Algebraic conference N O V I S A D 1981

COMPATIBLE SUBASSOCIATIVES N. Celakoski

The notion of compatible n-subsemigroup of an n-semigroup, introduced in [1], and almost all the results on compatibility obtained there, can be generalized for J-subassociatives of a J-associative in a straightforward way. In this paper we shall consider these questions for J-associatives in some details.

§1. Preliminaries

Let $\underline{A} = (A;F)$ be an algebra with the carrier A and a nonempty set of finitary operations, $F = F_2 \cup F_3 \cup \ldots \cup F_n \cup \ldots$, where F_n consists of the n-ary operations of F. If $f \in F_{n+1}$ and $f:(x_0,x_1,\ldots,x_n)\mapsto y$, then it is written $y=fx_0x_1\ldots x_n$.

The semigroup A^ with a presentation

$$\langle A; \{a = a_0 a_1 \dots a_n | a = fa_0 a_1 \dots a_n \text{ in } \underline{A} \} \rangle$$

is called the <u>universal semigroup</u> for \underline{A} . Denoting by a the element of A determined by $a \in A$ and putting $a \cdot a \cdot a$, we obtain a mapping from A into A. The algebra \underline{A} is called a <u>semigroup</u> algebra if the mapping $a \cdot a \cdot a \cdot a$ is injective.

If $\phi:\underline{A}\to\underline{A}'$ is a homomorphism, then there exists a unique homomorphism $\phi^*:\underline{A}^*\to\underline{A}'^*$ such that $\phi^*(a^*)=\phi(a)$ for any $a\in A$. Clearly, if ϕ is an epimorphism (isomorphism), then ϕ^* is also an epimorphism (isomorphism), but it may happen ϕ to be a monomorphism and ϕ^* not to be such one (Ex. 1), §3). A monomorphism $\phi:\underline{A}\to\underline{A}'$ is said to be <u>compatible</u> if $\phi^*:\underline{A}^*\to\underline{A}'^*$ is also a monomorphism. And, a subalgebra \underline{B} of \underline{A} is said to be <u>compatible</u> in \underline{A} if the embedding monomorphism $\varepsilon:\underline{B}\to\underline{A}$ is compatible.

The subject of this paper are compatible subassociatives of an associative. Namely, an F-algebra $\underline{A}=(A;F)$ is called an F-associative if it satisfies all the identities that hold in the class of semigroup F-algebras, i.e. if the general associative law holds in \underline{A} . An F-associative is called an F-group if (A,f) is an n-group for each $f\in F_n$. It is well known that any F-group is a semigroup F-algebra ([2]).

In studying associatives, it is convenient to consider the submonoid ${\tt J}={\tt J}_F$ of the additive monoid of nonnegative integers generated by the set $\{{\tt n-1}\mid {\tt F}_n\neq\emptyset\}$. If ${\tt d}_F$ is the greatest common divisor of the elements of ${\tt J}_F$, then the following result holds: Every F-associative is a semigroup associative if and only if ${\tt d}_F\in{\tt J}_F$, and then an F-associative is in fact a $({\tt d}_F+1)$ -semigroup. We note also that the associative law implies that for each $n\in{\tt J}_F$ we have an "associative product"

[]:
$$(x_0, x_1, ..., x_n) + [x_0 x_1, ... x_n]$$

in an F-associative \underline{A} , where $[x_0] = x_0$. This is the reason why an F-associative is called a J-associative and the operational symbols are not used. The notions: J-subassociative, J-subgroup, ideal of a J-associative have usual meaning.

A J-associative is said to be <u>cyclic</u> if it is generated by one of its elements. The structure of cyclic J-associatives is described in $\lceil 5 \rceil$.

