FAIRD ALGEBRAIC CONFERENCE Beograd, 3-4 December 1982

BI - AND QUASI-IDEAL SEMIGROUPS WITH n-PROPERTY
S.Bogdanović, P.Kržovski, P.Protić, B.Trpenovski

We give a structure description for each semigroup belonging to the classes in the title which we define in a similar way as itwasdone in /3/ for left-ideal semigroups with n-property.

1. SOME PRELIMINARY RESULTS

Let S be a semigroup. We shall denote by $\mathbf{E}_{\mathbf{S}}$ the set of idempotents of S.

THEOREM 1. A semigroup S is periodic and the mapping $\varphi:S \to E_S$, defined by $\varphi(x) = e_X$ where e_X is the idempotent in $\langle x \rangle$, is a homomorphism iff for every a,b $\in S$, $n \in N$ there exists $r \in N$ such that $(ab)^r = (a^nb^n)^r$ and $E_S^2 = E_S$.

<u>Proof.</u>Let S be a periodic semigroup and φ a homomorphism,where φ is defined as above. Then ker φ is a congruence with the congruence classes

$$K_e = \{x \in S \mid (n \in N) \times^n = e\}, e \in E$$

which are power joined semigroups. Hence, according to Theorem 1 /7/, it follows that for every $a,b\in S$, $n\in N$ there exists $r\in N$ such that $(ab)^r=(a^nb^n)^r$. Furthermore since \P is an epimorphism, we have that $S/\ker \P=E_S$ which implies that $E_s^2=E_S$.

Conversely, for every a,b \in S, n \in N let there be on r \in N such that $(ab)^r = (a^nb^n)^r$; then $a^{2r} = a^{2nr}$ and S is periodic. If we put

$$a \rho b \stackrel{\text{def}}{\Longleftrightarrow} (3 n \in N) a^n = b^n$$

then ρ will turn out to be a band congruence and the congruence classes mod ρ will be periodic unipotent power joined semigroups (/7/ Theorem 1), and then the mapping Φ defined by $\Phi(x)=e_{\chi}$ will be an epimorphism from S onto E_{κ} .

COROLLARY 1. A semigroup S is periodic, E_s a rectangular band and $\P:S \to E_s$ ($\P(x)=e_x$) a homomorphism iff for every a,b,c $\in S$, $n\in N$ there exists an $r\in N$ such that $(abc)^r=(ac)^{nr}$, $E_s^2=E_s$.

<u>Proof.</u> Follows from (/7/ Theorem 3) and (/7/,Theorem 1).
Let S be a semigroup with zero 0; we call S a nil-semigroup iff

for every $a \in S$ there is an $n \in N$ such that $a^n = 0$.

LEMMA 1. A semigroup S is a nil-semigroup iff for every a,b \in S there is an $n \in \mathbb{N}$ such that $a^n = b^{n+1}$.

Proof. If S is a nil-semigroup then the statement in the Lemma 1 is obvious.

Conversely, for every $a,b\in S$ let there be an $n\in N$ such that $a^n=b^{n+1}$. Then for a=b we have that $a^n=a^{n+1}$ which implies that a^n is an idempotent; furthermore, from $a^n=a^{n+1}$ it follows that a^n is the zero in < a>. Let us show that a^n is zero in S; let $b\in S$ is an arbitrary element. From the above discussion it follows that for same $k\in N$, b^k is zero in < b>. Now, there exists an $m\in N$ such that $(a^n)^m=(b^k)^{m+1}$ and, since a^n,b^k are idempotents we have that $a^n=b^k$ which means that a^n is zero for b. So, S has a zero and is a nil-semigroup.

THEOREM 2. A semigroup S is a band of nil-semigroups iff the following properties are satisfied:

1. $(\forall x \in S)(\exists r \in N) x^r = x^{r+1}$,

2. $(\forall x,y \in S)$ $(\forall n \in N)(\exists r \in N)(xy)^r = (x^ny^n)^r$.

<u>Proof.</u> Let S be a band Y of nil-semigroups S_{α} , $\alpha \in Y$. Then according to Lemma 1 we have that 1 is satisfied. Since every nil-semigroup is a power joined semigroup, if follows that 2 is satisfied too /7, Th.1/.

