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SOME EXISTENCE CONDITIONS FOR VECTOR VALUED GROUPS

Donéo Dimovski

ABSTRACT

The main results in this paper are the following thcorems:

Theorem 1. Let A [] be an (741, n)-group, n>2 and
lfcl.k-!ll < oo. Then each prime divisor p of n (n+ 1) is also a divisor
o ;

Theorem 2. If A [ ] is a commutative (n 1, n up, n

AT 1 (n+ )-group, n > 2,

These results give partial answers to the questions, asked Uy @.
Cupona, about the existence of finite (n, m) - grups and about embedda-
Billity of commutative, cancellative (n, m) - semigroups in commutative
(n, m)-groups, when m is not a divisor of n.

In [1], (n, m)-groups are defined. We state here the definition.
An (n, m)-semigroup (k =n — m > 0) A [ ] is an associative mapping
[]: A® > A™, denoted by

[ (¥ Xas...5X5) =[x, x;... x,], which satisfies

(2. Xal Xnsg .o - Xy psmd = [y .o o X [X4y e XgsalXgsns1- - Xoximl
for each i € {1,2,...,k}. In this case we write

Bry- - Xpesm] fOor [[x;...xa)x:5... Xsk+m)-

An (n, m)-semigroup A [ ] is called cancellative if it satisfies the follo-
wing condition: For each a € 4%, x,y € 4™,

[ax]=[ay] or [xa] = [ya], implies x =y.
An (n, m)-semigroup is called commutative if the following identity
is satisfied:
[(¥1...%n] = [x¢y x¢,... %], for any permutation.
jl=>iof: {1,250},
T*
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An (n, m)-semigroup A [ ]is called an (n, m)-group if for each a € A*,
b € A™, there exist X,y € A™ such that [ax] =b = [y a].

Theorem 1 says that there exist finite sets which do not admit an (n + 1,
n)-group structure. This theorem gives a partia! answer to_a question about
the existence of finite vector valued groups, asked by G. Cupona in the Se-
minar of the Institute for Algebra and Geometry at the Mathematical Fa-
culty in Skopje. Also this question can be found (not exactly in this form)
in the list of prblems from [1].

Theorem 2 gives a partial answer to Problem 5.4. from [1] which is:
Is it true that any commutative, cancellative (n, m)-semigroup is an (#, m)-sub-
semigroup of a commutative (n, m)-group?

In the following, 4 [ ] will be an (n + 1, n)-group.
Proposition 1. (See [1, 3.2. (d)]) A® with the operation

ab=[ab] is a group.

Proof. (i) The multiplication in A" is well defined because [. .. [[a, . .,
v..ap byl b,] . .. by) is well defined in an (n + 1, n)-semigroup.
(ii) The multiplication in A" is associative because

a(bc)=abec]=[a[bec]] =[[abjc]=[ab]e=(ab)ec.

(iii) Let a = (a@y, . ..,a,) € A", and b€ A™. For a, and b there exists
z, € A" such that [4,2,] = b (since 4 [ ] is an (n + 1, n)-group). For a; and
z, there exists z, € A" such that [a,2,] = 2, Afier n steps we will find z, =
=x € A" such that [a,4,...4a,x] = [ax] =b. Hence, for each a,b € A4"*
there exists x € A" such thata x = . Similarly, for each a,b € A" there
exists y € A" such that y a =b. (i), (ii) and (iii) imply that 4" is a group. §

Proposition 2. Let a € A, and b,ec € A" If [ab] = [ac] then b =c.
If b,a] = [c,a] then b=c¢. (4[] is a cancellative (n + 1, n)-semigroup.)

Proof. Let e = (e, ey, . . ., e5) be the identity in the group 4", and
let [ab] = [ac]. Then.

