Proceedings of the Symposium n-ARY STRUCTURES, Skopje 1982 ## COMMUTATIVE SEMIGROUPS WITH n-PROPERTY B.Trpenovski A semigroup S posseses the n-property iff Q \leq S, Qⁿ⁺¹ \leq Q \Rightarrow Q² \leq Q ([2]). A structure description is given in [2] only for unipotent semigroups with n-property. In this paper we give a structure description for commutative semigroups with n-property when they have more than one idempotent. First we recall some of the properties of semigroups with n-property stated in [2]. Theorem 1. (i) Every semigroup S with n-property is periodic; the index of $\langle a \rangle$, for every $a \in S$, is not greater than Z and the period of $\langle a \rangle$ is relatively prime with n. (ii) If S is a group, then S possesses the n-property iff the order of every element of S is relatively prime with n. (iii) Let H be a group with n-property, P a set, H \cap P = \emptyset , and $\phi: P \to H$ a mapping. Extend ϕ to a mapping from S = H \cup P onto H by $\phi(x) = x$ for all $x \in H$ and define an operation on S by $$xoy = \phi(x)\phi(y)$$. Then $S = [S \ H, P, \phi]$ will be a unipotent semigroup with n-property. Conversely, every unipotent semigroup with n-property can be obtained in that way. In what follows S will denote a <u>commutative semigroup with n-property</u>, $n \geq 2$, E - the subsemigroup of S consisting of all idempotents of S and $$S_e = \{x \in S \mid (\exists m \in N) x^m = e\}, e \in E,$$ ${\rm H}_{\rm e}$ - the maximal subgroup of S containing the idempotent e, 117 118 $$I_e = S_e \setminus H_e$$, $H = \bigcup \{H_e \mid e \in E\}$, $I = \bigcup \{I_e \mid e \in E\}$. It is easily seen that Lemma 1. H is a subsemigroup of S. Let us define $A_e \subseteq I_e$ by $$A_e = \{x \in I_e \mid (\exists f \in E) \times f \in I\},$$ $$A = \bigcup \{A_e \mid e \in E\}, \quad S^* = S \setminus A.$$ Lemma 2. S* is a subsemigroup of S such that, for every $x,y \in S^*$, $xy \in H$. <u>Proof.</u> Let $x,y \in S^*$ and $x \in S_e$, $y \in S_f$, ef = g. Since $x \in S^*$ it follows that $xf \in H_g$ and similarly $ey \in H_g$. Let $Q = \{x,y\} \cup H_g$ and $q = q_0 q_1 \cdots q_n$, $q_j \in Q$. - (i) If some q_j belongs to H_g , then $q_j = q_j g = q_j ef$ and every x in the representation of q can be substituted by xe, every y in q can be substituted by yf. So, since $xe \in H_e$, $yf \in H_g$ we will have that $q \in H_eH_fH_g \subseteq H_g$. Here we use the properties $H_eH_f \subseteq H_g$, $H_eH_g \subseteq H_g$, $H_fH_g \subseteq H_g$ ([1], §1.6, Example 4). - (ii) If none q_j belongs to H_g, then at least one of x^2 and y^2 will appear in q; if x^2 appears in q, since $x^2 = x^2$ e and ey \in H_g, we will have that $q \in$ H_eH_q \subseteq H_g; similarly if y^2 appears in q. We have proved that Q is an n-subsemigroup of S and, as S posseses the n-property, Q is a subsemigroup of S, too. So, $xy \in Q$; since $xy \in S_g$ it follows that $xy \in H_g$. We call S* a reduced subsemigroup of S with n-property. Now we are ready to give a structure description for S*. If S* is a reduced commutative semigroup with n-property then: (a) H is an inverse commutative periodic semigroup which is a union of groups and the order of each element of H is relatively prime with n, $n \ge 2$. - (b) Let $B = I \setminus A$; then B is a set such that $H \cap B = \emptyset$. - (c) If we put $\psi(x)=xe$, $x\in S_e^*=S_e^{\setminus A_e}$, then