Proceedings od the Symposium n-ARY STRUCTURES, Skopje 1982

ON COMMUTATIVE n-SEMIGROUPS Pano Kržovski

The purpose of this paper is to show that the well known characteristic of commutative semigroups [1] could be generalized for the class of n-semigroups, for n>2.

1. Some definitions

An algebra S with an associative n-ary operation

$$(x_1, x_2, \dots, x_n) \rightarrow x_1 x_2 \dots x_n$$

is said to be an n-semigroup. An n-semigroup S is said to be commutative if the following identity

$$x_1 x_2 \dots x_n = x_{i_1} x_{i_2} \dots x_{i_n}$$

holds for every permutation (i_1, i_2, \dots, i_n) of the integers $1, 2, \dots, n$. S is said to be <u>idempotent</u> if $x^n = x$ for all $x \in S$. A commutative and idempotent n-semigroup S is called an n-semi-lattice if the following identity equalities, hold:

$$x_1^{i_1}x_2^{i_2}...x_k^{i_k} = x_1^{j_1}x_2^{j_2}...x_k^{j_k}, i_v, j_v > 0,$$

where $i_1+i_2+\ldots+i_k=j_1+j_2+\ldots+j_k=n$. Putting $(x \le y \Leftrightarrow xy^{n-1}=x)$, one obtains that S is a partialy ordered set.

If a and b are elements of a commutative n-semigroup S, we say that a $\underline{\text{divides}}$ b, and write a|b, if there exist $u_1, u_2, \dots, u_{n-1} \in S$ such that $u_1 u_2 \dots u_{n-1} a = b$.

It is easy to see that the following statements for a commutative n-semigroup are true:

1.1. (i) If a b and b c, then a c.

(ii) If $a_r | b_r$ then $a_1 a_2 \cdots a_k (n-1) + 1 | b_1 b_2 \cdots b_k (n-1) + 1$

141

(iii) If
$$b | c^{r(n-1)+1}$$
, then $b^{k(n-1)+1} | (c^{r(n-1)+1})^{k(n-1)+1}$.

2. Decomposition of commutative n-semigroups

We define a relation $\boldsymbol{\eta}$ on any commutative n-semigroup as follows:

 $\underline{2.1}$. The relation n defined by (1) on a commutative n-semi-group S is the least n-semilattice congruence.

<u>Proof.</u> Obviosly, the relation η is reflexive and symmetric. Let a η b and b η c; then, there exist integers r,s and elements $u_1, \ldots, u_{n-1}, v_1, \ldots, v_{n-1} \in S$ such that

$$u_1 \dots u_{n-1} a = b^{r(n-1)+1}, \quad v_1 \dots v_{n-1} b = c^{s(n-1)+1}.$$
 (2)

By the second equality, using the first one, we obtain

$$(v_1^{r(n-1)+1}...v_{n-1}^{r(n-1)+1}u_1)u_2...u_{n-1}a=c$$
 [rs(n-1)+r+s)](n-1)+1 Similarly, c divides some power of a, and thus a nc.

Now we will show that η is the least n-semilattice congruence.

Let $a_n b$, i.e. $u_1 \dots u_{n-1} a = b^{r(n-1)+1}$ for some $r \in \mathbb{N}$ and some $u_1, \dots, u_{n-1} \in S$, and let z_1, \dots, z_{n-1} be any elements of S. Then

$$u_1 \dots u_{n-1} (az_1 \dots z_{n-1}) = b^{r(n-1)+1} z_1 \dots z_{n-1}$$

i.e.

$$az_1...z_{n-1}|b^{r(n-1)+1}z_1...z_{n-1}$$
 (3)

Therefore

$$(bz_1...z_{n-1})^{r(n-1)+1} = (b^{r(n-1)+1}z_1...z_{n-1}) (z_1^{(r-1)(n-1)+1})...(z_{n-1}^{r(n-1)}z_1)$$

and thus we have

$$b^{r(n-1)+1}z_1...z_{n-1}|(bz_1...z_{n-1})^{r(n-1)+1}.$$
 (4)

