THIRD ALGEBRAIC CONFERENCE Beograd, 3-4 December 1982

A SET OF SEMIGROUP n-VARIETIES

G. Čupona

Let $S=(S;\cdot)$ be a semigroup and Q=(Q;[]) be an n-semigroup such that $Q\subseteq S$ and $[a]\ldots a_n]=a]\ldots a_n$, for any $a_{V}\in Q$. Then, Q is called an n-subsemigroup of S. If V is a semigroup variety, then we denote by V(n) the class of n-semigroups that are n-subsemigroups of V-semigroups, and it is well known that V(n) is a quasivariety of n-semigroups. (See, for example [6; p.274], or [3].) We say that V is an n-variety iff V(n) is a variety of n-semigroups; otherwise, i.e. if V(n) is a proper quasivariety, V is called a quasi n-variety. (Clearly, V(2)=V for every semigroup variety). It is well known that both the set of semigroup n-varieties, and the set of semigroup quasi n-varieties are infinite for any $n \geq 3$. The same is true for the varieties of abelian semigroups. (The corresponding results can be found in [1], [7], [8] and [2]). Here we establish a sufficient condition for a semigroup variety to be an n-variety. It is shown that almost all the known n-varieties satisfy that condition, and some new examples are obtained.

0. PRELIMINARIES

0.1. Let $X=\{x_1,x_2,\ldots\}$ be an infinite countable set, elements of which are called variables and let X^+ be the free semigroup on X. Elements of X^+ are called semigroup terms, and if ξ , η are semigroup terms, then (ξ,η) is said to be a semigroup identity. A semigroup $\underline{S}=(S;\cdot)$ satisfies a semigroup identity $(x_1, \dots, x_j, x_j, \dots, x_j)$ if for every sequence a_1, a_2, \dots of elements of S the following equation holds in $\underline{S}: a_1, \dots, a_j = a_j, \dots, a_j$. If Λ is a set of semigroup identities, then by $Var\Lambda$ we denote the variety of semigroups which satisfy all the semigroup identities belonging to Λ . The complete system $\langle \Lambda \rangle$ of semigroup identities which are consequences of Λ is the transitive extension of Λ_2 , where:

$$\Lambda_{0} = \Lambda \cup \Lambda^{-1} \cup \{(\xi, \xi) \mid \xi \in X^{+}\},$$

$$\Lambda_{1} = \{(\xi_{1}, \dots, \xi_{1p}, \xi_{1}, \dots, \xi_{1p}) \mid (x_{1}, \dots, x_{1p}, x_{1}, \dots, x_{1p}) \in \Lambda_{0}, \xi_{k} \in X^{+},$$

$$\Lambda_{2} = \{(\xi_{1}, \dots, \xi_{s}, \eta_{1}, \dots, \eta_{s}) \mid (\xi_{k}, \eta_{k}) \in \Lambda_{1}, s \geq 1\}.$$
(See also [4] or [5].)

If $\xi \in X^+$ and $x_i \in X$, then we denote by $|\xi|_i$ the number of occurences of x_i in ξ , and thus $|\xi| = \Sigma |\xi|_i$ is the length of ξ .

A semigroup term ξ is said to be (n,Λ) -irreducible iff $(\xi,\eta)\in \langle\Lambda\rangle$ implies $|\xi|\equiv |\eta|\pmod{n-1}$. Otherwise, i.e. if there is a $\zeta\in X^+$ such that $(\xi,\zeta)\in \langle\Lambda\rangle$ and $|\xi|\not=\zeta|\pmod{n-1}$, then ξ is (n,Λ) -reducible.

<u>0.2</u>. To every set Λ of semigroup identities we associate an index r=ind Λ and a period m=per Λ . First, if $|\xi|_{\mathbf{i}} = |\eta|_{\mathbf{i}}$ for every $\mathbf{i} \in \{1,2,\ldots\}$ and for every semigroup identity $(\xi,\eta) \in \Lambda$, then we write ind Λ =1, per Λ =0. (Namely, this is satisfied iff the variety of abelian semigroups ABSEM is a subvariety of Var Λ). Assume now that there exists a semigroup identity $(\xi,\eta) \in \Lambda$ and an integer $\mathbf{i} \in \{1,2,\ldots\}$ such that $|\xi|_{\mathbf{i}} \neq |\eta|_{\mathbf{i}}$. Then, per Λ and ind Λ are defined by:

perA = g.c.d.{
$$|\xi|_{i}$$
- $|\eta|_{i}$ |(ξ,η) $\in \Lambda$, $i \in \{1,2,...\}$ }, ind Λ = min { $|\xi|$ | $(\exists \eta)$ (ξ,η) $\in \Lambda_{1}$, $|\xi| \neq |\eta|$ }.