[ealb =e[ab] = [ab] = [ac] =e [ac] = [ea] ¢, which implies that
b = ¢, because this is an equation in the group A”. |§

Proposition 3. The identity e in A" is equal to (e, e,...,e, ) for an
element e € A. n
Proof. Let e = (ey,...,e,). We will show that e; =e,...=¢y =€

For each x € A4,

[e;-. . ey el--.e“_1x1=(en-<-’e-_1,x)= [e,'..-en,_lxel-q-e..])
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which implies, by Proposition 2, that foreach x € 4, (¢n € . . . €n—y X]=[xe,; . . .
...ep). Now for x€A andy € A" (ep, €y, ...5en) [XY] =len ;... 00—
xyl=|[xe,...eny]l =[x[e;...e5¥]] = [xy] =e[xy] Now we can cancell
by [xy] and get that (e, ey, ...,es—y) = (€ €. .., en), which implies
that el=e,=...=e’”l.
The element (x, X, ..., X,x) € 4f will be denoted by x/ or (x7).
Proposition 4. Let i € {1,...,n —1}. If [eel] =e, then |A| = 1.
Proof. [e ei] = e implies that [eie] =e. Let x € A. Then ("1, x) =
=e ("1, x)=[e &1 x]=[e of e~ x]=[e"+i—1 x], and (e, x)=(e"L, x) =
[e" 1 xe] = [e" 1 x el e] = [e" 1 x €i]. So, for each x € A, [¢i e"—i—1x ¢i] =
= [e" 1 x ef] = [em+i—1 x] = [ef "1 X], which implies, by Proposition 2,.
that (e"——, x, ef) = (¢"’, x). Hence, foreach x€ 4, x =e¢,ie. |[4| =1.§
Proposition 5. Let1 < |4| < oco.Thennis a divisor of |4 |*.

Proof. We will show that [¢"*+'] € A” has order n, and because A" is a
finite group it will imply that n is a divisor of |A4] .

[en+1]n — [eu(n-:—h] = [eml+n] — [em: e] — [eﬂﬂ] — et — @,

Leti € {1,2,...,n—1} and let [e"+1]i =e. Then e = [e"+i] = [(e")i €] =
= [e ef], which together with 1 < |4| contradicts Proposition 4. Hence,
[e"+1] has order n.

Proposition 6. If [x;Xy...Xp:;] =e,then for each 1 <i<<n+1,
[X¢ Xgs1 . Xy X1 X ] = e

Proof. [x; X3 ... Xq:;] =€ implies that (x5,...,Xy) [Xg+,€] =€ =
= [Xp 0] (.. X)) =[x e X Xy =X Xy .- Xa) B

Proposition 7. If [x,x;...Xs:,] =e, then there is a positive integer
m, such that n+ 1 =mr; for each I<i<m x=%X4p,=...=

= Xgsr—pm 3 | {Xp X ... , X} =
Proof. Let [xrvr,...,\c,.ﬂ]=e..ffx,¢xj for i%j,then m=n+ 1,
and |{X;, Xp,...,Xp+1}| =n + 1. Suppose that x; = x; for some i # j.

Then Propositions 2 and 6 imply that x, = x; for some k 74 1. Let s be the
smallest integrer such that x, = x;, and let m = 5 — 1. Then from the equation

[x,x,...xmx‘xm+,...x,m x’m.i.l...x’”! x&".ﬂ ...x'+~|]=
= [y Xpeta - - - X Epta o - Xam Xgmt - - - Xigebs ¥y X+« - K] - W g6t that
X = Xgm = Xgm = ... Xpms+1=rm; and for each 1 < i<m, x4 =

=Xt 4= Xamtt =+« + = X(r—p) m+t+ J§
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Let x € A. Then [x e] € A", and there is an element (x,, x5, ..., Xy) €
€ A", such that [x ] (¥, Xy, . . . ; X5) =e. This implies that [xx,x, ... x,] =e.
For x € A, let B, be the set {x,xg,Xg, .. ., X} such that [(xx,x;...x, )] =e,
for some r with mr = n 4 1. Propositions 2 and 7, show that B, is uni-
quelly and well determined by x.

Proposition 8. B, (\ By 7%= o implies B, = By.

Proof. Let B, = {xp Xos oo :xm}! By = {J”;aJ’z; ‘e :}’k}:x =Xy =
=y, mr=n+1=ks, and [(xx3...x,)]=e=[Pp2... )] Let
Bz M By #o . Then there are i and j such that x; = y;, and

[ ysere - P21 )l = =[(X Xgp1. .. X X1. .. X¢)T])
Now, Proposition 2 implies that r =5, m =k and B; = B,. R

Proposition 9. Let B, = {X;,Xy,...,%X,} for x=x, and n+ 1 =
=mr. If |A|#1, then [ex,X, . . . x,,] has ordder » in the group A",