From (3) and (4), as a consequence of 1.1, we obtain

$$az_1...z_{n-1} | (bz_1...z_{n-1})^{r(n-1)+1}$$
 for some $r \in \mathbb{N}$;

similarly $bz_1 z_{n-1} | (az_1 z_{n-1})^{s(n-1)+1}$ for some $s \in \mathbb{N}$,

from what follows:

$$az_1 \cdots z_{n-1} n bz_1 \cdots z_{n-1}$$

Obviously, the congruence n is idempotent and commutative. Since $(a_1^{\ i_1} \ldots a_k^{\ i_k})^n = a_1^{\ j_1} \ldots a_k^{\ j_k} (a_1^{\ ni_1-j_1} \ldots a_k^{\ ni_k-j_k})$

it follows that

$$a_1^{j_1}...a_k^{j_k} | (a_1^{i_1}...a_k^{i_k})^n.$$

Similarly:

$$a_1^{i_1} \dots a_k^{i_k} | (a_1^{j_1} \dots a_k^{j_k})^n.$$

It remains to show that $\boldsymbol{\eta}$ is contained in any n-semilattice congruence.

Let ρ be any n-semilattice congruence on S and let $a \, \eta \, b$, i.e. (2). Then

$$b \circ b^{r(n-1)+1} = u_1...u_{n-1}a$$
, i.e. $b \circ u_1...u_{n-1}a$.

Similarly we get that a $\rho v_1 \dots v_{n-1} b$. Thus we obtain

$$a \rho (v_1...v_{n-1}b) \rho (b^n v_1...v_{n-1}) = bv_1...v_{n-1}b^{n-1}\rho ab^{n-1}\rho$$

$$\rho \, (a^{n-1}b) \, \rho \, (a^{n-1}au_1 \ldots u_{n-1}) \, \rho \, (a^nu_1 \ldots u_{n-1}) \, \rho \, (au_1 \ldots u_{n-1}) \, \rho b$$

Thus a ρ b, and we conclude that $\eta \leq \rho$.

We shall say that a commutative n-semigroup S is <u>archimedean</u> if, for any two elements of S, each of them divides some power of the other.

 $\underline{2.2}.$ Every commutative semigroup S is an n-semilattice Y of archimedean semigroups S_α $(\alpha \in Y)$.

<u>Proof.</u> Let S be a commutative semigroup and let η be the relation on S defined by (1). By 2.1, S/ η is a maximal n-semilattice decomposition on S. We shall show that every class S_{α} ($\alpha \in Y$) is archimedean.

If $a,b \in S_{\alpha}$, then $a \eta b$, which means that the equalities (2) hold.

Thus we obtain

$$b^{n-1}u_1...u_{n-1}a = b^{(r+1)(n-1)+1}$$

and

$$b^{n-1}u_{\nu}|b^{(r+1)(n-1)+1}$$
 for every $\nu=1,2,\ldots,n-1$.

Since $b | b^{n-1}u_v$, we conclude that $b n b^{n-1}u_v$ for every $v=1,2,\ldots,n-1$, and we have

$$(u_1b^{n-1})...(u_{n-1}b^{n-1}) = b^{(r+n-1)(n-1)+1}.$$

Similarly we can show that

$$b \mid a^{(s+n-1)(n-1)+1}$$
 for some $s \in N$.

3. Commutative and separative n-semigroups

An n-semigroups S is <u>cancellative</u> if the following quasi-identities

$$x_1 \dots x_{i-1} a x_{i+1} \dots x_n = x_1 \dots x_{i-1} b x_{i+1} \dots x_n \Rightarrow a = b$$

hold for all i=1,2,...,n. S is said to be <u>separative</u> if for any $x,y \in S$,

$$x^n = x^{i-1}yx^{n-i}$$
, $y^b = y^{i-1}xy^{n-i} \Rightarrow x = y$

for all i=1,2,...,n. ([7]). A congruence ρ on a commutative n-semigroup is separative if S/ρ is separative.

Define a relation σ in S by

a
$$\sigma$$
 b if and only if there exists an integer r such that
$$ab^{r(n-1)} = b^{r(n-1)+1}, \quad ba^{r(n-1)} = a^{r(n-1)+1}$$
(5)

3.1. If there exist integers r,s such that
$$ab^{r(n-1)} = b^{r(n-1)+1}, ba^{s(n-1)} = a^{s(n-1)+1}.$$

then a ob.

 $\frac{\text{Proof.}}{(r-s)(n-1)}$ Let s < r. Multiplying the identity $ab^{s(n-1)} = b^{s(n-1)+1}$ by $b^{(r-s)(n-1)}$ we obtain $ab^{r(n-1)} = b^{r(n-1)+1}$.

