SEMIGROUPS WITH n-PROPERTIES B. Trpenovski

Semigroups with n-property were introduced in [8] in the following way: a semigroup S posseses the n-property iff every n-subsemigroup of S is a subsemigroup, i.e. $Q \subseteq S$, $Q^{n+1} \subseteq Q \Rightarrow Q^2 \subseteq Q$. The problem of describing the structure of a semigroup with n-property is a special case of a problem formulated in [1]. Nevertheless, this special case is not easy to deal with and a structure description is given in [8] only for unipotent semigroups of that type. Using the idea of involving an (n+1)-ary operation, n > 1, in a semigroup, in this paper we introduce several classes of semigroups and give structure descriptions which follow the same pattern of structure description for unipotent semigroups with n-property.

First we collect some of the results from [8] in the following Theorem 1. (i) Every semigroup with n-property is periodic;

(ii) If S is a group, then S posseses the n-property iff the order of every element of S is relatively prime with n;

(iii) Let H be a group with n-property, P a set such that $H \cap P = \emptyset$ and $\phi: P \to H$ a mapping. Extend ϕ to a mapping from $S^* = H \cup P$ onto H by $\phi(x) = x$ for all $x \in H$ and define an operation in S^* by

$$xoy = \phi(x)\phi(y)$$
.

Then $S^* = S[H,P,\phi]$ will be a unipotent semigroup with n-property. Conversely, every unipotent semigroup with n-property can be obtained in that way. \square

The general pattern sugested by (iii) of the above theorem is the structure set [H,P, ϕ]. To be more precise, and for convenience, we bring out the following

Lemma 1. Let P be a partial semigroup, E a semigroup such that $P \cap E = \emptyset$ and $\phi: P \to E$ a homomorphism. Extend ϕ to a mapping $\phi*:S = P \cup E \to E$ by $\phi*(e) = e$ for all $e \in E$ and define an operation in S by

$$xoy = \begin{cases} xy \text{ if } x,y \in P \text{ and } xy \text{ is defined in } P, \\ \phi^*(x)\phi^*(y) \text{ otherwise.} \end{cases}$$

Then S(o) will be a semigroup with E as an ideal and ϕ^* -epimorphism.

<u>Proof.</u> This is in fact Lemma III.4.1 of [3]. Note that a mapping ϕ from a partial semigroup P into a semigroup E is a homomorphism if $\phi(xy) = \phi(x)\phi(y)$, $x,y \in P$, whenever xy is defined in P.

We will denote the semigroup constructed in Lemma 1 by $S\left[P,E,\varphi\right].$

A subclass of the class of semigroups with n-property can be defined in the following way: a semigroup S is said to be a λ_O^n -semigroup iff $Q \subseteq S$, $Q^{n+1} \subseteq Q \Rightarrow SQ \subseteq Q$. The structure of a λ_O^n -semigroup is very simple which is seen from

Lemma 2. ([7], Theorem 1). A semigroup S is a λ_0^n -semigroup iff S is periodic and xy = e_y for all x,y \in S, where e_y is the corresponding idempotent in $\langle y \rangle$. (Here n > 1).

In order to obtain more interesting classes of semigroups we can substitute the left-ideality by corresponding n-ideality and, alternatively, taking subsemigroups, beside n-subsemigroups, to posseses the ideal property. In that way we can introduce the following two classes of semigroups: a semigroup S is said to be a λ_1^n -semigroup (λ_2^n -semigroup) iff Q \subseteq S, Q $^{n+1}\subseteq$ Q \Rightarrow S n Q \subseteq Q (Q \subseteq S, Q $^2\subseteq$ Q \Rightarrow S n Q \subseteq Q). Each of this two classes, for n = 1, represents the class of λ -semigroups (see, for example, [2], [4]). So, dealing with λ_1^n -or λ_2^n -semigroups we assume that n > 1. For any semigroup which belongs to either of this two classes we say that posseses "left-ideal n-property". Observe that

Lemma 3. (1) Every $\lambda_O^n\text{-semigroup}$ is a $\lambda\text{-semigroup}$ and a semigroup with n-property;

- (ii) Every λ -semigroup is a λ_2^n -semigroup;
- (iii) Every λ_1^n -semigroup is a λ_2^n -semigroup.

The following is almost abvious:

Lemma 4. Every subsemigroup and every homomorphic image of a λ_0^n , λ_1^n , λ_2^n -semigroup is a λ_0^n , λ_1^n , λ_2^n -semigroup, respectively.