Conversely, let the conditions 1 and 2 be satisfied. Then S will be a band Y of periodic power joined semigroups S_{α} , $\alpha \in Y$ /7, Th.1/. So, for $a,b \in S_{\alpha}$, $\alpha \in Y$, we have that $a^n = b^n$, $b^k = b^{k+1}$ for some $n,k \in \mathbb{N}$ and,

$$a^{nk} = b^{nk} = b^{nk-k}b^k = b^{nk+1}$$

which, according to Lemma 1, implies that S_{α} is a nil-semigroup.

Let E be a band, P a partial semigroup, $E \cap P = \emptyset$, and $\P: P \to E$ a partial homomorphism. Let us extend \P to a mapping $\psi: S = E \cup P \to E$ by $\psi(x) = \P(x)$ if $x \in P$ and $\psi(e) = e$ for all $e \in E$. Let us define an operation on S by

$$xy = \begin{cases} xy \text{ as in P,if } x,y \in P \text{ and } xy \text{ is defined in P} \\ \psi(x)\psi(y),\text{otherwise} \end{cases}$$

Then S will become a semigroup with E an ideal and ψ an epimorphism. In what follows we shall denote the semigroup S constructed above by $S=(E,P,\varphi)$.

A partial semigroup P is said to be a power breaking partial semigroup iff for every $x \in P$ there exists a $k \in N$ such that x^k is not defined in P

THEOREM 3. The following conditions on a semigroup S are equivalent: (i) S is periodic, $\varphi:S \to E_S$ ($\varphi(x)=e_X$) is a homomorphism and ($\forall x \in S$) ($\forall e \in E_e$) xe,ex $\in E_e$; (ii) $(\forall a,b \in S)(\forall n \in N)(\exists r \in N)$ $(ab)^r = (a^nb^n)^r$ and $(\forall x \in S)(\forall e \in E)$ xe,ex $\in E_S$; (iii) $S \cong (E,P,\Phi)$ where P is a power breaking partial semigroup.

<u>Proof.</u> From Theorem 1 it follows that (i) \Rightarrow (ii). If (ii) is true, from the proof of Theorem 1 it follows that S is periodic and, since $xe, ex \in E_S$ for every $x \in S$, $e \in E_S$, we have that E_S is an ideal in S. So, if we put $P = S \setminus E_S$, we will have that P is a partial power breaking semigroup. According to Theorem 1, the mapping $\varphi_{P}(\varphi(x)=e_X)$ will be a partial homomorphism from P to E_S such that $\varphi(e) = for all e \in E_S$. So, we have that $S \cong (E,P,\varphi)$ and we have proved that (ii) \Rightarrow (iii). It is obvious that (iii) \Rightarrow (i).

2. BI-IDEAL SEMIGROUPS WITH n-PROPERTIES

A subsemigroup B of a semigroup S is said to be a bi-ideal iff B SB \subseteq B. The principal bi-ideal B[a] of a semigroup S generated by a \in S is B[a]-a \cup a 2 \cup a Sa.

A semigroup S is said to be a c-bi-ideal semigroup iff every cyclic subsemigroup $\langle a \rangle$ of S is a bi-ideal of S.

THEOREM 4. The following conditions on a semigroup S are equivalent:

- (i) S is a c-bi-ideal semigroup;
- (ii) $(\forall a \in S)$ aSa $\subset \langle a \rangle$;
- (iii) $(\forall a \in S)$ $B[a] = \langle a \rangle$.

<u>Proof.</u> From aSa $\le <$ a $> \le <$ a> = it follows that (i) \Rightarrow (ii). It is obvious that (ii) \Rightarrow (iii). Let (iii) be satisfied and let be a cyclic subsemigroup of S. Then for $b^i, b^j \in <$ b> we have that

$$b^{i}Sb^{j}=b^{i-1}bSbb^{j-1} \subseteq b^{i-1}B \ b \ b^{j-1} = b^{i-1} < b > b^{j-1} \subseteq < b >$$
,

and so, $\langle b \rangle S \langle b \rangle \subset \langle b \rangle$ which means that S is a c-bi-ideal semigroup.

