918

Ton. 36op. MateM. dax.
3334 (77-83) 1982—1983

EMBEDDING UNOIDS IN SMEIGROUPS BELONGING TO SOME
REGULAR VARIETIES OF SEMIGROUPS

Salo KalajdZievski

Any (finite) unoid A = (4; Q) is embeddable in a (finite) semigroup
S (.), in the sense that { (w (a)) = © Y (a) for every w € ), a & A and for
some mapping ® — & from £ into § and some injection ¥ : A4 — S ([1]
[2], [7]). Hence the class of all (finite) subunoids of (finite) semigroups
coincides with the class of all (finite) unoids. The purpose of this note is 10
investigate the classes of subunoids of semigroups from some regular varie-
ty defined by regular identities, i.e. the identities which have the same sym-
bols on the both sides of the equality. (Specialy, we are dealing with the prob-
lem whether these classes are varieties (they are surely quasivarletles ([6],
pg. 254)).

0. DENOTATION, DEFINITIONS AND PRELIMINARY RESULTS

Let Z be an arbitrary nonempty set. Denote by Z* the set of all fi-
nite sequences of elements in Z. For u € Z* denote by d (x) the lenght of
the sequence u, by ¢ (u) the set of elements from Z occuring in u and by u (i)
the i-th element from right to left occuring in u and by (i) u the i-th element
from left to right occuring in u. Also, if z € Z, d; (u) will stand for the num-
ber of occurrences of the symbol z in u.

An identity £ = v in an arbitrary signature of operators is said to be
a regular identiy if ¢ (8) = ¢ (x) and it is a balanced identity if (it is regular
and) d, () = d () for any operator or variable symbol x. A variety of ar-
bitrary algebras is said to be a regular (balanced) variety if it is defined by
regular (balanced) identities.

Let K be a variety of semigroups and  be a signature of unar ope-
rators. We shall use K (Q) to denote the class of all Q-unoids that are sub-
unoids of the semigroups in K. Let Z; (Z,;) be the complete system of iden
tities (quasiidentities) in K. The following lemma gives the pattern for ,,trans-
lateing” this system into the complete system Z; () (Z4(€2)) of identities
(quasiidentities) in the quasivariety K (£2).

LEMMA 0.1. ([5]) Let ¢ be an open Q-formula and ¢ be obtained
from ¢ by substituting different operators in Q by different variables which
are also different from the other variables occuring in ¢. Hence ¢ can be trea-
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tted as a semigroup-theoretic formula and  is valid in a class of semigroups
K iff ¢ is valid in the class of Q-algebras K (£)::.

With respect to this lemma, the problem whether K (Q) is a variety
is equivalent to the problem whether Zq (Q) is a consequence of X (€2).

Remark. Notice that for card (Q) > }-{, the class of all varieties K (),
for K passing through the set of all semigroup-varieties, is a proper subclass
of the class of all varieries of Q-unoids (the cardinality of the first class is
less then }-{ and the cardinality of the second is 2¢ard (), [6], pg. 351).

The following theorem is deduced from the carresponding fact con
cerning the embedding of arbitrary algebras in semigroups. The theorem
shows that in order to prove that the class K ({2) is a proper quasivariery
for a regular variety of semigrops K, we can reduce our artention to the
»psmall signatures.

THEOREM C.2. ([4], [5]) Let K be a regular varicty of semigroups,

QC Q and K(Q) is a proper quasivariety. Then K (') is a proper quasi-
variety too. ::

1. THE MAIN RESULTS AND SOME EXAMPLES

THEOREM 1.1. Let K be a balanced variety of semigroups. Then
K ({w}) conicides with the variety of all {}-unoids.

Remark. A hipothesis is that an analogous assertion is valid for the
class of regular varieties of semigroups.

The following theorems will be ilustrared each by two examples of
semigroup-varieties related to them.

THEOREM 12. Let K be a regular variety of semigroups defined by
identities £ = n such that & (1) = (4 (1) (= x) and d; (€), d; (1) > 2. Then
for any signature Q, K (Q) is a variety.

Examples.

a) XyXyx = Xyx

b) xi =x1, ij > 2.

THEOREM 13. Let K be a regular variety defined by identities £ =7
such that E(1) =7 (1) (=x) and d; () =1 =d, (n). Then for every sig-
nature Q, K (L) is a variety.