3.2. The relation σ defined by (5) in a commutative n-semigroup S is a minimal separative congruence in S.

<u>Proof.</u> Evidently, σ is reflexive and symmetric. Let a σ b and b σ c (a,b,c \in S), then there exist integers s and r such that

$$ab^{r(n-1)} = b^{r(n-1)+1}$$
, $ba^{r(n-1)} = a^{r(n-1)+1}$,
 $bc^{s(n-1)} = c^{s(n-1)+1}$, $cb^{s(n-1)} = b^{s(n-1)+1}$.

Denote by k the integer r+s+rs(n-1). Then

$$ac^{k(n-1)} = ac^{(r+s+rs(n-1))(n-1)} = ab^{r(n-1)}(c^{s(n-1)+1})^{r(n-1)}c^{s(n-1)} = a(bc^{s(n-1)+1})^{(n-1)}c^{s(n-1)} = ab^{r(n-1)}(c^{s(n-1)})^{r(n-1)+1} = ab^{s(n-1)+1}(c^{s(n-1)})^{r(n-1)+1} = (bc^{s(n-1)})^{r(n-1)+1} = (c^{s(n-1)+1})^{r(n-1)+1} = c^{k(n-1)+1}.$$

Similarly we prove that $ca^{k(n-1)}=a^{k(n-1)+1}$. Now we will prove that σ is a congruence. Let $a\,\sigma\,b$, i.e. $ab^{r\,(n-1)}=b^{r\,(n-1)}$, $ba^{r\,(n-1)}=b^{r\,(n-1)+1}$ for some $r\in N$ and let z_1,\ldots,z_{n-1} be arbitrary elements of S; then

$$(az_{1}...z_{n-1}) (bz_{1}...z_{n-1})^{r(n-1)} = ab^{r(n-1)}z_{1}^{r(n-1)+1}...z_{n-1}^{r(n-1)+1} = b^{r(n-1)+1}z_{1}^{r(n-1)+1}...z_{n-1}^{r(n-1)+1} = (bz_{1}...z_{n-1})^{r(n-1)+1}$$

Similarly we prove that

$$(bz_1...z_{n-1})(az_1...z_{n-1})^{r(n-1)} = (az_1...z_{n-1})^{r(n-1)+1}$$

and we obtain

$$az_1...z_{n-1}$$
 $bz_1...z_{n-1}$.

It remains to prove that σ is separative. Let $b^{n-1}a\ \sigma a^{n-1}b\ \sigma$ $\sigma a^n\sigma b^n$; then there exist integers r and s such that

$$(a^{n-1}b)(a^n)^{r(n-1)} = (a^n)^{r(n-1)+1}, (b^{n-1}a)(b^n)^{s(n-1)} = (b^n)^{s(n-1)+1}$$

which implies that

ba
$$(nr+1)(n-1)_{=a}(nr+1)(n-1)+1$$
, ab $(ns+1)(n-1)_{=b}(ns+1)(n-1)+1$.

According to 3.1 we obtain a ob.

The proof will be completed when we show that σ is contained in every separative congruence ρ on S.

Let a 0 b, say $ab^{r(n-1)}=b^{r(n-1)+1}$, $ba^{r(n-1)}=a^{r(n-1)+1}$. Let k be any positive integer such that

$$ab^{k(n-1)} \rho b^{k(n-1)+1} \rho ba^{k(n-1)} \rho a^{k(n-1)+1}$$
(6)

We will show by induction that (6) holds for k=1.

$$(ab^{(k-1)(n-1)})^n = (ab^{(k-1)(n-1)-1})^{n-1}ab^{k(n-1)} e^{(ab^{(k-1)(n-1)-1})^{n-1}},$$

$$b^{k(n-1)+1} = (ab^{(k-1)(n-1)})^{n-1}b^{(k-1)(n-1)+1},$$

$$(b^{(k-1)(n-1)+1})^n = b^{k(n-1)+1}(b^{(k-1)(n-1)})^{n-1}\rho$$

$$ab^{k(n-1)}(b^{(k-1)(n-1)})^{n-1} = ab^{(k-1)(n-1)}(b^{(k-1)(n-1)+1})^{n-1}$$

Putting $ab^{(k-1)(n-1)} = x$, $b^{(k-1)(n-1)+1} = y$, we have

$$x^n \circ x^{n-1}y$$
, $y^n \circ xy^{n-1}$

Since ρ is separative we get $x \rho y$, i.e. $ab^{(k-1)(n-1)} \rho b^{(k-1)(n-1)+1}$ and similarly we show that $a^{(k-1)(n-1)+1} \rho ba^{(k-1)(n-1)}$. Therefore (6) holds for k-1. By induction, (6) holds for k=1, i.e. $ab^{n-1} \rho b^n$ and $ba^{n-1} \rho a^n$, whence $a \rho b$.

