Smile MARKOVSKI

n-SUBGROUPOIDS OF COMMUTATIVE GROUPOIDS

Dedicated to Prof. Blagoj S. Popov

A description of the classes of *n*-groupoids which can be embedded in corresponding ways into commutative groupoids is given in this paper. It is shown that these classes are varieties of *n*-groupoids, and axiom systems for these varieties are obtained.

- 1. Binary terms and commutativity. Let $X = \{x_1, x_2, \dots, x_n, \dots\}$ be a set of variables, and let * be a binary operator symbol. Define the set T of *-terms (or, briefly, of terms) as the minimal subset of the set of all finite strings on $X \cup \{*\}$, which satisfies the properties
 - (i) $x \in T$, for every $x \in X$,
 - (ii) if $u, v \in T$, then $*uv \in T$.

Let $t, t_1, t_2, \in T$. Then t_1 is said to be a *subterm* of t_2 iff t_1 is a substring of t_2 . We denote by $t(y_1, \ldots, y_k)$ that the set of variables which occur in the term t is $\{y_1, \ldots, y_k\}$.

Let $t(y_1, \ldots, y_k) \in T$ and a_1, \ldots, a_k be elements of a set A. Then by $t_{y_1, \ldots, y_k}[a_1, \ldots, a_k]$ we denote the string on the set $A \cup \{*\}$ obtained from t in such a way that every occurrence of a variable y_i in t is changed by a_i , for $i = 1, 2, \ldots, k$. In that case we say that $t_{y_1, \ldots, y_k}[a_1, \ldots, a_k]$ is an A-word, which is an instance of t. (Sometimes, when the set of variables $\{y_1, \ldots, y_k\}$ is known, we write simply $t[a_1, \ldots, a_k]$ instead of $t_{y_1, \ldots, y_k}[a_1, \ldots, a_k]$.) Denote the set of all A-words by W(A). It can easily be proved that T = W(X) and $A \subseteq W(A)$. An A-word u is said to be a subword of an A-word v iff u is a substring of v.

Consider a groupoid $A = (A; \circ)$ and an A-word u. We denote by u_A the "value" of u in A, i.e. the product in A obtained from u when every occurrence of * in u is replaced by \circ .

By the commutative law we mean the law *xy = *yx. If $u,v \in T$ and if as a consequence of the commutative law we have an identity u = v, then we denote it by u = v. A term $t = *t_1t_2$ is said to be commutatively invariant iff $t_1 = t_2$. For a term t, define $C(t) = \{t' | t = t', t' \in T\}$. Using an induction on the number of occurrences of the sign * in a term, one can prove

1.1. Let a term t contain r subterms of forms $*t_1 t_2$, such that s of them be commutatively invariant. Then $|C(t)| = 2r^{-s}$.

1.2. $t_1, t_2, t_3, t_4 \in T \Rightarrow (*t_1 t_2 \in C(*t_3 t_4) \Leftrightarrow t_1 \in C(t_3), t_2 \in C(t_4)$ or $t_1 \in C(t_4), t_2 \in C(t_3)$).

As a consequence of 1.1 and 1.2 we can give the following description of the free commutative groupoid F_A , generated by a set A. Let $u \in W(A)$ and define $C(u) = \{v \mid u = v, v \in W(A)\}$. Then 1.1 and 1.2 are true when words are regarded instead of terms. Now, let $F_A = \{C(u) \mid u \in W(A)\}$ and define an operation on F_A by

$$\cdot C(u)C(v)=C(*uv).$$

Then it follows from 1.2 that \cdot is well defined, and $\mathbf{F}_A = (F_A; \cdot)$.

2. t-subgroupoids of commutative groupoids. A universal algebra A = (A; f) with one n-ary operation f is said to be an n-groupoid. (We assume that $n \ge 2$.)

Let $t(x_1, \ldots, x_n)$ be a *-term (with n distinct variables). An n-groupoid A = (A; f) is said to be a t-subgroupoid of a groupoid G = (G; o) iff $A \subseteq G$ and for every $a_1, \ldots, a_n \in A$

$$f_{\mathbf{A}}(a_1,\ldots,a_n)=t[a_1,\ldots,a_n]_G.$$
 (2.1)

The principal result of this is

THEOREM 2.1. Let A = (A; f) be an *n*-groupoid and $t(x_1, \ldots, x_n)$ be a term. Then A is a *t*-subgroupoid of a commutative groupoid iff A satisfies all the identities

$$f(x_1,\ldots,x_n)=f(x_{i_1},\ldots,x_{i_n}),$$
 (2.2)

where $v \mapsto i_v$ is a permutation of the set $\{1, 2, \ldots, n\}$ such that $t(x_1, \ldots, x_n) = t_{x_1, \ldots, x_n}[x_{i_1}, \ldots, x_{i_n}]$.

Proof. If **A** is a *t*-subgroupoid of a commutative groupoid, then it is clear that **A** satisfies the identities (2.2).

Now, suppose that A satisfies all the identities (2.2). Let \mathbf{F}_A be the free commutative groupoid generated by the carrier A of the n-groupoid \mathbf{A} .