Let us recall that S is a bi-ideal semigroup iff every subsemigroup of S is a bi-ideal in S ([2]) and that the bi-ideal B[C] generated by the non-empty subset C of the semigroup S is B[C]= $C \cup C^2 \cup CSC$. In a simmilar way as in the case of Theorem 4, the following can be proved:

THEOREM 5. The following conditions on a semigroup S are equivalent:

- (i) S is a bi-ideal semigroup;
- (ii) CSC <<C>, for every non-empty subset C of S;
- (iii) B[C]c<C>.

A partial subsemigroup R of a partial semigroup P is a bi-ideal in P iff r_1pr_2 is defined in P, r_1 , r_2 \subseteq R, p \in P implies r_1pr_2 \in R. If every partial subsemigroup of a partial semigroup P is a bi-ideal in P, we call P a partial bi-ideal semigroup.

THEOREM 6 [2]. A semigroup S is a bi-ideal semigroup iff S=(E,P,φ) where E is a rectangular band and P a partial power breaking bi-ideal semi-

We call partial semigroup P a partial c-bi-ideal semigroup iff whenever apa is defined in P, apa $\leq \langle a \rangle$ where $\langle a \rangle$ consists of all powers a^{Π} which are defined in P. In a similar way as Theorem 6, the following can be proved:

THEOREM 7. A semigroup S is a c-bi-ideal semigroup iff $S \cong (E,P,\varphi)$ where E is a rectangular band and P a partial power breaking c-bi-ideal semigroup.

It is obvious that the class of c-bi-ideal semigroups is more general than the class of bi-ideal semigroup.

Let S be a semigroup and Q a subset of S. We call S a

(i) β_0^n - semigroup iff $Q \subseteq S$, $Q^{n+1} \subseteq Q \rightarrow QSQ \subseteq Q$;

(ii) β_1^n - semigroup iff $Q \subset S$, $Q^{n+1} \subset Q \Rightarrow QS^{n-1}Q \subset Q$;

(iii) β_2^n - semigroup iff $Q \subset S$, $Q^2 \subset Q \to QS^{n-1}Q \subset Q$.

Observe that for n=1 β_0^n -, β_2^n - semigroups are simply bi-ideal semigroups. It is easily seen that:

LEMMA 2. Every subsemigroup and every homomorphic image of a β_0^n , β_1^n - semigroup is also a β_0^n -, β_1^n -, β_2^n - semigroup, respectively.

LEMMA 3. (i) Every β_0^n - semigroup is a β - semigroup;

(ii) every β - semigroup is a β_2^n - semigroup;

(iii) every β_1^n - semigroup is a β_2^n - semigroup,

where β - semigroup stands for bi-ideal semigroup.

LEMMA 4. Let S be a semigroup. If S is a β - β $_0^n$ -semigroup then aSa \subseteq \subseteq <a > for every a \in S; if S is a β $_1^n$ -, β $_2^n$ -semigroup then a S $_0^{n-1}$ a \subseteq <a > for every a∈S.

LEMMA 5. Let S be a β_0^n -, β_1^n -semigroup. Then:

- (i) S is periodic; and for every $a \in S$ the periodic part H_a of a > ais a trivial subgroup of S;
- (ii) E is a rectangular band which is an ideal in S; for every e∈E, x∈S, exe=e;

(iii) if xyx=x for some $y \in S$, then $x \in E$.

LEMMA 6. (i) If S is a β -semigroup, then $|\langle a \rangle| \leq 5$ for every $a \in S$;

(ii) if S is a β_0^n -semigroup, then $|\langle a \rangle| \le 3$ for every $a \in S$; (iii) if S is a β_1^n -, β_2^n -semigroup, then $|\langle a \rangle| \le n+3$ for every a S. Proof. Let, for example, S be a β_1^n -semigroup, $a \in S$ and let $\langle a \rangle_n = 2n+3$

 $\{a,a^{n+1},a^{2n+1},\ldots\}$ be the n-subsemigroup of S generated by a. Since

$$a^{n+2}=a_aa^2_aa^{n-2}$$
, $a \in \langle a \rangle_n S^{n-1} \langle a \rangle_n \subseteq \langle a \rangle_n$,

we have that $a^{n+2}=a^{kn+1}$ for some $k \in \mathbb{N}$, which means that the index r_a of a is < n+2 and, since the periodic part of <a > consists of one element (Lemma 5 (i)), we have that $|\langle a \rangle| \leqslant n+3$.