3.3. A commutative n-semigroup S which archimedean compenents S_{α} ($\alpha \in Y$) are cancellative is separative.

<u>Proof.</u> Let S be a commutative n-semigroup such that every archimedean component S_{α} is cancellative. Let $a,b\in S$ such that $a^n=a^{n-1}b$, $b^n=ab^{n-1}$. Let $a\in S_{\alpha}$, $b\in S_{\beta}$; then

$$\mathbf{a}^{n-1}\mathbf{b} \in \mathbf{S}_{\alpha\beta}^{n-1} = \mathbf{S}_{\alpha}, \ \mathbf{b}^{n-1}\mathbf{a} \in \mathbf{S}_{\alpha\beta}^{n-1} = \mathbf{S}_{\beta},$$

so that $\alpha=\beta$. Since S_{α} is cancellative we obtain a=b.

The converse of 3,3 is also true. First we will prove the following proposition.

3.4. Let S be a commutative separative n-semigroup. If $a,b \in S$ are such that

$$ab^{r(n-1)} = b^{r(n-1)+1}$$
, $ba^{r(n-1)} = a^{r(n-1)+1}$

for some $r,s \in N$, then a=b.

Proof. By 3.1, a . b. Since S is separative, the identy relation ι on S is separative. By 3.2 $\sigma \leq \iota$ and hence a=b.

3.5. If a commutative n-semigroup is separative, then its archimedean components are cancellative.

Proof. Let'S be a commutative separative n-semigroup and let S_{α} be an archimedean component of S. Since S is separative, then S_{α} is separative. We will show that S_{α} is cancellative. Let $a,b,c_1,c_2,\ldots,c_{n-1}$ be elements of S_a such that

$$ac_1c_2...c_{n-1} = bc_1c_2...c_{n-1}$$

Since S is archimedean then for a and c, there exist elements $u_{11}, u_{12}, \dots, u_{1n-1} \in S$ and integer r_1 such that $c_1 u_{11} u_{12} \dots u_{1n-1} = a$

$$c_1 u_{11} u_{12} \dots u_{1n-1} = a^{r_1}$$

Similarly for a and c_{2}, \ldots , a and c_{n-1} there exist $u_{21}, u_{22}, \dots, u_{2,n-1}, \dots, u_{n-11}, u_{n-12}, \dots, u_{n-1n-1} \in S$ and integers r_2, \dots, r_{n-1} such that

$$c_{2}u_{21}u_{22}...u_{2n-1} = a$$
 $r_{2}(n-1)+1$
 $c_{n-1}u_{n-11}u_{n-12}...u_{n-1n-1} = a$
 $r_{n-1}(n-1)+1$