It can be easily seen that $\operatorname{ind}_{\Lambda}=\operatorname{ind}_{<\Lambda>}$ and $\operatorname{per}_{\Lambda}=\operatorname{per}_{<\Lambda>}$, and thus we can say that $\operatorname{ind}_{\Lambda}(\operatorname{per}_{\Lambda})$ is the index (the period) of the variety VarA. We notice that if $\operatorname{m=per}_{\Lambda}>0$ and $\operatorname{r=ind}_{\Lambda}$, then $(x_1^r,x_1^{r+m})\in <\Lambda>$, and $\operatorname{moreover}$ if $(x_1^s,x_1^{s+k})\in <\Lambda>$, where $k\geq 1$, then $s\geq r$ and m is a divisor of k.

<u>0.3</u>. Let $Q=(Q; \mathbf{I})$ be an n-semigroup. Then the general associative law holds, i.e. for any $k \ge 1$ and $a_0, \ldots, a_{k(n-1)} \in Q$, the "product" $[a_0, \ldots, a_{k(n-1)}]$ is uniquely determined in Q; we also write [a] = a, for every $a \in Q$.

If (ξ,η) is a semigroup identity such that $|\xi|\equiv |\eta|\equiv 1\pmod{n-1}$ then it can be also interpreted as an n-semigroup identity. And, if every semigroup identity $(\xi,\eta)\in\Lambda$ is an n-semigroup identity, then we denote by $\mathrm{Var}_{\Pi}^{\Lambda}$ the variety of n-semigroups which satisfy all the n-semigroup identities $(\xi,\eta)\in\Lambda$.

Assume now that Λ is a set of semigroup identities, and denote by $\Lambda^{(n)}$, the set of n-semigroup identities belonging to < Λ . It is clear that if V=Var $_{\Lambda}$, V $_{n}$ =Var $_{n}$ $\Lambda^{(n)}$, then V(n) \subseteq V $_{n}$. Moreover: V is an n-variety iff V(n) = V_{n} .

1. MAIN RESULT

Theorem. Let $V=Var\Lambda$ be a semigroup variety with a period m, and let $n \ge 2$ be such that the following condition is satisfied:

If ξ is an (n,Λ) -reducible semigroup term, then there (α) exist $x,y\in X$ such that $(x^{km}\xi,\xi)$, $(\xi,\xi y^{km})\in \langle\Lambda\rangle$, for every positive integer k.

Then V is an n-variety.

The proof will be given in three steps, and the condition (α) will be not assumed in the first two of them.

 $\underline{1.1}. \text{ Let } \underline{\mathbb{Q}}=(\mathbb{Q}; \pmb{ [] }) \text{ be an n-semigroup and let } \underline{\mathbb{Q}}_{\mathbb{A}} \text{ be the free semigroup in } \mathbb{V} \text{ with a basis } \mathbb{Q}. \text{ Thus, } \mathbb{Q} \text{ is a generating subset of } \mathbb{Q}_{\mathbb{A}}, \text{ and if } a_1, a_2, \ldots \text{ is a set of different elements of } \mathbb{Q} \text{ then } a_1, \ldots a_1 = a_1, \ldots a_1 = a_1, \ldots a_1$

1.1.1. z is a congruence on the semigroup Q_{Λ} .

1.1.2. Q $\{V(n)\}$ iff the following statement is satisfied:

$$a,b \in Q \Longrightarrow (a \circ b \Longrightarrow a = b)$$
.

1.2. Assume now that $Q \in V_n = \operatorname{Var}_n \Lambda^{\lfloor n \rfloor}$, and that Q_Λ , \vdash , \vdash , \vdash , are defined as in 1.1. A partial mapping $u \mapsto [u]$ from Q_Λ in Q can be defined in a usual way. Namely, $u \in Q_\Lambda$ is in the domain of [] iff $u = a_0 a_1 \cdots a_k (n-1)$, where $a_0 \in Q_\Lambda$ and then the "value" [u] of u is defined by $[u] = [a_0 a_1 \cdots a_k (n-1)]$. The assumption $Q \in V_n$ implies that [] is a well defined partial mapping.