An element $C(u) \in F_A$, where $u \in W(A)$, is said to be reduced iff each $v \in C(u)$ does not contain a subword w such that w is an instance of t. Denote by R the set of reduced elements of F_A , and define a binary operation O on R as follows:

If

$$C(u), C(v), C(u) C(v) = C(*uv) \in R,$$

then

$$\bigcirc C(u) C(v) = C(*uv).$$

If C(u), $C(v) \in R$, $C(*uv) \notin R$, then there is $w \in C(*uv)$ such that w has a subword which is an instance of t. But, as a consequence of 1.2, it follows that w itself is an instance of t. Thus, $w = t [a_1, \ldots, a_n]$ for some $a_1, \ldots, a_n \in A$, and in this case we put

$$\bigcirc C(u) C(v) = C(a) = \{a\},\$$

where $a = f_A(a_1, \ldots, a_n)$.

The operation O is well defined. Namely, if w_1 , $w_2 \in C$ (*uv) and w_1, w_2 are instances of t, then we have $w_1 = t$ $[a_1, \ldots, a_n]$, $w_2 = t$ $[a_{i_1}, \ldots, a_{i_l}]$ where $a_1, \ldots, a_n \in A$ and $v \mapsto i_v$ is a permutation of $\{1, 2, \ldots, n\}$. Since $w_1 = w_2$, it follows by (2.2) that $f_A(a_1, \ldots, a_n) = f_A(a_{i_1}, \ldots, a_{i_n})$.

It is clear that the groupoid $\mathbf{R} = (R; \circ)$ is commutative.

We can suppose that $A \subseteq R$, identifying C(a) and a, for $a \in A$. Also, the equation (2.1) is satisfied for the groupoid R:

$$f_{\mathbf{A}}(a_1, \ldots, a_n) = C(f_{\mathbf{A}}(a_1, \ldots, a_n)) = C(t[a_1, \ldots, a_n]) = t[a_1, \ldots, a_n]_{\mathbf{R}'}$$

for every $a_1, \ldots, a_n \in A$.

This completes the proof that A is a t-subgroupoid of the commutative groupoid R.

We note that the above Theorem is a generalization of a result of G. Čupona's [1]. Further to this, we can give a generalization of another definition and result of that paper.

An n-groupoid A = (A; f) is said to be commutative iff it satisfies the equations

$$f_{\mathbf{A}}(a_1,\ldots,a_n)=f_{\mathbf{A}}(a_{i_1},\ldots,a_{i_n})$$

for every permutation $v \mapsto i_v$ of the set $\{1, 2, ..., n\}$, and every $a_1, ..., a_n \in A$.

Let $t(x_1, \ldots, x_n)$ be a *-term with n distinct variables $(n \ge 2)$. A groupoid $(G; \circ)$ is said to be *t-commutative* iff the n-groupoid (G; t) is commutative.

7 Прилози

THEOREM 2.2 The class of t-subgroupoids of t-commutative groupoids and the class of commutative n-groupoids are equal.

Proof. It is clear that every t-subgroupoid of a t-commutative groupoid is a commutative n-groupoid.

Let A = (A; f) be a commutative *n*-groupoid and let $S = \{u \in W(A) | u$ has no subword which is an instance of $t\}$. Define an operation o on S as follows:

If

u, v, * uv (S,

then

Ouv = *uv.

If $u, v, \in S$, $*uv \notin S$, then $*uv = t [a_1, \ldots, a_n]$ for some $a_1, \ldots, a_n \in A$, and we put in this case

$$\bigcirc uv = f_{\mathbf{A}}(a_1, \ldots, a_n).$$

In such a way we get a groupoid S = (S; 0), and $A \subseteq S$

Define a congruence β on S as follows: Let $u_1, \ldots, u_n \in S$ and $v \to i_v$ be a permutation of the set $\{1, 2, \ldots, n\}$. Then, we put

$$t[u_1,\ldots,u_n] \propto t[u_{i_1},\ldots,u_{i_n}],$$

and β is the minimal congruence generated by α .

The quotient groupoid $G = S/\beta$ is t-commutative.

Note that for $a \in A$, $u_1, \ldots, u_n \in S$ we have $a \beta t [u_1, \ldots, u_n]$ iff $u_1, \ldots, u_n \in A$, and in that case $a = f_A(u_1, \ldots, u_n)$. It follows that if $a, b \in A$ and $a \beta b$, then a = b, i.e. we can suppose that $A \subseteq G$. Also, since $f_A(a_1, \ldots, a_n)$ $\beta t [a_1, \ldots, a_n]$ for $a_1, \ldots, a_n \in A$, we have that A is a t-subgroupoid of G as well.

REFERENCES

[1] Čupona, G.: On n-groupoids, Mat. Bilt. 1 (XXVII), 1978, Skopje (5—11). [2] Markovski, S.: n-Subgroupoids of cancellative groupoids, Год. збор. Мат. фак. 32, 1981, Скопје (45—51).

Смиле МАРКОВСКИ

п-ПОДГРУПОИДИ ОД КОМУТАТИВНИ ГРУПОИДИ

Резиме

Се дава опис на класата *n*-групоиди што можат да се сместат во комутативни групоиди така што операциите на *n*-групоидите се рестрикции од соодветни полиномни групоидни операции. Се покажува, имено, дека за секоја полиномна групоидна операција со од зетавта класа *n*-групоиди е многукратност.

University "Kiril i Metodij", Faculty of Mahematic Sciences, Skopje — Yugoslavia.