§2 Properties of compatible subassociatives

Denote by $\mathcal{L}(A)$ the set of all J-subassociatives of a J-associative A and by $\mathcal{C}(A)$ the set of all compatible J-subassociatives of A. The following statements hold:

2.1. B ∈ $\mathcal{C}(A) \Leftrightarrow B^*$ is a subsemigroup of A^* . \square

2.2. $B \in \mathcal{L}(A) \Rightarrow \mathcal{L}(B) \cap \mathcal{L}(A) \subseteq \mathcal{L}(B) . \square$

2.3. $B \in \mathcal{C}(A) \Rightarrow \mathcal{C}(B) \subseteq \mathcal{C}(A) . \square$

 $\frac{2.4.}{\mathcal{C}(\mathtt{A})} \text{ is inductive, i.e. if } \{\mathtt{B_i} | \mathtt{i} \in \mathtt{I}\} \text{ is a chain in } \mathcal{C}(\mathtt{A}) \text{, then } \mathtt{B} = \bigcup_i \mathtt{B_i} \in \mathcal{C}(\mathtt{A}) \text{.} \square$

- 2.5. If $\varphi \in AutA$, $B \in \mathscr{L}(A)$ and $C = \varphi(B)$, then $B \in \mathscr{L}(A) \iff C \in \mathscr{L}(A) . \square$
- 2.6. $B \in \mathcal{L}(A)$, $A \setminus B$ is an ideal in $A \Rightarrow B \in \mathcal{C}(A)$.

Note that the sufficient condition in 2.6 is not necessary (Ex. 4), §3). \square

2.7. If G is a J-subgroup of a semigroup J-associative A, then G \in $\mathscr{L}(A)$. \square

If $A = \langle a \rangle = \{a^{n+1} \mid n \in J\}$ is an infinite cyclic J-associative, then A° is the free semigroup generated by a (3.1 in [5]). The theorem 4.1 od [1] is true for J-associatives too:

2.8. A J-subassociative B of an infinite cyclic J-associative A is compatible in A if and only if B is cyclic.

Using the fact that every J-subassociative C of a finite J-group G is a J-subgroup of G, as well as 2.7 and 2.8 it can be proved the following proposition:

- 2.9. Let $A = \{a^{n+1} | n \in J\}$ be a finite cyclic J-associative, let P be its periodic part and C be a J-subassociative of A.
 - i) If $C \subseteq P$, then $C \in C(A)$.
- ii) Let $C \notin P$ and let k be the least integer such that $b = a^{k+1} \in C$. If there exists $q \in J$ such that $C = a^{q+1} \in C$, $k+1 \nmid q+1$ and q < s, then $c \notin \mathcal{C}(A)$.

(Here, $s=min\{n \in J \mid (\exists m \in J) \ m\neq n, \ a^{n+1}=a^{m+1}\}$, and the periodic part of A is $P=\{x \mid x \in A, \ x=a^{n+1} \ \text{for infinitely many } n \in J\}$.)

§3. Examples

Below we give four examples which can be also found in [1], p.p. 26, 28. Ternary associatives, i.e. J-associatives with $J = \{2k \mid k \ge 0\}$ in all of them are considered.

1) Let A = {a,b,c}, B = {a,b} and a ternary operation
be defined on A by:

[ccc] = b and [xyz] = a if $\{a,b\} \cap \{x,y,z\} \neq \emptyset$.

Then A is a J-associative and B is a J-subassociative of A. The free coverings $A^{\hat{}}$ and $B^{\hat{}}$ are given by the following multiplication tables:

						1	
A^:	1	a	b	C	α	β	Y
	a	α	α	α	a	a	a
	b	α	α	β	a	a	a
	C	α	β	Υ	a	a	b
	α	a	a	a	α	α	α
	β	a	a	a	α	α	α
	γ	a	a	b	α	α	β

B^:_	a	b	u	v
a	u	u	a	a
b	u	v	a	a
u	a	a	u	u
v	a	a	u	u

$$|A^{-}| = 6$$
, $|B^{-}| = 4$.

The extension $\epsilon^{\hat{}}$ of the embedding monomorphism $\epsilon:B \to A$ is not a monomorphism, for $\epsilon^{\hat{}}(u) = \epsilon^{\hat{}}(v) = \alpha$ but $u \neq v$. Thus $B \notin \mathcal{C}(A)$.