Let a_1, a_2, \ldots be different elements of Q, and let $u=a_{\begin{subarray}{c} i=1\\ 1\end{subarray}}^a a_1 \cdots a_i$. We say that u is irreducible (reducible) iff the semigroup term $x_{\begin{subarray}{c} i=1\\ 1\end{subarray}}^a \cdots x_{\begin{subarray}{c} i=1\\ 1\end{subarray}}^a is (n, \land) - irreducible ((n, \land) - reducible).$

The following three proposition can be easily shown.

1.2.1. If $u \in Q_{\Lambda}$ is in the domain of [], then $[u] \vdash u$.

- 1.2.2. Let u,v Q_{Λ} be such that u \longleftarrow v, and u is irreducible. If u is in the domain of [], then v is also in the domain of [] and moreover [u]=[v].
- 1.2.3. V is an n-variety iff every $\underline{Q} \in V_n$ satisfies the following condition. If $u,v \in Q_\Lambda$ are in the domain of L and u = v, then [u]=[v].

From 1.2.2 and 1.2.3 we obtain the following proposition.

- 1.2.4. If every semigroup term is (n, Λ) -irreducible, then V=Var Λ is an n-variety.
- 1.3. The proof of Theorem will be completed here, by assuming that the condition (α) is satisfied.

If m=0, then all the semigroup terms are (n,Λ) -irreducible, and by $\underline{1.2.4}$ we obtain that V is an n-variety. Thus, we can assume that m>0.

Let $Q \in V_n$, and $u, v \in Q_\Lambda$ be such that u = v and both u and v are in the domain of []. By 1.2.3 we have to show that [u] = [v].

From $u \approx v$ it follows that there exists a sequence $w_1, \ldots, w_k \in \mathbb{Q}_\Lambda$ such that $k \geq 0$ and $u \models \mid w_1 \models \mid w_2 \models \mid \ldots$ $\mid \mapsto v_k \models \mid v$. If one of u,v is irreducible, then, by $\underline{1.2.2}$, the sequence u,w_1,\ldots,w_k,v can be shortened in the case k>0, and we have [u]=[v] in the case k=0. Thus we can assume that both u and v are reducible.

Let s be such that $w=w_S$ is reducible, and w_t is irreducible for any t < s. (If w_1 is reducible, then $w=w_1$, and w=v if all the w_1, \ldots, w_k are irreducible.)

The condition (a) implies that there exist a,b \in Q such that $u=a^{im}u$, $w=wb^{jm}$, for any pair of positive integers i,j. The assumption u to be in the domain of []implies that i can be chosen in such a way that all the members of the sequence $a^{im}w_1, \ldots, a^{im}w_{S-1}, a^{im}w$ are in the domain of []. Then we also have: $u \mapsto a^{im}w_1 \mapsto \cdots \mapsto a^{im}w$, and this implies that $[u]=[a^{im}w]=\ldots=[a^{im}w]$. Let j be such that $j(n-1)m \geq r$, where r is the index of V. Then we have: $w=wb^{j(n-1)m}$, $b^{j(n-1)m+im}$

 $=b^{j(n-1)m}$, and this implies that: $a^{im}ub^{j(n-1)m}=ub^{j(n-1)m+im}$. Therefore we have:

 $a^{im}w = a^{im}wb^{j(n-1)m} - | \dots - | a^{im}ub^{j(n-1)m} = ub^{j(n-1)m+im}$, and:

 $ub^{j(n-1)m+im}$ $u_{a}b^{j(n-1)m+im}$ $u_{b}b^{j(n-1)m+im}$ $u_{b}b^{j(n-1)m+im}$

Finally, we obtain:

$$[u] = [a^{im}w] = [a^{im}ub^{j(n-1)m}] = [ub^{j(n-1)m+im}] =$$

= ...= $[wb^{j(n-1)m+im}] = [w].$

This completes the proof of Theorem.

2. COROLLARIES

Cor. 1. If ABSEM is a subvariety of a variety V, then V is an n-variety for any $n \ge 2$.

<u>Proof.</u> The assumption is equivalent to the statement that perV=0, and then all the semigroup terms are (n, Λ) -irreducible for every $n \ge 2$.