Examples.

a) xyz =xyxz (left-distributive semigroups, [3])

b)xiz=xiz, 1,j=1.
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We allow the semigroup-theoretic terms appearing in Theorem 1.4.,
1.5. and 1.6. to be empty words, unless otherwise stated.

THEOREM 1.4. Let K be a regular variety defined by an identity
of the type EE, =EE] (n > 1). Then for every signature Q, K (Q) is
a variety

Examples.
Q) x=xk k>1
b) xyz = xyzyz

THEOREM 1.5. Let K be a rogular varicty defined by an identity of
the type £ x =E xn x. Then for every signature Q, K (Q2) is a varicty.

Examples.
a) xy=xpxiyk, j=0, i,k>1
b) xyz = xyzxz

THEOREM 1.6. Let K be a regular variety defined by an identity
of the type &x =7, X7, whereas
(1) x&c@Ucln)
2) ME=()nx
3 ¢ (n;) 7 ¢ @)

Then for every signature () containing at least three operators, K (L) is a
proper quasivariety.
Examples.

a) xyz = xzyz (right-distributive semigroups, [3])
b) xyz = xzy

2. PROOFS OF THE THEOREMS
2.1. A GENERAL APPROACH

Let Q be an arbitrary signature consisting of unar operators only,
A = (4; Q) an Q-unoid and K a variety of semigroups. Denote by F(.) the
free semigroup generated by the set 4 U Q (proposing that 4 N L2 =9).
Define an equivalence relation = on F(.) as follows:

S. Markovski's critical remarks helped me improveing and correcting the form-
ulations and proofs of the theorems.



foru, v € Fput u[v and v Ju if

a) there exists 2 subsequence w a (o € Q, a € A) of u such that u is
graphicaly equal (denoted by =) to w'wau and v =u'bu” (b € A), whe-
reas w (@) = b in A, or

b) u = v is valid in the free semigroup Fy (.) in K, generated by the
set A1 Q.

Define & to be the equivalence extension of the relation [ .

Relation =~ is a congrucnce on F (.).

The cover of A in the variety K is defined to be the semigroup
F() /~=D()

In order to prove that K () is a variety it is sufficicnt to prove that
every unoid A belonging to the varicty VK (Q) (the variety defined by th®
all identities valid in K (Q)) is a subunoid of its cover in K*). To check that
define value, denoted by [ 1, as a partial mapping from F; into A4 by

[0y 05...05a8] =60;0,...05(a)

for every w;, 0, ...,0s € Q and a € 4. (Notice that w,...w; a is a re-
presentative of the set of elements equal to it in Fr (.)).

The verification of the fact that [ ] is well defined is direct and we
omit it.

For a € A we have immediately [a] = a. Hence, what is left to be
checked is whether

™ for any a,b € A, a= b implies [a] = [b].
Namely, (*) implies that the mapping @ — @~ is an injection and, on

the other hand, it is obvious that (w a)¥ = @ . a@~. Hence, A would be a sub-
unoid of its cover in K and K (Q) would coincide with the variety VK (£2).

In the proofs of the theorems 1.1.—1.5. we shall follow tLis general
idea and just check the relation (*), taking over the notation of this para-
graphe.

2.2. PROOFS OF THEOREMS 1.1.—1.5.

Let a,b € A and a=xb via a=uy, Uy, ..., up=>b (i.e. Uy Juisy
for every i=1,2,...,k—1).

Proof of Theorem 1.1.

First notice that (by Lemma 0.1. and because X is a balanced variety)
trivial identities are the only identities valid in K (Q). Thus VK (£2) coinci-
des with the class of all Q-unoids.

) In fact, that is a necessary condition too.
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Now it is sufficient just to remark that " () = a for a; € ¢ ()
and n=do (%) j =1,2,...,k). That immediately implies that a =5 and
(*) is fulfilled. : :

Proof of Theorem 1.2 and Theorem 1.3.

If u; (1 < j <k) is in the domain of [ ] then u;4, is in the domain
of [ ] and [u;] = [u;+,] (observe that the element of 4 occuring in u; is only
uy (@) G=1,...,0). ::

Proof of Theorem 1.4. and Theorem 1.5.
We shall prove that

4) ifu;=wawy, wy € Q% w, € (4 U Q)*, a; € Athenw,(a)) =a in
A for every j =1,2,...,k.