2) Let A = {a,b,c,d,e} and a ternary operation [] be defined
on A by:

$$\{x,y,z\} \cap \{c,d,e\} \neq \emptyset, (x,y,z) \neq (e,e,e) \Rightarrow [xyz] = c,$$

 $x,y,z \in \{a,b\} \Rightarrow [xyz] = a$

and [eee] = d. Then A is a J-associative, $B = \{a,b\}$ and $C = \{c,d\}$ are two isomorphic J-subassociatives and

 $A^{-} = \{a,b,c,d,e,aa,bb,cc,ee,be,eb,de\}, |A^{-}| = 12,$

(aa=ab=ba, cc=ac=ca=ad=da=ae=ea=bc=cb=cd=dc=dd=ec=ce, de=ed);

$$B^{-} = \{a,b,aa=ab=ba,bb\}, |B^{-}| = 4;$$

$$C^* = \{c,d,cc=cd=bc,dd\}, |C^*| = 4.$$

Therefore $B \in \mathcal{C}(A)$ and $C \notin \mathcal{C}(A)$, for cc=dd in A^ but cc+dd in C^.

Thus isomorphism, in general, do not preserve the compatibility.

3) The set A = {1',1",3,5,7,...} with the ternary operation $[xyz] = \psi(x) + \psi(y) + \psi(z)$, where the mapping $\psi:A \to \mathbb{N}$ is defined by $\psi(1') = 1 = \psi(1")$, $\psi(a) = a$ for all $a \neq 1',1"$, is a ternary semigroup, i.e. J-associative and B = {1',3,5,...}, C = {1",3,5,...} are J-subassociatives. The free coverings A^, B^, C^ of A,B,C, respectively, are given by:

$$A^{\circ} = \{1^{\circ}, 1^{\circ}, (1^{\circ}, 1^{\circ}), (1^{\circ}, 1^{\circ}), (1^{\circ}, 1^{\circ}), (1^{\circ}, 1^{\circ})\} \cup \{3, 4, 5, 6, ...\},$$

$$B^{\circ} = \{1^{\circ}, (1^{\circ}, 1^{\circ}), 3, 4, 5, 6, ...\},$$

$$C^{\circ} = \{1^{\circ}, (1^{\circ}, 1^{\circ}), 3, 4, 5, 6, ...\},$$

where

$$1^{\dot{1}} * 1^{\dot{j}} = (1^{\dot{1}}, 1^{\dot{j}}), \quad 1^{\dot{1}} * (1^{\dot{j}}, 1^{\dot{k}}) = 3 = (1^{\dot{j}}, j^{\dot{k}}) * 1^{\dot{1}},$$

$$(1^{\dot{1}}, 1^{\dot{j}}) * (2+k) = 4+k = (2+k) * (1^{\dot{1}}, 1^{\dot{j}}),$$

$$1^{\dot{1}} * (2+k) = 3+k = (2+k) * 1^{\dot{1}}.$$

Thus B, $C \in \mathcal{C}(A)$.

The intersection D = B \cap C is also a subassociative of A, but it is not compatible in A; namely, $\epsilon^{*}(3*5) = \epsilon^{*}(5*3) = 8$, but $3*5 \neq 5*3$ in D.

4) Consider the additive semigroup of positive integers, $\mathbb{N}(+)$, as a ternary semigroup A, [xyz] = x+y+z. The set $B = \{2k+1 | k=0,1,2,\ldots\}$ is a ternary subsemigroup of A and $B^{\wedge} \cong A^{\wedge} \cong \mathbb{N}(+)$. Thus the extension $\varepsilon^{\wedge}: B^{\wedge} \to A^{\wedge}$ of the embedding $\varepsilon: B \to A$ is a monomorphism, i.e. $B \in \mathcal{L}(A)$, but $A \setminus N = 2N$ is not an ideal in A.

REFERENCES

- [1] G. Čupona, N. Celakoski: "On Representation of n-Associatives Into Semigroups"; Maced. Acad. of Sciences and Arts, Contributions, VI-2 (1974), 23-34
- [2] Г.Чупона: "Асоцијативи со кратење"; Год. зб. ПМФ-Скопје, кн. 19 (1969), 5-14
- [3] N.Celakoski: "On Semigroup Associatives"; Maced. Acad. Sc. and Arts, Contributions, IX-2 (1977), 5-19
- [4] G. Čupona, N. Celakoski: "Polyadic Subsemigroups of Semigroups"; Algebraic conference Skopje 1980, 131-152
- [5] N.Celakoski: "On Cyclic Associatives"; Maced. Acad. Sc. and Arts, Constributions, I-1 Section of math. and tech. sc. (1980), 19-24