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THE PROBLEM OF SOLVABILITY OF POLYLINKAR
REPRESENTATIONS OF UNIVERSAL ALGFBRAS IN SEMIROUPS

G. Cupona, S. Markovski, B. Janeva

The problem of effectivness of different kinds of embeddings of uni~
versal algebras in semigroups is treated in this paper.

1. Consider an Q-algebra A =(4;Q), ie. Q= U{Q(n)|n=>1}is
a set of finitary operators such that n %= m = Q(n) N\ Q (m) =9, and eve-
ry n-ary operator o € ) (n) induces an n-ary operation wa on A. (We will
use the same notation for an operator and the corresponding operation in
the algebra, ie. we will write © (a,, ..., 4,) instead of wa(ay,...,a,).) We
associate three semigroups to the algebra A as follows:

AL =< AUQ|{a=wa...8zs|a=06 (@...,ax)inA> (1.1)
AL =< AU Q" |{la=wga,0,... ganla=a(q,..

...s)@nin A} > (1.2)

s

=<AUQ|{a=a,0ay...anla=0(ay;..., a,)inA} > (1.3)

It is assumed in (1.2) that for anyw € Q(n), ®”* = {&g, ..., Wn} is
a set with n+ 1 elements such that o* N *t" #Fe=>w =1, and
Q" =) {e”® Joe Q). It is also assumed that Q (1) = in (1.3).

We notice that, in all the above presentations, the right-hand sides
of the defining relations have greater lengths than the ones on the left-hand
sides. So, we can define reduced words to be those words which have no sub-
words which are the right-hand sides of the definig relations. It is clear that
for any word u there is a reduced word #, such that # is obtained from # by
a finite application of the defining relations.

It is easy to prove the following

Theorem 1.1. The irreducible representative # for any word u is uni-
quely defined in (1.1) and (1.2) for every algebra A, Every word has a unique
irreducible representative in (1.3) iff the algebra A statisfies the identities
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oOT (X1, Xg5 - -+ 5 x,,,+n_1) = T(xn R, s py (xm: e xm+1l—l)) (1'4)
where @ € Q (1), = € Q(m).}
An Q-algebra A is said to be recursive iff A and Q are recursive sets,

and every operation wa : A" — A4 induced by @ € Q(m) is recursive. As a
consequence of Theorem 1.1 we have:

Corollary 1.2. If the algebra A is recursive, then the semigroups A{
and A are also recursive; furthermore, if the algebra A satisfies the identi-
ties (1.4), then A4 is recursive as well, [

Since the elements of the set 4 are reduced in all of the presentations
(1.1), (1.2) and (1.3), we have:

Corollary 1.3. For any Q-algebra A there exists a semigroup S such
that 4() QC § and the equality

©(3,8...,0s) =0, 8,...085

holds for every o & Q(n), ay,...,a,. € A.
Corollary 1.4. For any Q-algebra A there exists a semigroup S and

a mapping ® — ®” = (@, . . . . @,) of Q into (U $* such that @ € Q (n)
n=1
> o € S", AC S and the equality

®(@y,...,8y) = 0@ ®y .. .05 O

holds for every © € Q(n),a;,....a. € A.

Corollary 1.5. If the algebra A satsfies the identities (1.4), then there
exists a semigroup S such that 4 U Q C § and the equality

w(a,as...,8;) =00 ay...0

holds for every @ € Q(n), Gy, 0s,...,an < A. |§

Namely, we can take S to be the semigroup A, A$ and A{ in the
corresponding cases.

Remark that Corollary 1.3 is the well known Cohn-Rebane’s theorem-
(121, [7]) and Corollary 1.5 is proved in [3].

2. We will consider Fere more general representations of (2-algebras
into semigroups, and (1.1), (1.2) and (1.3) will be special cases of them.

Let Q be a set of finitary operations, C be a given set and e &
& Q JC. Assume that for anyw € Q(#) we have a sequence & = (wg,
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@ys . . . s @p), Where 0 € C U {e} . If A is a given Q-algebra with a carrier 4,
then we consider the semigroup A2 given by the following presentation:

AL =< AU C;{a=0ya,0...0p_10s0p |G =
=w(ay,...,an)inA} > @1

We suppose that e is the empty word in (2.1), i.e. if &; = e for some i, then
we do not write w; on the corresponding righi-hand side of the defining re-
lation. (We say that /\ is the kind of the polylinearity)

It is clear that (1.1), (1.2) and (1.3) ae special cases of (21). Namely,
£ C=0 and 02 = (w¢6,. .., (@A =(e,0,6,...,e), Wwe obtain (LI)
((1.3)). If = e for everyw € Q (n), i€ {0,1,...,n} uand ;=7
w=r7,i = j, then we obtain (1.2).

The reduced words could be defined as above, and so we have

Theorem 2.1. Let the algebra A be defined such that for any word «
in the presentation (2.1) there exists a unique reduced representative 7.

;hen, if the algebra A is recursive, the semigroup A2 is recursive as
well.

We are looking now for conditions under which we can have a uniquc
reduced representatives for a given word.

Define the set of Q-words, which isa subset of (4 U C)+D, in this
inductive way:

(i) every clement of 4 is an Q-word;

(ii) if uy, s, . .., Uy are Q-words and @ £ Q(n), then oy 0,4, . . .
.. Gp_yliy 0y 15 an Q-word;

(iii) a word u & (4 L C)* is an Q-word iff it is obrained by a fi-
nite application of (i) and (ii).