Lemma 5. Let S be a semigroup. Then:

- (i) S is a λ -semigroup iff $Sa \subseteq \langle a \rangle$ for every $a \in S$;
- (ii) S is a λ_1^n -semigroup iff $S^n a \subseteq \langle a \rangle_n$ for every $a \in S$, where $\langle a \rangle_n = \{a^{kn+1} | k \in \mathbb{N}^0\}$ is the cyclic n-subsemigroup of S generated by a; if S is a λ_1^n -semigroup then $S^n a \subseteq \langle a \rangle$ for every $a \in S$;
 - (iii) S is a λ_2^n -semigroup iff $S^n a \subseteq \langle a \rangle$ for all $a \in S$.

<u>Proof.</u> For (i) and (ii) see [2] Lemma 2 and [7] Lemma 3. From (ii) and Lemma 3 it follows that if S is a λ_2^n -semigroup then $S^n a \subseteq \langle a \rangle$ for all $a \in S$. Conversely, if Q is a subsemigroup of a λ_2^n -semigroup S and $q \in Q$, from $S^n q \subseteq \langle q \rangle \subseteq Q$ if follows that $S^n Q \subseteq Q$.

<u>Lemma 6</u>. Let S be a λ -, λ_1^n -, λ_2^n -semigroup. Then:

- (i) S is periodic;
- (ii) The set E of all idempotents of S is a right-zero subsemigroup of S and is an ideal in S;
- (iii) For all $a \in S$, $m_a = 1$ where m_a is the period of a and: if S is a λ -semigroup, then $|\langle a \rangle| \leq 3$, if S is a λ_1^n -semigroup then $|\langle a \rangle| \leq n+2$, if S is a λ_2^n -semigroup then $|\langle a \rangle| \leq 2n+1$.

<u>Proof.</u> For λ - and λ_1^n -semigroups see [2] and [7]. Let S be a λ_2^n -semigroup, a S and $\langle a \rangle = \{a,a^2,\ldots\}$. If $\langle a \rangle$ were infinite, then $Q = \langle a^{n+1} \rangle$ would be a subsemigroup of S which does not contain a^{2n+1} but, on the other hand, $a^{2n+1} = a^n a^{n+1} \in S^n Q \subseteq Q$ and this is a contradiction. So, S is periodic since $\langle a \rangle$ is finite. Let e_a be the idempotent in $\langle a \rangle$ and $x \in S$. Then

$$xe_a = xe_a \dots e_a \in S^n e_a \subseteq \langle e_a \rangle = \{e_a\},$$

i.e.

$$xe_a = e_a$$
. (1)

From (1) it follows that E is a right-zero subsemigroup of S. If $e \in E$ and $x \in S$, again from (1) it follows that exex = e.e.x = ex,

so $ex \in E$, i.e. $ES \subseteq E$ which proves (ii). Let K_a be the periodic part of $\langle a \rangle$ and $y \in K_a$. From (1) we have that $y = ye_a = e_a$ and $K_a = \{e_a\}$. Let $\langle a \rangle = \{a, a^2, \ldots, a^S = e_a\}$ and $Q = \langle a^{n+1} \rangle$; if $s \ge 2n+1$ then $a^{2n+1} \in Q$ which is a contadiction and so we have $|\langle a \rangle| \le 2n+1$.

In what follows S will be a semigroup of any of the classes λ_0^n , λ_1^n , λ_1^n , λ_2^n . Let us put

$$P = S \setminus E$$

where E is as before, the set of all idempotents of S. Then P will be a partial semigroup such that for every $a \in P$ there exists some $k \in \mathbb{N}$ with a^k not defined in P, which is a consequence of the periodicity of S; we may call such a partial semigroup a power breaking partial semigroup. We have therefore seen that

a) P is a power breaking partial semigroup.

Let us define a mapping $\phi:S\to E$ by $\phi(x)=e_x$, e_x the idempotent in $\langle x \rangle$, and let xy=z, $x,y,z\in S$. For some $m\in \mathbb{N}$, $m>\frac{n}{2}$, we have that $z^m=e_z$ and then, by Lemma 3 and 5,

$$e_z = xy...xy \in S^n y \subseteq \langle y \rangle$$

which implies that $e_z = e_y$ and

$$\phi(xy) = e_y = e_x e_y = \phi(x)\phi(y)$$
,

and φ is an epimorphism from P onto E. The restriction ψ = φ | P then is a homomorphism from P into E, which establishes

b) There is a homomorphism $\psi:P \to E$.

