SOME PROPER QUASIVARIETIES OF SUBALGEBRAS OF SEMIGROUPS

S.Kalajdžievski

Abstract. The well known Cohn-Rebane's Theorem ([1]) states that every universal algebra $\mathbb{A} = \langle A; \Omega \rangle$ can be ambadded in a semigroup $\mathbb{S} = \langle S; \cdot \rangle$ in such a way that the operations of the algebra \mathbb{A} are restrictions of inner left translations in the semigroup \mathbb{S} . Then we say that \mathbb{A} is a subalgebra of \mathbb{S} , the concept being introduced by Kuroš ([7]). If \mathbb{K} is a variety of semigroups then the class of \mathbb{A} -algebras (algebras in a signature \mathbb{A}) that are subalgebras of semigroups in \mathbb{K} , denoted by $\mathbb{K}(\mathbb{A})$, is a quasivariety ([8], pg. 274) and need not to be variety ([2], [3]). In this article we find a necessary condition for a set of varieties of semigroups \mathbb{K} such that $\mathbb{K}(\mathbb{A})$ is a proper quasivariety for every \mathbb{K} \mathbb{K} and \mathbb{A} containing at least two non-constant operators, not both unar ones, generalizing a part of the results obtained in [4] and [5].

1. PRELIMINARIES

Say that an Ω -algebra $A = \langle A; \Omega \rangle$ is a <u>subalgebra</u> of a semigroup $S = \langle S; \cdot \rangle$ if $A \subseteq S$ and there is a mapping $\psi : \Omega + S$ such that for every n-ary operator ω belonging to Ω and for every $a_1, \ldots, a_n \in A$

$$\omega(\mathbf{a}_1,\ldots,\mathbf{a}_n) = \psi(\omega)\mathbf{a}_1,\ldots,\mathbf{a}_n \tag{1}$$

The set of n-ary operators belonging to an arbitrary signature Ω will be denoted by $\Omega(n)=0,1,\ldots)$.

Let K be a variety of semigroups and Ω an arbitrary signature. As we have already mentioned, the problem is to determine whether $K(\Omega)$ is a variety and that is independent of the constants in Ω . Thus we can suppose that $\Omega(0) = \emptyset$.

Before passing on we give necessary denotations and definitions.

Let u stand for a word in an arbitrary alphabeth. Then denote by: c(u) - the set of symbols occurring in u (content of u); d(u) - the number of apperances of symbols in u (lenght of u); (i)u - the i-th symbol from left to right, occurring in u; u(i) - the i-th symbol from right to left, occurring in u.

Let ϕ be an Ω -formula, i.e. a formula in a first order language defined by a signature Ω . Let f be a mapping from the set of operators occurring in ϕ in to the set of variables not occurring in ϕ . If we submit every occurence of an operator ω in ϕ by the variable $f(\omega)$, we obtain a sequence of variables and eventually logical symbols and brackets. This sequence can be easyly interpreted as a formula in the multiplicative operator signature, with respect to a class of semigroups. The last formula is called SEM-instance of the formula ϕ with respect to the mapping f and is denoted by ϕ^S . If we submit the word "term" instead of "formula" we shall get the definition of a SEM-instance of a term with respect to the mapping f.

The following lemma is, in a sence, natural and expectable. We shall omit the proof for the sake of compactness and shortness of the exposition.

LEMMA 1.1. ([6]) Let K be a class of semigroups and Ω be a signature. An open Ω -formula ϕ is valid in the class $K(\Omega)$ if and only if any SEM-instance of ϕ is valid in K. ::

2. RESULTS

We shall take in to a consideration the varieties of semigroups that are axiomatizable by regular identities (regular varieties), by ends-preseving identities (ends-preserving varieties) and by balanced identities (balanced varieties), whereas an identity u=v is regular iff (if and only if) c(u)=c(v), it is ends-preserving iff u(1)=v(1) and (1)u=(1)v and it is balanced iff the numbers of appearances of any variable in u and v are equal.

For a class of semigroups K and an arbitrary signature Ω denote by $VK(\Omega)$ the variety of Ω -algebras defined by the all identities valid in $K(\Omega)$. Obviously, $K(\Omega)$ is a variety iff $K(\Omega) = VK(\Omega)$.

LEMMA 2.1. Let K be a variety of semigroups axiomatizable by regular identities and Ω , Ω be two signatures such that $\Omega \subseteq \Omega$. Then every algebra belonging to $VK(\Omega)$ is a subalgebra of an Ω -restriction of an Ω -algebra belonging to $VK(\Omega)$.

<u>Proof.</u> Let $A = \langle A; \Omega \rangle$ belong to $\forall K(\Omega)$ and a $\not\in A$. Define an Ω' -algebra $A' = \langle A \cup \{a\}; \Omega' \rangle$ by

$$\omega_{A}$$
, $(a_1, \dots, a_n) = \begin{cases} \omega_{A}(a_1, \dots, a_n) & \text{if } \omega \in \mathbb{R}, \ a_1, a_2, \dots, a_n \in A \end{cases}$

$$\text{a otherwise,}$$

whereas a, ..., an are arbitrary elements in AU(a).