Let A be an Q-algebra. For every Q-word u let us define its value
[4] € A as follows:

a€ A= [al=a;
if o € Q(n) and uy, uy, . .., u, are Q-words with values

[l =8y, i=1,2,...,n, then b = (b, b,...., by) is one value of the
Q-word u = @yt @y . ..6p_, ty 0y. Thus the value of an Q-word need not
be uniquely defined.

It is clear what we mean by ,,an Q-word u is a maximal Q-subword

of a given word v*. (Note that # can have both maximal and non maximal
appearences in ».)

We can formulate now the wanted condition:
) B+ is the free semigroup on B.

5 T'opumen 360pHUK
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Theorem 2.2. Let the algebra A and /\ satisfy the conditions:
1) Every word v € (4 U C)* can be represented uniquely in the form

V=g Uy O Up o o Uip—q Uy Op (2.2)
where o, € C*V and u,, 4y, . . ., up are maximal Q-subwords of v. (We say
that (2.2) is a canonical representation of v.)

2) Every Q-word u has a uniquelly defined value [u].

Define a relation=~on (4 | C)* as follows: v & w iff v has a cano-
nical representation of the form (2.2), w has a canonical ropresentation

W = 0y u; “]u;-..%_l u;%
and [} =[u] for i=1,2,...,p.
Then = is an equivalence on (4 U O)+.
If it is satisfied the condition

3) a¢is a congruence on the semigroup (4 U O)*,
then A~ is isomorphic to (4 U C)+,/ ~ and every word v with a cano-
nical representation (2.2) has uniquelly defined reduced representation

y =0@18 0y . . .0p_dp Oy (2.2)

where [w]=a;, i=1,2,...,p. §

The condition 3) is independent from 1) and 2). Namely, let Q =
= {r,w}, where @ € Q (3), = € Q (4), and let @2 = (e, ¢, ¢,¢), 72 = (e,
e,e,e,e,),C=9. Thenifu € Aoru=a,a,...a5,p > 3,uis an Q-word,
and if u = ab, a,b € A, then a and b are maximal subwords of u. Thus,
1) is satisfied for any algebra A = (4:w, 7). The condition 2)is satisfied
iff A satisfies the general associative law, i.e. iff A is an associative ([1], [4]).
But, there are associatives which do not satisfy 3).

For example, let A= {a,b, ¢} and o (x,, X,, X3,) =a for every
Xy, X9y X3 € A, 7 (Xy, Xg, X3, X;) =@ for every Xx,,X,, X3 X, € 4 such
that x; 7% ¢ for at least one i, and v(c,cc,¢) =b. Then (4;w,7) is an
associative ([4]), but the relation & is not a congruence, since ¢* = @*, c*~b,
a%c = a, but a and b are not equivalent.

Notice that the condition 1) depends on /\, but not on the conside.
red algebra, and that 2) is satisfied iff the algebra A satisfies some correspon-
ding system of identities. Thus 2) is satisfied in (1.3) iff the algebra A satis-
fies the identities (1.4).

3. Assume that the Q-algebra A has a presentation

A=<B:A> @3.1)

1) B* is the free monoid on B.
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in the class of all Q-algebras, or in some variety of Q-algebras. We want to
give a presentation of the semigroup A4, for a given /\.

Define the set Q4 of Q-terms without variables to be the intersec-
tion of all subsets Hof (4 U C)* with the properties

G) AC H
i) 0 € Q0 Eu....fo € Ho 0k .. & CH.
For every Q-term £ without variables we have an Q-word £/, the y,trans
lation* of &, obtained in this inductive way:
a> —a, for every a € A,
@& ...E)0 =wp &P ©y,...88 o, for every

I(ﬂ 6 Q(ﬂ), E1>E2:~'-:Eﬂ E 114‘
The translation A2 of A is defined by
AL = {E& =q8|E =% € A}

Now, we have the following results:

Theorem 3.1 If the algebra A has the presentation (3.1), then the se-
migroup A4S has the presentation

AL=<BUC|A>>] (3.2)

Theorem 3.2. Suppose that the conditions of Theorem 2.2 are satis-
fied. Then the presentation (3.1) is solvable iff the presentation (3.2) is sol-
vable. |}

We notice that an n-group is recursive iff its universal covering is
recursive ([6], [5]), but it is not known whether the same result is true when
n-semigroups are considered.
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IMPOBJIEMOT HA PEIUIMBOCT HA NOJIMIMHEAPHUTE MPETCTABYBAIA
HA YHMBEP3AJIHU AJITEBPU BO IOJIVI'PVIIA

I'. Yyiiona, C. Mapkoscku, b. Janesa

Emna Q-anre6pa (4, Q) e nomanmueapsa nogaireépa of moayrpyna (S, . ) akko
ACS n 3a cexon @ €Q, a5,a,,...,4, €4,
™ ©(@,as,...,0,) =08 08 Wy . ..0,Wp

xane Ha cexoe ® € £ (#) My oarosapa HE3a (W, . . ., &,) OF EJEMEHTH O S, IPH MTO Ce
[03BOJIyBa HEKOH «; Aa He ce jaysaaT Bo (*). Po pa6oTasa ce pasrieQyBaaT noBeke BHMIO-
BY MO/DUTMHCAPHH CMECTYBAIA HA YHHBEP3IAJIHM anrefpR RO TMOTYTPYITW, NIPH TITO TJIABEH
aKIeHT € CTAaBCH Ha C(HKACHOCTA Ha CMCCTYBame¢TO, OCHOBCH pedyarur ua palorasa ¢
Teopema 2.2.