ψ will be a mapping from S* onto H such that $\psi_{\mid H}=1_H$, and the operation in S* can be expressed as follows: (1) $$xy = \psi(x)\psi(y),$$ since according to Lemma 2, xy \in H and, if x \in S_e^{\star} , y \in S_f^{\star} , ef=g, then xy \in H $_{_{\rm G}}$ and so $$xy = xy\alpha = xeyf = \psi(x)\psi(y)$$. Conversely, let H be an inverse commutative periodic semigroup which is a union of groups and the order of each element of H is relatively prime with n (n \geq 2); let B be a set, H \cap B = Ø, and ψ he a mapping from S* = H \cap B onto H such that $\psi_{\mid H} = l_{\mid H}$. If in S* we define an operation by (1), then S* will turn out to be a comm tative semigroup (which is easily seen). Let Q be an n-subsemigroup of S* and x \in Q; then ψ (x) \in H $_{e}$ (for some e \in E) has an order, say m, which is relatively prime with n, and so, sm = rn+1, s,r - integers, from which it follows that $$e = [\psi(x)]^{sm} = [\psi(x)]^{rn+1} = x^{rn+1} \in Q,$$ according to the definition of the operation in S*. Now, if x,y \in Q, since $e \in Q$, we have that $xy = \psi(x) \psi(y) = e^{n-1} \psi(x) \cdot \psi(y) \in Q$ which shows that Q is a subsemigroup of S*, too, i.e. S* is a commutative semigroup with n-property. It follows by the definition of the operation in S* that S* is reduced. Denoting the above constructed semigroup S* by S* = [H,B, ψ], we have: Theorem 2. A semigroup S* is a reduced commutative semigroup with n-property iff S* = [H,B, ψ], where H is as in (a), B a set such that H \widehat B = \emptyset{\text{a}} and \psi:H \cup B \to H a mapping such that \psi:H=1_H. If we combine, now, Theorem 2 and Theorem 4.11 of [1], we can give another description of a reduced commutative semigroup with n-property which we will make use of in describing the structure of a non-reduced semigroup of this type. Namely, let E be a semilattice and, for each $e \in E$, let be given a commutative group G_e with n-property and a set B_e such that $G_e \cap B_f = \emptyset$ for all $e, f \in E$ and $G_e \cap G_f = B_e \cap B_f = \emptyset$ for $e \neq f$. Let us denote $G = \{G_e \mid e \in E\}$, \mid$ $$xoy = \psi_{eg}(x) \psi_{fg}(y)$$ if $x \in S_e = G_e \cup B_e$, $y \in S_f$ and ef=g. Let us denote the semigroup we have now constructed by $S = [\mathcal{G}, \mathcal{A}, \phi, \Psi]$. From Theorem 2 and Theorem 4.11 of [1] it follows that: Theorem 3. A semigroup S is a reduced commutative semigroup with n-property iff $S = [\mathcal{G}, \mathcal{B}, \phi, \psi]$. We now turn to the non-reduced case. Lemma 3. Let S be a commutative semigroup with n-property, let e,f,g \in E, ef=g and y \in S_f. Then one and only one of the following statements holds: (a) $$S_{e}y \subseteq H_{g}$$; (b) $S_{e}y \subseteq A_{g}$. Proof. Let uy H for some u Sp. Then: Since $ue \in H_e$, there exists $v \in H_e$ such that v.ue=e and then $$ey=v \cdot ub \cdot y=v \cdot uey=v \cdot uy \in H_{e}H_{a} \subseteq H_{a}$$ so, ey $\in H_q$. Let $x \in S_e$ is arbitrary chosen and let $R = \{x, y, x^n y, x^{2n} y, \dots, \dots, \} \cup H_g \cup H_e$. Let $r = r_o r_1 \dots r_n, r_j \in R$. - (i) If some r_i belongs to H_q , then $r \in H_q$ as in Lemma 2. - (ii) If in r y apears two or more times, then $y^k \in H_g$, $k \geq 2$ and we will have the case (i). - (iii) It remains, now, the case $r=x^ky^r$, where r=0,1; if r=0 then $r\in H_e$ and then $r\in R$, and if r=1, again $r\in R$. We have shown that R is an n-subsemigroup of S; now R is a subsemigroup, too, since S posseses the n-property. So, $xy \in R$. For xy we have two possibilities: $xy \in H_g$ or $xy = x^{kn}y$ since $xy \in S_g$. If $xy=x^{kn}y$ then $(k \ge 1)$ $xy=ex^{kn}y=e\cdot x^{kn}y=e\cdot xy=xey=xe\cdot ey\in H_eH_g\subseteq H_g$ since $ey\in H_g$. In any case we have that $xy\in H_g$. Lemma 4. Let S be a commutative semigroup with n-property, $x \in S_e$, $y \in S_f$ and $xy \in A$. Then one and only one of the following is true: (a) $$xy = xe \cdot y$$; (b) $xy = xyf$. <u>Proof.</u> As in the proof of Lemma 3 we can show that $Q = \{x,y,x^ny,x^2ny,\dots,xy^n,xy^{2n},\dots,\} \cup H_e \cup H_f \cup H_g$ is an n-subsemigroup of S, ef=g. If $xy \in A$ then $xy=x^{kn}y=ex^{kn}y=exy$ or $xy=xy^{rn}=xy^{rn}f=xyf$. It is not possible to hold (a) and (b) together since in that case we would have that $$xy = e \cdot xy = e xyf = xyef \in S_qH_q \subseteq H_q$$ which is a contradiction. Let us, now, define a function $\rho: E \times A + \{0,1\}$ as follows: $\rho(e,x) = 0$ iff $ex \in G$ and $\rho(e,x) = 1$ iff $ex \in A$. (1) Let $\rho(e,x) = 0$, $y \in S_e$, $x \in S_f$, ef=g. According to Lemma 3 we have that $yx \in G_g$. If we put $\chi(u) = uh$ where $u \in S_h$, we can define a mapping $\chi:S \to G$ and express the product xy in the following way: $$xy = xy \cdot g = xy \cdot ef = xf \cdot ye = \chi(x)\chi(y)$$. Observe that $\chi_{S^*} = \psi$, where ψ is defined as is Theorem 2. - (2) Let ρ (e,x) = 1; then to each $y \in S_e$ we can correspond a partial mapping $\lambda_y^e : A \to A$ which is defined on x by putting $\lambda_y^e(x) = xy$. In this way we obtain a family $\Lambda = \{\lambda_y^e \mid e \in E, y \in S_e\}$ of partial mappings from A to A which satisfy the following properties: - (2a) If $x \in S_e$, $y \in S_f$, ef=g then $\lambda_{xy}^g = \lambda_x^e \lambda_y^f = \lambda_{yx}^g$ which follows from (xy)z=x(yz) and, λ_{xy}^g is defined on z iff λ_x^e is defined on z, and λ_y^f is defined on λ_x^e (z) iff λ_y^f is defined on z and λ_x^e is defined on λ_y^f (z). - (2b) If $x \in S_e$, $y \in S_f$, $xy \in A$ then, according to Lemma 4, one and only one of the following statements is satisfied: $\lambda_x^e = \lambda_e^e \lambda_x^e \text{ or } \lambda_y^f = \lambda_f^f \lambda_y^f.$ - (3) A is a partial semigroup such that, if x,y belong to the same A_e , then xy is not defined in A. Conversely, let $S^* = [\mathcal{C}_f, \mathcal{B}, \phi, \psi]$ be a reduced commutative semigroup with n-property and let $\mathcal{A} = \{A_e \mid e \in E\}$ be a family of disjoint sets such that $A_e \cap G_f = A_e \cap B_f = \emptyset$ for all $e, f \in E$, where E is as in Theorem 2. Let $A = \cup \{A_e \mid e \in E\}$ and let a partial operation be defined in A so that A will become a partial commutative semigroup with the property: if $x, y \in A_e$ for some $e \in E$, then xy is not defined in A. Let $\rho: E \times A \to \{0,1\}$ be a function and $\Lambda = \{\lambda_y^e \mid e \in E, y \in S_e\}$, where $S_e = S_e^* \cup A_e$, be a family of partial mappings from A into A which satisfies the following conditions: - (i) If $\rho(e,x)=1$ then for all $y\in S_{e}, \lambda_y^e$ is defined for x. - (ii) $\lambda_{xy}^g = \lambda_x^e \lambda_y^f = \lambda_y^g$ where $x \in S_e$, $y \in S_f$, ef=g and λ_{xy}^g is defined for $z \in A$ iff