Let P be a partial semigroup. Then P is said to be a: (i) β_0^{Π} -semigroup iff for every $Q \subseteq P$ which posseses the property $q_0q_1...q_nq \in Q$, $q_i \in Q$ whenever $q_0q_1...q_n$ is defined in P we have that, if $q_1^*pq_2^*$ is defined in P, then $q_1^*pq_2^*\in \mathbb{Q}$, $q_1^*,q_2^*\in \mathbb{Q}$, $p\in \mathbb{P}$; (ii) β_1^n -semigroup iff for every $\mathbb{Q}\subseteq \mathbb{P}$ which possesses the property mentioned in (i), $q_1^*p_1p_2...p_{n-1}q_2^*$ defined in P implies $q_1^*p_1p_2...p_{n-1}q_2^* \in \mathbb{Q}$; (iii) β_2^n -semigroup iff for every $\mathbb{Q} \subseteq \mathbb{P}$ such that whenever q_1q_2 is defined in P, if $q_1q_2 \in Q$ then the following is true: if $q_1^*p_1p_2...$

 $p_{n-1}q_2^*$ is defined in P then $q_1^*p_1p_2\cdots p_{n-1}q_2^*\in \mathbb{Q},\ q_1^*,q_2^*\in \mathbb{Q},\ p_j\in \mathbb{P}.$ THEOREM 8. A semigroup S is a β_0^n -semigroup iff S = (P,E, Φ)where E

 $\frac{\text{is a rectangular band and P a partial power breaking β_0^n-semigroup.}}{\text{Proof.} \text{ Let S be a β_0^n-semigroup. From Lemma 5 it follows that S=EUP}}$ (P=S\ E) where E is a rectangular band and ideal in S, and P is a power breaking partial semigroup. Let Q \subseteq P possess the property $q_0q_1...q_n$ \in Q whenever $q_0q_1...q_n$ is defined in P, $q_i \in Q$ and let $Q^*=Q \cup E$. Then $Q^{*n+1} \subset Q^*$; since S is a β_0^n -semigroup, it follows that $0*S0* \subseteq 0*$. If $q_1^*, q_2^* \in Q$, $q_1^*pq_2^* \notin E$, we conclude that $q_1^*pq_2^* \in \mathbb{Q}$ which proves that P is a partial β_0^n -semigroup. Finally, if we put $\Psi(x)=e_x$, e_x is the idempotent in $\langle x \rangle$, we can easily show that $\phi:P\to E$ is a homomorphism (as in [2] and by Theorem 3 we have that $S=(E,P,\phi)$.

Conversely, let S=(E,P, F)=T with E,P as stated in the Theorem and let B \subset T, Bⁿ⁺¹ \subset B. Then B*=B \setminus Ξ posseses the property b b₁...b_n \in B* whenever $b_0b_1...b_n$ is defined in P, so, if $b,c \in B^*$, $p \in P$, then $bpc \in B^* \subseteq B$. Let for b,c ∈B, t∈T, btc∈ E. If bc ∉ B*, then b.c is not defined in P and,

 $btc = \P(b)\P(t)\P(c) = \P(b)\P(c) = [\P(b)]^n \P(c) = \P(b^n) \P(c) = b^n c \in B.$

If bc∈P then (bc) K∈ E since P is a power breaking partial semigroup. Let (bc) K=e, then

btc= $\varphi(b) \varphi(t) \varphi(c) = \varphi(b) \varphi(c) = \varphi(bc) = \varphi[(bc)^{K}] = e$.