Cor. 2. Let m be a non-negative integer and $n \ge 2$ be such that n-1 is a divisor of m. If V is a semigroup variety with a period m, then V is an n-variety.

<u>Proof.</u> If $V=Var\Lambda$, then every semigroup term is (n,Λ) -irreducible. (Clearly Cor. 1 is a special case of Cor. 2.)

Cor. 3. If V is a semigroup variety with an index r=1, then V is an n-variety for every $n \ge 2$.

<u>Proof.</u> Let m=perV. If m=0, then we can apply Cor. 1, and thus we can assume that m > 0. If $\xi = x_1 \dots x_j$, and k > 0, then we have: $(x_1^{km}\xi,\xi)$, $(\xi,\xi x_j^{km})$ $\boldsymbol{\xi}$ < \Lambda >, where V=Var\Lambda. Thus, the condition (a) is satisfied.

A semigroup variety $V=Var\Lambda$ is a variety of periodic groups iff indV=1, $per\Lambda=m \ge 1$ and $(x_1x_2^m, x_1)$, $(x_1^mx_2, x_2)$ $\in <\Lambda>$. From Cor. 3 we obtain the following one:

 $\underline{\text{Cor. 4}}$. A variety of periodic groups is an n-variety for every $n \geq 2$.

Cor. 5. Let V=VarA be a variety of abelian semigroups with an index r, and let the following condition be satisfied:

(β) If (ξ,η) is a nontrivial semigroup-identity belonging to Λ , i.e. (ξ,η) \in Λ is such that $|\xi|_{\dot{1}} \neq |\eta|_{\dot{1}}$ for some $\dot{1} \geq 1$, then there exist j,k \geq 1 such that $|\xi|_{\dot{1}} \geq r$ and $|\eta|_{\dot{1}} \geq r$.

Then V is an n-variety for every $n \ge 2$.

<u>Proof.</u> We notice first that
A> also satisfies the condition (\$\beta\$). If r=1, then the conclusion follows from Cor. 3. Thus we can assume that r>1 and m>0. Let \$\xi\$ be an (n,\$\lambda\$)-reducible semigroup-term. Then there is a semigroup term \$\eta\$ such that (\$\xi\$,\$\eta\$)\$\in
A>, and |\$\xi\$| = |\$\eta\$| (mod n-1). Therefore, |\$\xi\$|\$\xi\$|\$\eta\$|\$\eta\$| for some i\$\in\$ {1,2,...} and this implies that there is an \$x\$; \$\in\$ X such that |\$\xi\$|\$\xi\$| = r. Thus, we have (\$x\$; \frac{km}{j}\$\xi\$,\$\xi\$), (\$\xi\$,\$\xi\$x\$; \frac{km}{j}\$)\$\in
A>, and we can apply Theorem.

Cor. 5. $A_{r,m} = Var\{x_1x_2 = x_2x_1, x_1^r = x_1^{r+m}\}$ is an n-variety for every $n \ge 2$, $r \ge 1$, $m \ge 0$. (This is in fact Theorem 2 of [1].)

 $\underline{\text{Cor. 6}}.$ Denote by $\Delta_{(k)}$ the following set of semigroup identities:

<u>Proof.</u> First, it can be easily shown that if $n \geq 3$, and a semigroup term ξ is $(n, \triangle_{(k)})$ -reducible, then $|\xi| \geq k$. In this case, if $\xi = x\eta y$, then $(x^i \xi, \xi)$, $(\xi, \xi y^i) \in \langle \triangle_{(k)} \rangle$ for any i > 0, and thus the condition (α) is satisfied.

(We notice that it is shown in the paper [8] that $D=D_3$ is an n-variety for any $n \ge 2$, and that the same proof can be applied for the general case.)

Cor. 7. $D_k \Lambda$ ABSEM is an n-variety for every $k \ge 3$, $n \ge 2$. Proof. It is easy to show that (α) is satisfied. (Cor. 7 is also proved in [2]).

The following proposition is the main result of the paper [7].