λ_y^f is defined for z and λ_x^e is defined for $\lambda_y^f(z)$ iff λ_x^e is defined for z and λ_y^f is defined for $\lambda_x^e(z)$. Here, xy is the product in A if $x,y \in A$ and xy is defined in A, or xy is the product in S^* if $x,y \in S^*$, or $xy = \lambda_x^e(y)$ if $x \in S_e^*$, $y \in A_f$, or, similarly, $xy = \lambda_y^f(x)$ if $x \in A_e$, $y \in S_f^*$. (iii) Let $x \in S_e$, $y \in S_f$ and xy is defined in A or one of the following conditions is satisfied: $\rho(e,y) = 1$ or $\rho(f,x) = 1$. Then one and only one of the following assertions is true: $$\begin{array}{ll} \lambda_{\mathbf{x}}^{\mathsf{e}}(\mathbf{y}) &=& \lambda_{\mathsf{e}}^{\mathsf{e}} \lambda_{\mathbf{x}}^{\mathsf{e}}(\mathbf{y}) \;, \\ \lambda_{\mathbf{y}}^{\mathsf{x}}(\mathbf{x}) &=& \lambda_{\mathsf{f}}^{\mathsf{f}} \lambda_{\mathbf{y}}^{\mathsf{f}}(\mathbf{y}) \;. \end{array}$$ Let $S = S* \cup A$ and $\chi: S \to G$ be a mapping such that $\chi_{\mid S*} = \psi$, ψ defind before Theorem 2. We define in S an operation "o" by: - 1) xoy = xy as in S^* if $x,y \in S^*$, - 2) xoy = xy as in A if x,y ∈ A and xy is defined in A, - 3) $xoy = \chi(x)\chi(y)$ if $\rho(e,y) = 0$, $x \in S_0$, - 4) $xoy = yox = \lambda_x^e(y)$ if $\rho(e,y) = 1$, $x \in S_e$. Then S(0) will be a commutative semigroup. To prove this it is enough to show that (xoy)oz = xo(yoz) only in the case when not all x,y and z are in S* or in A and when one of the elements (xoy)oz, xo(yoz) is in A, since for the other cases the associativity is easily seen. Let, for example, (xoy)oz is in A where $x \in S_e, y \in S_f$, ef=g. Then $\rho(f,z) = 1$ and according to (ii) we will have that $\rho(f,z) = 1$ and $\rho(e,\lambda_y^f(z)) = 1$. So, by the definition of "o" we will have that $xo\lambda_y^f(z) = xo(yoz)$ is in A and, $$(xoy)oz = \lambda_{xy}^{g}(z) = \lambda_{x}^{e}\lambda_{y}^{f}(z) = \lambda_{x}^{e}(yoz) = xo(yoz, .$$ Let us prove, now, that S(o) posseses the n-property; let Q be an n-subsemigroup of S and $x,y\in Q$. If $x,y\in S^*$, then as in the proof of Theorem 2 we will have that $xoy\in Q$. Let $\rho(e,y)=0$ or $\rho(f,x)=0$ and $xoy=\chi(x)\chi(y)$ and again as in Theorem 2 we will have that $xoy\in Q$. Finally, if $xoy\in A$, according to (iii) we have that $$xoy = \lambda_{x}^{e}(y) = \lambda_{e}^{e}\lambda_{x}^{e}(y) = eoxoy = \dots = \underbrace{eo...oeoxoy \in Q}_{n=1}$$ or $$\mathsf{xoy} \, = \, \lambda_{\, y}^{\, \mathsf{f}}(\, \mathsf{x}) \, = \, \lambda_{\, \mathsf{f}}^{\, \mathsf{f}} \lambda_{\, \mathsf{y}}^{\, \mathsf{f}}(\, \mathsf{x}) \, = \, \mathsf{foyox} \, = \ldots = \, \underbrace{\hat{\mathsf{fo...o}}}_{\, \mathsf{n-1}} \mathsf{foyox} \in \mathsf{Q}$$ since in the first case $e \in Q$ and in the second one $f \in Q$ which can be proved as in Theorem 2. Let us denote the semigroup S(o) which we constructed above by $[\mathcal{G}, \mathcal{B}, :\phi, \Psi, \Lambda; \rho]$. We have proved the following: Theorem 4. A semigroup S is a commutative semigroup with n-property iff S is isomorphic with a semigroup $[\mathcal{G}, \mathcal{B}, \mathcal{A}; \phi, \Psi, \Lambda; \rho]$. ## REFERENCES - [1] A.H.Clifford and G.B.Preston, The Algebraic Theory of Semigroups, Providence, 1961 - [2] B.Trpenovski, N.Celakoski, Semigroups in which every n-subsemigroup is a subsemigroup, MANU (Skopje) Prilozi VI-2, 35-41 Faculty of Mathematics, P.O.Box 504 University of Skopje, Yugoslavia