On the other hand we have that

$$e=\varphi(b)\varphi(c)=\varphi(b^{kn}c)=b^{kn}c\in B^{kn+1}\subseteq B$$

if $b^{kn} \in E$. Now, from $bc \in P$ it follows that $b \in P$ and there exists an $m \in N$ such that b^m is not defined in P; then for $k \in N$, $kn \geqslant m$ we have that $b^{kn} \in E$ since E is an ideal in T. So, we have proved that $btc \in B$ for every $b,c \in B$, $t \in T$, which completes the proof.

In a similar way the following can be proved:

THEOREM 9. A semigroup S is a β_1^n -semigroup iff S = (E,P, γ) where E is a rectangular band, P a partial power breaking β_1^n -semigroup.

THEOREM 10. A semigroup S is a β_2^n -semigroup iff S \cong (E,P,4) where E is a rectangular band and P a partial power breaking β_2^n -semigroup.

3. QUASIIDEAL SEMIGROUPS WITH n-PROPERTY

In a similar way as in part 2 we can introduce the following classes of semigroups: We call a semigroup S:

- (i) q_0^n -semigroup iff $Q \subseteq S$, $Q^{n+1} \subseteq Q \Rightarrow QS \cap SQ \subseteq Q$;
- (ii) q-semigroup iff $Q \subseteq S$, $Q^2 \subseteq Q \Rightarrow QS \cap QS \subseteq Q$;
- (iii) q_1^n -semigroup iff $Q \subseteq S$, $Q^{n+1} \subseteq Q \Rightarrow QS^n \cap S^nQ \subseteq Q$;
- (iv) q_2^n -semigroup iff $Q \subseteq S$, $Q^2 \subseteq Q \Rightarrow QS^n \cap S^nQ \subseteq Q$

We are not going to reformulate all the results for the semigroups do fined above; these results are similar to those in 2. We shall do this only for some of these semigroups, including the theorems which give a structure description for each of these semigroups.

LEMMA 7. Let S be a semigroup.

- (i) If S is a q-semigroup, then |<a>|≤3 for every a ∈S;
- (ii) if S is a q_0^n -semigroup, then $|\langle a \rangle \leqslant 2$ for every $a \in S$;
- (iii) if S is a q_1^n -, q_2^n -semigroup, then $|\langle a \rangle| \leq n+2$ for every $a \in S$.

THEOREM 11. A semigroup S is a q_0^n -semigroup iff S = (E,P, ϕ) where E is a rectangular band, P a nonempty set and ϕ :P \to E a mapping.

shown above, will be equal to an idempotent and, accordingly, in a similar way we can prove that all the product is equal to an idempotent which belongs to Q. So, Q will be an n-subsemigroup of S, i.e. $Q^{n+1} \subseteq Q$. From this it follows that Q is a quasiideal in S which implies that Q is a subsemigroup of S; we have proved that $xy \in Q$. If xy=y then $y=xy=x^2y=e_xy=e_xy=e_xe_y$ which is impossible if we take x and y not to be idempotents. Similarly for xy=x. So, xy must be an idempotent:

$$xy=xyx.y = e_x y=e_x.ye_x y = e_x e_y$$

Now, if we put P=S\E, we have that for every $x,y\in P$, $xy\in E$. Further more, with $\varphi(x)=e_{x}$, $x\in P$ and e_{x} the idempotent in <x> we can define a mapping from P to E which can be considered as a partial homomorphism from P to E and Theorem 3 concludes the proof.

Conversely, let $Q \subseteq T = E \cup P$ where E is a rectangular band, P a set such that $E \cap P = \emptyset$ and let $Q: P \to E$ be a mapping, and let $Q^{n+1} \subseteq Q$. If $x \in QT \cap TQ$, i.e. $x = q_1 x_1 = x_2 q_2$, $q_1, q_2 \in Q$, $x_1, x_2 \in T$, we have that $x \in E$ and, according to the definition of operation in (E, P, Y), we have that

$$\begin{aligned} x &= x^2 = q_2 x_2 x_1 q_1 = \varphi(q_2) \varphi(x_2) \varphi(x_1) \varphi(q_1) = \varphi(q_2) \varphi(q_1) = \varphi(q_2^n) \varphi(q_1) = \\ &= \varphi(q_2^n q_1) = q_2^n q_1 \in \mathbb{Q} \end{aligned}$$

which shows that Q is a quasi-ideal in T.

