication is an eguality in the commutative group given by the

presentation
X ¥
T e L T K R S R D S e o g ol | R SR et
1 i - T i 11 . iK‘-él ? 3k 1 P i 31'
X ¥
—Tx1~ ~Txp -1
- PR R 2y
g | P i}; 3k>

in the variety of commutative groups. Therefore,

¥ e

”11“'mp? xlxs
is obtained from the defining words by multiplications and inversions.
It is clear that inverse corresponds to the changing of the left-hand
side with the right-hand side in some of the equalites in (5.2). Also,

there are some vu,lﬁ guch that

»1 ...1 -.1
LR DR ot A RO 1 e S 1S
: ki ul Al N Am
This means that

P Tt L U T e D (e Wt le) (5

i) Byt THy T, Yoy ur p
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for some p
equalites in (5.2) would be multiplied by coresponding strings of
operations, and we can use the transitive law after that,

Thus, we conclude that (5.2) is a quasiidentity which is true
in L , and that completes the proof,

If Q. is a commutative and cancellative ﬂ-associative, then
it can be casily shown that its universal cancellative covering
semigroup @ is commutative as well, which implies the following
Theorem 5.2. An {-associative is an Q-subassociative of a commutative

preeeabe Now, we can construct (5.4) such that some of the

—_— e e s e e e = e

1) {@(n)|n»1} is a disjoint family of operators
@=U{a(n) | n» 1}, and any n-ary operator w€ 2 induces an n-operation
(denoted also by w) on the carrier of a given algebra. Let 2
x={xl,....xn,.-.} be an infinite denumerable set of elements which are
called variables; the set TermQ of Q-terms is defined recursively by:
(i) XCTerm?, (ii) If £ is a nonempty finite sequence on XUQ and £ ﬁfx,
then £E Term} iff E=uEl...£n, where w€ 2(n) and El....,EnE Termi}. If
EE TermQl and if any variable that occurs in £ is an element of
(xl,...,xn}, then we often write E(xl,...,xn) instead of £, then the
value E(al.,...,an)=a of £ on a "vector" (al,...,an}E A", where (A]0)
is an f-algebra, is defined in the usual way, the (-algebra(l=(a}n)
satisfies an identity E=n iff €(a1,...,a )=n(a1,...,a ), for any
Apresegd € A, and (L satisfies a quasiidentity

)TN, 8 e BB =0 SO B
iff for any a jreceed E-A such thatf (al,...,a )ﬂnlfa ..,a Yyaies
...,gk(a ...,a )= nk(al,...,a Yoy il: follows E,'(a reeesd lﬂn(al,...,a ) Lo

2) If B is a nonempty set, then B is the set of all nonempty
sequences on B, and it is in fact the free semigroup on B, where the
operation is the usual catenation of sequences. B*=pty {#) is the free
monoid on B. For any u€ B* we denote by |ul ‘the length of u. :

1) The notions of CR-monoid and CR-groups are defined as in
1, when monoid and group instead of semigroup are considered.
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