The operation in S can be, now, expressed of follows:

c)
$$xy = \begin{cases} xy \text{ if } x, y \in P \text{ and } xy \text{ is defined in } P \\ \phi(x)\phi(y) \text{ otherwise.} \end{cases}$$

Finaly, from Lemma 2 and 6 it follows that P posseses the left-ideal property which can be introduced in the following way:

d) (i) If S is a λ_0^n -semigroup then P is just a set; (ii) if S is a λ -semigroup then $xy = y^2$ whenever xy is defined in P; (iii) if S is a λ_1^n -semigroup then $x_0x_1\dots x_n = x_n^s$, s < n+2, whenever $x_0x_1\dots x_n$

is defined in P; (iv) if S is a λ_2^n -semigroup then as in (iii) with s < 2n+1.

Conversely, let E be a left-zero semigroup, P a power breaking partial semigroup, P \cap E = \emptyset , and $\phi:P \to E$ a homomorphism. Extend ϕ to a mapping $\phi*:S = P \cup E \to E$ by $\phi(e) = e$ for all $e \in E$ and define an operation in S as in Lemma 1. According to Lemma 1 S(o) will be a semigroup and $\phi*$ an epimorphism. It is easily seen that S is periodic. Finaly: (i) if P is a set without operation defined on it, then S(o) will be a λ_0^n -semigroup; (ii) if $xy = y^2$ whenever xy is defined in P, then $Sy \subseteq \{\phi(y), y^2\} \subseteq \langle y \rangle$ since $\phi(y)$ is the corresponding idempotent to y (if y^S is not defined in P then $y^S = [\phi(y)]^S = \phi(y)$) and so, S(o) will be a λ -semigroup; for (iii) and (iv), similarly as in (ii) we can see that S(o) will be a λ_1^n -, λ_2^n -semigroup, respectively.

From the above discusion follows

Theorem 2. A semigroup S posseses the left-ideal n-property iff S = S[P,E, ϕ] where E is a left-zero semigroup, P a power breaking partial semigroup and: (i) S is a λ_0^n -semigroup, (ii) λ_1^n -semigroup, (iv) λ_2^n -semigroup iff (i) P is a set without operation defined on it, (ii) xy = y², x,y ∈ P, whenever xy is defined in P, (iii) $x_0x_1...x_n = x_n^S$, s < n+2, whenever $x_0x_1...x_n$ is defined in P.

Let us observe that it is very easy to formulate right dual of left-ideal n-property and, by symetry, to translate all results. Also, we can, now, obtain structure description for semigroups with ideal n-property which can be introduced in an obvious way. For example, for the corresponding class of λ_0^n -semigroups we will come to zero semigroups while in all other classes with ideal n-property E reduces to one idempotent and some additional identities will be needed: instead of $xy = y^2$ or $x_0x_1...x_n = x_n^s$ we will have $x_y = x^2 = y^2$ or $x_0x_1...x_n = x_0^s = x_n^s$ whenever xy, respectively $x_0x_1...x_n$ is defined in P. Let us observe that the class of λ_1^n -semigroups can be interpreted as a class of n-semigroups (for a structure description see [9]).

REFERENCES

- [1] Чупона f.: Полугрупи генерирани од асоцијативи, Год. зб. на пмф, A, T. 15 (1964), 5-25
- [2] Kimura N., Tamura T., Merkel R.: Semigroups in which all subsemigroups are left ideals, Can. J. Math. XVII (1965), 52-62
- [3] Petrich M.: Introduction to semigroups, Columbus, Ohio, 1973
- [4] Шутов Э.Г.: Полугруппы с идеальными подполугруппами, Мат. Сбор. (новая серия), Т. 57 (1962), 179-186
- [5] Trpenovski B.: On a class of n-semigroups, Bilten DMF na SRM, Skopje, T. XXIV (1973), 73-80
- [6] Trpenovski B.: n-Semigroups with idempotents in which all n-subsemigroups are left ideals, God. Zbor. EMF, Skopje, T. 7 (1974), 5-11
- [7] Trpenovski B.: On a class of generalized λ -semigroups, Bilten DMF na SRM, Skopje, T. XXIV (1973), 81-86
- [8] Trpenovski B., Celakoski N.: Semigroups in which every n-subsemigroup is a subsemigroup, MANU, Prilozi VI-2, Skopje, 1974, 35-41
- [9] Trpenovski B., Celakoski N.: On left-ideal n-semigroups, God. Zbor. Mat. fak. T. 31 (1980), 5-11