Let P be a partial semigroup. Then P is said to be a: (i) q-semigroup iff for every $\mathbb{Q}\subseteq \mathbb{P}$ which posseses the property $q_1q_2\in \mathbb{Q}$ whenever q_1q_2 is defined in P, $q_1,q_2\in \mathbb{Q}$, we have that, if pq is defined in P, $p\in \mathbb{P},\ q\in \mathbb{Q}$ and, for some $p'\in \mathbb{P},\ q'\in \mathbb{Q}$ pq=q'p'=x, then $x\in \mathbb{Q}$; (ii) q_1^n -semigroup iff for every $\mathbb{Q}\subseteq \mathbb{P}$ which posseses the property $q_0q_1\dots q_n\in \mathbb{Q}$ whenever $q_0q_1\dots q_n$ is defined in P, $q_i\in \mathbb{Q}$ we have that, if $p_1p_2\dots p_nq$ is defined in P for $p_i\in \mathbb{P},\ q\in \mathbb{Q}$ and for some $p_i'\in \mathbb{P},\ q'\in \mathbb{Q},\ p_1p_2\dots p_nq=q'p_1'p_2'\dots p_n'=x$ then $x\in \mathbb{Q}$; (iii) q_2^n -semigroup iff for every $\mathbb{Q}\subseteq \mathbb{P}$ which posseses the property $q_1q_2\in \mathbb{Q},\ q_1,q_2\in \mathbb{Q},\ whenever\ q_1q_2$ is defined in P we have that if $p_1p_2\dots p_nq$ is defined in P, $p_i\in \mathbb{P},\ q\in \mathbb{Q}$ and for some $p_i'\in \mathbb{P},\ q'\in \mathbb{Q},\ p_1p_2\dots p_nq=q'p_1'p_2'\dots p_n'=x$ then $x\in \mathbb{Q}.$

Using a similar procedure as for Theorem 8, and using also Theorem 9 and 10, the following can be proved:

THEOREM 12. A semigroup S is a q-semigroup iff S \cong (E,P, \mp) where E is a rectangular band and P a partial power breaking q-semigroup.

THEOREM 13. A semigroup S is a q_1^n -semigroup iff S = (E,P, φ) where E is a rectangular band and P a partial power breaking q_1^n -semigroup.

THEOREM 14. A semigroup S is a q_2^n -semigroup iff S = (E,P, ϕ) where E is a rectangular band and P a partial power breaking q_2^n -semigroup.

REFERENCES

- [1] Б.Л.Трпеновски, <u>За една класа полугрупи</u>, Год.зборник на ЕМФ, Скопје, 2(1968), 5-8
- [2] B.Trpenovski, Bi-ideal semigroups, Algebraic conference, Skopje, 1980, 109-114
- [3] B.Trpenovski, <u>Semigroups</u> with n-properties, Algebraic conference, Novi Sad, 1981, 7-12
- [4] П.Кржовски, <u>За би-идеалните полугрупи</u>, Год.зборник на Математички факултет, Скопје, 1979, $\overline{29-33}$
- [5] P.Protić, S.Bogdanović, On a class of semigroups, Algebraic conference, Novi Sad, 1981
- [6] P.Protić, S.Bogdanović, A structural theorem for (m,n)-ideal semigroups, Proc. Symp. n-ary structures, Skopje, 1982.
- [7] S.Bogdanović, Bands of power joined semigroups, Acta Sci. Math. Szeged, 44(1982) 3-4
- [8] S.Bogdanović, Some characterizations of bands of power joined semigroups, Algebraic conference, Novi Sad, 1981
- [9] M.Petrich, Introduction to semigroups, Columbus, Ohio, 1973.

Branko Trpenovski, Pano Kržovski
Univerzitetski centar za matematičko-tehnički nauki
OOZT Matematički fakultet
ul.Orce Nikolov, b.b.
91000 Skopje
Jugoslavija