That will be suficient, because we have immediately b = u; and u, = ain A.

To prove (4) we use an induction. For u, = g the assertion is obvious-
ly true. Propossing that u; satisfies the condition (4), consider uy4+;. The Joss
trivial part of the proof is for u; = uy4, in F ().

The rest of the proof of Theorem 1.5.:
We have two possibilities:

1) yy=wyuzw, and uy, = w; uzvzw,, or
ii) uy= wyuzvzw, and w4, = w, uzw,

whereas z € 4 U Q and uz = uzvz is valid in F ().
Consider the first case.

Let the first occurence a; of an element of A4 in u; be in w,. Then by
Lemma 0.1. and because of the defining identity

wy uzw* (a;) = wyuzvzw* (@) in A

whereas w* is the part of w, left from a;. We see that (4) is true for u;4, too.
If a; falls left from w, then (4) is obviously true for u..
Second case:
The first occurence a; of an element of 4 in u; is not in v because ¢ (v) C

¢ (u). If it is in wy proceed as in the previous case. The other cases are ob-
vious.

The rest of the proof of the Theorem 1.4.:

6 Fomuirer 360pHHK
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Now we have u; = wyv' vw, and vy, == w;V'V W, or u; = w,v'v* w, and
Uy = W,V vwy, whereas v'v = y'v" in Fi (). In the both cases the relation
(4) is flulfilled for u;,, too (proceed just like in the proof of the Theorem
1.5). @

2.3. PROOF OF THEOREM 1.6.

Let Q = {w, 7,0} and let 'y, 7', and ' be elements of Q* obrained
from 7,, 7, and & respectively by substituting variables in ¢ (1,) by = and those

in ¢ €) \ ¢ () by o (¢€) \ ¢ (n;) 7 o becausc of the condition (3)). Con
sider the quasiidentity

(5 0N y=117 y—>0ky= tEy.

It is valid in K(Q) because if A € K(Q) and w7 (@) =77, (@
for some a € A, then we have: w & (@) =08 a=06 .4 .a.9;, =
Ty .a.m; =7&. a= 1Y (a), whereas v is obtained from 7, by gubsti-
tuting the occurences of variable x in 7;(if any) by an element a.

We shall prove that (5) is not valid in the variety VK (Q), i.e. that (5)
is not a consequence of the identities in K (Q).

Let B= <a:omn(a) =1y (a)> VK@), ie. Bisan Q unioid ge-
nerated by the set {a} in VK (Q) and with one defining relation as in the
presentation. The relation o &' () = 7 &’ (a) is false in B. Namely, w £’ (@) =
= t& (a) if we can reach &' (a) starting from o £’ (a) and using eit-
her identities in VK (Q) or the defining relation in B. Because of (2),
identities in VK (£) do not change the first symbol. Thus the defining
relation in B should be applied (at least once) from the first symbol of the
corresponding element in B (and, when first time applied, that is the opera
tor symbol ). But that is impossible because ¢ ¢ ¢(7;) and on the other
hand ¢ appears in every element equal to w &’ (@) in B.
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CMECTYBABE HA YHOU/IU BO TTOJIVIPVIIM KO TIPHUITAI'AAT HA
HEKOM PEI'YJIAPHU MHOI'YKPATHOCTH TOJIVIPYIIU

Peszunme

Cexkoj (koHeweH) yroua A = (A: () MOXe da ce CM2CTH BO (KOHEYHA) MOMYTpyHa
Taka MTO OMEpalHHTe BO YHOMIOT O34 CE pPeamH3IHpaaT KaKO NTeBu TpaHcamalW| BO TIO-
nyrpynarta. 3HauM Kaacata oj CMTe (KOHEYHH) TOAYHOMTH O (KOHEYHW) MOMYIDYMH ce
cosmafa co Krmacata Off CHTe (KOHewHu) yHOWTM. Bo oBaa paGoTa ru wucmwTyBaMe Kia-
cuTe TMOAYHOWIA Of TMONYIPYIM KOW MPHIAraaT HA HEKOW MHOTYKPATHOCTH MNOMYrpyIM
JeMHAPAHK CO PerylapHu wieHTuTeTH. CreipjanHo, paboTuMe HA NpodIeMOT AaiH THE
KJIacH ¢ MHOTYKPATHOCTH,
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