Let ϕ be an identity valid in $V((\Omega^*))$. Thus ϕ is valid in $V((\Omega^*))$ and according to Lemma 1.1., every SEM-instance ϕ^S of ϕ is valid in $V(\Omega^*)$ which implies regularity of ϕ^S . We conclude that ϕ is a regular Ω^* -identity, i.e. ϕ is of the tipe u=v whereas C(u)=C(v).

If ϕ is an Ω -formula then the fact that ϕ^S is valid in K implies that ϕ is valid in $K(\Omega)$. Thereby ϕ is valid in A and moreover ϕ is valid in A' .

Otherwise, both the terms u and v are equal to a in A^* . ::

As a consequence of the previous lemma we have this useful theorem:

THEOREM 2.2. Let K be a variety of semigroups axiomatizable by regular identities, Ω , Ω' be two signatures and $\Omega \subseteq \Omega'$. If $K(\Omega')$ is a variety then $K(\Omega)$ is a variety.

<u>Proof.</u> Let $K(\Omega')$ be a variety and $A = \langle A; \Omega \rangle$ belong to the variety $VK(\Omega)$. By Lemma 2.1. A is a subalgebra of a restriction of an Ω' -algebra A' belonging to $VK(\Omega')$. Thus $A' \in K(\Omega')$ and if A' is a subalgebra of a semigroup S, $S \in K$, then A is a subalgebra of S too. Thereby, $A \in K(\Omega)$ and $VK(\Omega) = K(\Omega)$. ::

Now we turn on the ends-preserving varieties of semigroups exposing a necessary condition for the class $K(\Omega)$ to be a proper quasivariety.

THEOREM 2.3. Let K be an ends-preserving variety of semigroups and $\Omega = \{\omega, \tau\}$ be a signature $(\omega \in \Omega(n), \tau \in \Omega(m), \omega \neq \tau)$. If there exist Ω -terms t_1, t_2, t_3, t_4 and a variable-word w such that

i) (1) $t_1 = \omega$, (1) $t_2 = \tau$, t_1 (1) $\neq w$ (1) $\neq t_2$ (1)

ii) if u_1 is a SEM-instance of t_1 with respect to a mapping f (i=1,2,3,4) then $u_1w=u_3$ and $u_2w=u_4$ are identities valid in K,

then K(n) is a proper quasivariety.

<u>Proof.</u> Consider the Ω -quasiidentity ϕ : $t_1 = t_2 + t_3 = t_4$. It is valid in $K(\Omega)$ because its SEM-instance $u_1 = u_2 + u_3 = u_4$ is valid in K (Lemma 1.1.). It remains to prove that ϕ is not a consequence of the identities valid in $K(\Omega)$, i.e. to find an Ω -algebra A belonging to $VK(\Omega)$ and not satisfying the quasiidentity ϕ .

Let $A = \langle A; n \rangle$ be the algebra generated in VK(n) by the set $\{a_1, a_2\}$ $\{a_1 \neq a_2\}$ and with one defining relation between the generators: $t_1(a_1, a_2) = t_2(a_1, a_2)$, whereas $t_1(a_1, a_2)$ is the "continued product", i.e. it is obtained from t_1 by substituting every occurence of the variable w(1) in t_1 by a_1 and the occurencesof the other variables by a_2 (i=1,2,3,4). Now it is enough to prove that $t_3(a_1, a_2)$ is not equal in A to $t_4(a_1, a_2)$.

First notice that (1) $t_3 = \omega$, (1) $t_{\omega} = \tau$ and that both $t_3(a_1, a_2)$ and $t_{\omega}(a_1, a_2)$ end on the element a_1 (utilize Lemma 1.1., the fact that K is ends-preserving and the condition ii) of this theorem).

Suppose that $t_3(a_1,a_2)=t_4(a_1,a_2)$ in A. That means that there exists a sequence of continued products $v_1(a_1,a_2),\ldots,v_k(a_1,a_2)$ such that $v_1(v_k)$ graphically coincides with $t_3(t_4)$ resp.) and: $v_1=v_{i+1}$ is identity valid in $K(\Omega)$ or there are subwords $v_1(a_1,a_2)$ and $v_{i+1}(a_1,a_2)$ of $v_1(a_1,a_2)$ and $v_{i+1}(a_1,a_2)$ respectively such that $v_1(a_1,a_2)=v_{i+1}(a_1,a_2)$ is exactly the defining relation $t_1(a_1,a_2)=t_2(a_1,a_2)$ (i=1,2,...,k-1). Because of the ends-preserving identities in K and Lemma 1.1. the second possibility must be applied for some minimal j (1 $\leq j < k$). If $v_j(a_1,a_2)$ is a proper subword of $v_j(a_1,a_2)$ then the ends of $v_j(a_1,a_2)$ are equal to those of $v_{j+1}(a_1,a_2)$. Thus, for some minimal $j_0 \geq j$, $v_{j_0}(a_1,a_2)$ coincides with $t_1(a_1,a_2)$. But this is imposible because they end on different elements. ::

An atempt to utilize the last theorem leads us to the following corollary.