 $\frac{\text{Prop. 8. If } L_k = \text{Var}(x_1 \dots x_k, x_1 \dots x_k x_{k+1}), \ R_k = \text{Var}(x_1 \dots x_k, x_k, x_1 \dots x_k x_{k+1}), \ R_k = \text{Var}(x_1 \dots x_k, x_k, x_1 \dots x_k x_{k+1}), \ R_k = \text{Var}(x_1 \dots x_k, x_1 \dots x_k, x_1 \dots x_k x_{k+1}), \ R_k = \text{Var}(x_1 \dots x_k, x_1 \dots x_k, x_1 \dots x_k x_{k+1}), \ R_k = \text{Var}(x_1 \dots x_k, x_1 \dots x_k, x_1 \dots x_k x_{k+1}), \ R_k = \text{Var}(x_1 \dots x_k, x_1 \dots x_k, x_1 \dots x_k x_{k+1}), \ R_k = \text{Var}(x_1 \dots x_k, x_1 \dots x_k, x_1 \dots x_k x_{k+1}), \ R_k = \text{Var}(x_1 \dots x_k, x_1 \dots x_k, x_1 \dots x_k x_{k+1}), \ R_k = \text{Var}(x_1 \dots x_k, x_1 \dots x_k x_{k+1}), \ R_k = \text{Var}(x_1 \dots x_k, x_1 \dots x_k x_{k+1}), \ R_k = \text{Var}(x_1 \dots x_k, x_1 \dots x_k x_{k+1}), \ R_k = \text{Var}(x_1 \dots x_k, x_1 \dots x_k x_{k+1}), \ R_k = \text{Var}(x_1 \dots x_k, x_1 \dots x_k x_{k+1}), \ R_k = \text{Var}(x_1 \dots x_k, x_1 \dots x_k x_{k+1}), \ R_k = \text{Var}(x_1 \dots x_k, x_1 \dots x_k x_{k+1}), \ R_k = \text{Var}(x_1 \dots x_k, x_1 \dots x_k x_{k+1}), \ R_k = \text{Var}(x_1 \dots x_k, x_1 \dots x_k x_{k+1}), \ R_k = \text{Var}(x_1 \dots x_k, x_1 \dots x_k x_{k+1}), \ R_k = \text{Var}(x_1 \dots x_k, x_1 \dots x_k x_{k+1}), \ R_k = \text{Var}(x_1 \dots x_k x_k x_{k+1}), \ R_k = \text{Var}(x_1$

We note that 0 $_k$ satisfies the condition (a), but neither of the varieties L_k , R_k satisfies (a).

The above examples exhaust all the known semigroup n-varieties. A list of the known semigroup quasi n-varieties will be given below. (see [1], [7], [2]).

 $P_{r,m} = Var(x_1^r, x_1^{k+m})$ is a quasi n-variety.

Prop. 11. Let s,m,n and k be positive integers such that:

 $n\ge 3$, $m \equiv 0 \pmod{n-1}$, $m\ne 2s+1$, $m\ne 2s+2$, $s+2\le m$, $k\ge m+2$,

and let $A_{(k)}$ be as in Cor. 6, and

$$\Delta_{(k,s,m)} = \Delta_{(k)} \cup \{(x_1^s x_2^{m-s}, x_1^{s+2} x_2^{m-s-1})\}.$$

Then both the varieties

Var $\Delta(k,s,m)$ and ABSEM (Var $\Delta(k,s,m)$

are quasi n-varieties.

REFERENCES

- [1] $\acute{\text{G}}$. $\acute{\text{C}}$ upona: n-subsemigroups of semigroups satisfying the law $x^r = x^{r+m}$, Annuare de la Faculté des Mathematiques, Skopje, T.30 (1979), 5-14
- [2] G. Čupona: n-subsemigroups of some commutative semigroups, Annuare T.32 (1981)
- [3] S.Markovski: On quasivarieties of generalized subalgebras, Algebraic Conference Skopje 1980, 125-129
- [4] E.Nelson: The lattice of equational classes of commutative semigroups, Can.J. Math Vol. XXIII, No 5 (1971), 875-895
- [5] А.Я.Айзенштат, Б.К.Богута: О решетке многообразий полугрупп, Ленингр. Госуд. педаг. институт, Сборник научных трудов, Ленинград (1979)
- [6] А.И.Мальцев: Алгебрические системы, Москва 1970
- [7] С.Марковски: За една класа полугрупи, Математ.Билтен 1 (XXVII) (1978), 29-36
- [8] С.Марковски: За дистрибутивните полугрупи, Годишен зборник на Матем.фак., Скопје. 30 (1979), 15-27
 - G.Čupona, Matematički fakultet, P.F. 504, 91000 Skopje Jugoslavija