Pma_f. [ex‘l' " ..x,,,]r -— [(xl' 3 .xm)r] =@, I.tet i E{I,Z,...,r—' l}
and let [exx;...x,f =e=[e(xy...X,)]). Let n +1 =mi + ¢ where
t > m. Then [e" ¢ (x; . ..x,) ef] = e = [e"t+1 (x; ... Xp) ¢*—"], which im=-
plies, by Proposition 2, that ((xy,...,X,), ef™1) = (e, (xys . . . , X ), €579),
This equation implies that x;, = Xy = ... = x,, = ¢, which contradicts Pro-
position 4, because

e=[(xs%...x. Y] =[e**]=[ee] |

Proof of Theorem 1. Let p be a prime divisor of n. Then p is a divisor
of |4|® by Proposition 5, which implies that p is a divisor of |4 |.

Proposition 8 tells us that we can write 4 as a disjoint union of the
sets B:. Let A=(UBYU(UB)U..... U (U BY), whereB! are the
séts B; that have r; elements, n+1=p,>p3>....>p;=1, and
n+ 1 =pyr; for eachi. Letd be the greatest common divisor for p,, p,,
... Ps Since A = |J Bz, it follows that 4 is a divisor of |A|. Let p be a pri-
me divisor of » + 1. If p is a divisor of each p; then p is a divisor of d, and
s0 is a divisor of |4 |. If there is i such that p is not a divisor of py, then p is
a divisor of r; (because n + 1 = p; r;). By Proposition 9, r is a divisor of
[4|", and so p is a divisor of |4]. |}

Corollary 1. Let A[] be an (n + 1,n)-group, and 1 < |4| <oco
Then |A4| is even.

Proof. For each n, 2 is a divisor of n(n + 1). §

Theorem 3. Let A[ ]be an (n + 1, n)-group,n > 2and 1 < |4]| < cc.
Then, for each divisor m 7 1 of n, each prime divisor p of m + 1 is also a
divisor of |A4|.
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Proof. Since A [ ]is an (n + 1, n)-group, it can be made into an (n + 1,
n)-group for each 1 > 1. (See [1,3.2. (¢)]). Let n = ms, for m = 1. Then
we have an (n + m,n) i.e. ((m 4 1) s, ms) — group structure on A. This
structurti gives us an (m + 1, m)-group structure on 45. Now we apply Theo-
rem 1.

Corollary 2. Let A [ ] be an (n,m)-group, m > 2, n = (r + 1) s, m =
=rs and 1 < |A| < co. Then, for each divisor h of r, each prime divisor
pof h+1n(-+1)is a divisor of [4]. }

Proof of Theorem 2. Let A[] be a commutative (n + 1, n)-group,
n>2andlete=(ee,...,e) be the identity in the group 4 (Proposition
3). Commutativity implies that [e x] = [e"" xe] for cach x ¢ A. After can-
celling we get that x = e, for each x € A. Here we use the fact that n > 2.
Hence |4|=1. §

Corollary 3. If S[] is a nontrivial (|S| = 1) cancellative, commu-
tative (n + 1,n) — semigroup, n > 2, then S[ ] is not an (n + 1, n)-sub-
semigroup of a commutative (r -+ 1, n)-group. |
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Pesuwme
HEKOHM VCJIOBHU 3A IIOCTOEWRE HA BEKTOPCKO BPEJAHOCHU I'PVIIA
Howuo Hqumoscrku

IaasmyTe PEe3YATaTH BO OB2a pafoTa ce CIHCOHHMTE TEOPEMM:

Teopewal . Hexa A[] e (n + 1, n)rpyma, n > 21 1 < |A] < co. Toram cexoj mpocr
memmTea p Ba m(a + 1) e uCTo Taxa W meymwren Ha (4. B

Teopema 2. Axo [ ] ¢ xomyTaTessea (n + 1, n)-Tpyna, n > 2, toram |[A| = 1.

Osge Pe3yATaTH JaBaaT JCAYMEH OIfOBODH Ha Mpallamara, moctasenw o [ Yy-
MOEa, 32 MOCTOSHE HA EOHCYHW (m, m)-TDYyIR W 33 CMCCTYBamke Ha KOMYTAaTHBHH (n, m)-
NONYTPYIH CO KPaTeme BO KOMYTATHBEH (n, m)-TPYIH, KOTa m He e AelETeN HA M,