COROLLARY 2.4. Let $\Omega = \{\omega,\tau\}$ be a signature containing two different operators, not both unar ones. Let K be an ends-preserving variety of semigroups such that there exists an identity of the following type, valid in K:

- a) u = v, whereas $d(u) \neq d(v)$
- b) nonbalanced identity (specialy, nonregular identity)
- c) $x_1, \dots, x_k x_{k+1}, \dots, x_q = x_1, \dots, x_k x_{i_1}, \dots, x_{i_g} x_q$, $k \ge 1$, $i_1 \not\in \{1, 2, \dots, k+1\}$, $i_1, i_2, \dots, i_g \le q$.

Then K(n) is a proper quasivariety.

Commentary. If K is a regular variety then an analog assertion is valid for every signature containing at least two operators, not both unar ones (Theorem 2.2, and this corollary).

<u>Proof.</u> We take over the notation of Theorem 2.3. Thus we are to find the terms t_1, t_2, t_3 and t_4 and the variable-word w. Let u_1, u_2, u_3 and u_4 be SEM-instance of t_1, t_2, t_3 and t_4 respectively, with respect to the mapping $f:\omega \to X$, $\tau \to y$. Let $\omega \in \Omega(n)$, $\tau \in \Omega(m)$. We can suppose that $n \ge 2$.

a) Let u and v be x_1, \dots, x_{i_p} and x_j, \dots, x_{j_q} respectively, p < q and $x_k, x \notin c(v) \cup c(v)$. Choose t_1, t_2, t_3, t_4 and w as follows:

 $\begin{array}{lll} \omega^{r}\tau^{r}x_{1}^{r}(n+m-2)+1-q_{x_{j_{1}}}....x_{j_{q}}, & \tau^{r}\omega^{r}x_{1}^{r}(n+m-2)+1-q_{x_{j_{1}}}....x_{j_{q}}, \\ \omega^{r}\tau^{r}x_{1}^{r}(n+m-2)+1-q_{x_{j_{1}}}....x_{j_{p}}\omega^{s}x_{k}^{s}(n-1)+q-p, \\ \tau^{r}\omega^{r}x_{1}^{r}(n+m-2)+1-q_{x_{j_{1}}}....x_{j_{p}}\omega^{s}x_{k}^{s}(n-1)+q-p & \text{and } x^{s}x_{k}^{s}(n-1)+q-p \\ \text{It is obvious that the conditions of Theorem 2.3. are fulfilled.} \end{array}$

b) If there is a nonbalanced identity valid in K then obviously, there is an identity u=v valid in K such that $d(u) \neq d(v)$. So we are back on the case a).

c) If $x_i \not\in c(x_{k+2}, \dots, x_q)$ then we are on the case b). Otherwise, let w be obtained from $x_{k+2}, \dots, x_q x_i^p$ (i > q) by substituting every occurence of x_i by x_v , v > i. Take t_1, t_2, t_3 and t_4 as follows:

$$\omega^{r} \tau^{r} x_{1}^{r(n+m-2)-k} x_{1} x_{2} \dots x_{k+1}, \qquad \tau^{r} \omega^{r} x_{1}^{r(n+m-2)-k} x_{1} x_{2} \dots x_{k+1},$$

$$\omega^{r} \tau^{r} x_{1}^{r(n+m-2)-k} x_{1} x_{2} \dots x_{k} u x_{1}^{p}, \qquad \tau^{r} \omega^{r} x_{1}^{r(n+m-2)-k} x_{1} x_{2} \dots x_{k} u x_{1}^{p},$$

whereas u is obtained from $x_{i_4} \dots x_{i_g}$ by substituting the variable x_{i_4} by ω^q and p is a nonnegative integer such that the last two words are terms. Now apply Theorem 2.3. . ::

REFERENCES

- [1] Cohn P.M.: <u>Universal Algebra</u>, D.Reidel, Publ.Comp. Dordrecht, Holand (1981)
- [2] Čupona G. Vojvodić G. Crvenković S.: <u>Subalgebras of abelian torsion groups</u>, Alg.Conf. Novi Sad (1981) 141-148
- [3] Čupona G. Crvenković S. Vojvodić G.: <u>Subalgebras of commutative semigroups satisfying the law</u>

 x^r=x^{r+m}, Zbor.Rad. PMF Novi Sad br. 11 (1981)
- [4] Kalajdžievski S.: <u>Subalgebras of distributive semigroups</u>, Proceeding of the Symposium n-ARY STRUCTURES, Skopje (1982) 223-228
- [5] Kalajdžievski S.: Embedding of algebra in distributive semigroups, III Algebraic Conference Belgrade (1983) 77-84
- [6] Калајџиевски С.: <u>Подалгебри од полугрупи од некои многукратности</u> полугрупи, Магистерска тема Скопје (1983)
- [7] Курош А.Г.: Общая алгебра, Наука, Москва (1974)
- [8] Мальцев А.И.: Алгебранческие системы, Москва (1970)

Matématički fakultet Pirinska b.b. p.f. 504, 91000 Skopje Yugoslavia