So we have

$$\begin{array}{l} & \text{ac}_1 \text{c}_2 \cdots \text{c}_{n-1} \text{u}_{11} \text{u}_{12} \cdots \text{u}_{1n-1} \cdots \text{u}_{n-11} \text{u}_{n-12} \cdots \text{u}_{n-1n-1} \\ & = \text{a} & \text{c}_1 \text{c}_2 \cdots \text{c}_{n-1} \text{u}_{11} \text{u}_{12} \cdots \text{u}_{1n-1} \cdots \text{u}_{n-11} \text{u}_{n-12} \cdots \text{u}_{n-1n-1} \\ & = \text{bc}_1 \text{c}_2 \cdots \text{c}_{n-1} \text{u}_{11} \text{u}_{12} \cdots \text{u}_{1n-1} \cdots \text{u}_{n-11} \text{u}_{n-12} \cdots \text{u}_{n-1n-1} \\ & = \text{ba} & \text{c}_1 \text{c}_1 \text{c}_1 \text{c}_2 \cdots \text{c}_{n-1} \text{u}_{11} \text{u}_{12} \cdots \text{u}_{1n-1} \cdots \text{u}_{n-11} \text{u}_{n-12} \cdots \text{u}_{n-1n-1} \\ & = \text{ba} & \text{c}_1 \text{c}_2 \cdots \text{c}_{n-1} \text{u}_{11} \text{u}_{12} \cdots \text{u}_{1n-1} \cdots \text{u}_{n-11} \text{u}_{n-12} \cdots \text{u}_{n-1n-1} \\ & = \text{ba} & \text{c}_1 \text{c}_2 \cdots \text{c}_{n-1} \text{u}_{11} \text{u}_{12} \cdots \text{u}_{1n-1} \cdots \text{u}_{n-11} \text{u}_{n-12} \cdots \text{u}_{n-1n-1} \\ & = \text{ba} & \text{c}_1 \text{c}_2 \cdots \text{c}_{n-1} \text{u}_{11} \text{u}_{12} \cdots \text{u}_{1n-1} \cdots \text{u}_{n-11} \text{u}_{n-12} \cdots \text{u}_{n-1n-1} \\ & = \text{ba} & \text{c}_1 \text{c}_2 \cdots \text{c}_{n-1} \text{u}_{11} \text{u}_{12} \cdots \text{u}_{1n-1} \cdots \text{u}_{n-11} \text{u}_{n-12} \cdots \text{u}_{n-1n-1} \\ & = \text{ba} & \text{c}_1 \text{c}_2 \cdots \text{c}_{n-1} \text{u}_{11} \text{u}_{12} \cdots \text{u}_{1n-1} \cdots \text{u}_{n-11} \text{u}_{n-12} \cdots \text{u}_{n-1n-1} \\ & = \text{ba} & \text{c}_1 \text{c}_2 \cdots \text{c}_{n-1} \text{u}_{11} \text{u}_{12} \cdots \text{u}_{1n-1} \cdots \text{u}_{n-11} \text{u}_{n-12} \cdots \text{u}_{n-1n-1} \\ & = \text{ba} & \text{c}_1 \text{c}_2 \cdots \text{c}_{n-1} \text{u}_{11} \text{u}_{12} \cdots \text{u}_{1n-1} \cdots \text{u}_{n-11} \text{u}_{n-12} \cdots \text{u}_{n-1n-1} \\ & = \text{ba} & \text{c}_1 \text{c}_2 \cdots \text{c}_{n-1} \text{u}_{11} \text{u}_{12} \cdots \text{u}_{1n-1} \cdots \text{u}_{n-11} \text{u}_{n-12} \cdots \text{u}_{n-1n-1} \\ & = \text{ba} & \text{c}_1 \text{c}_2 \cdots \text{c}_{n-1} \text{u}_{11} \text{u}_{12} \cdots \text{u}_{n-11} \cdots \text{u}_{n-11} \text{u}_{n-12} \cdots \text{u}_{n-11} \\ & = \text{c}_1 \text{c}_2 \cdots \text{c}_{n-1} \text{u}_{11} \text{u}_{12} \cdots \text{u}_{n-11} \cdots \text{u}_{n-11} \text{u}_{n-12} \cdots \text{u}_{n-11} \\ & = \text{c}_1 \text{c}_2 \cdots \text{c}_{n-1} \text{u}_{11} \text{u}_{12} \cdots \text{u}_{n-11} \cdots \text{u}_{n-11} \text{u}_{n-12} \cdots \text{u}_{n-11} \\ & = \text{c}_1 \text{c}_2 \cdots \text{c}_{n-1} \text{u}_{11} \text{u}_{12} \cdots \text{u}_{n-11} \cdots \text{u}_{n-11} \text{u}_{n-12} \cdots \text{u}_{n-11} \\ & = \text{c}_1 \text{c}_2 \cdots \text{c}_1 \\ & = \text{c}_1 \text{c}_2 \cdots \text{c}_1 \text{c}_2 \cdots \text{c}_1 \text{c}_2 \cdots \text{c}_1 \\ & = \text{c}_1 \text{c}_2 \cdots \text{c}_1 \text{c}_2 \cdots \text{c}_1 \text{c}$$

Denoting $r_1+r_2+...+r_{n-1}+1$ by k, we have $a^{k(n-1)+1} = ba^{k(n-1)}$

Similarly we can show that

$$b^{s(n-1)+1} = ab^{s(n-1)}$$
 for some $s \in N$.

By 3.4, a=b.

REFERENCES

- [1] Tamura, T. and Kimura N.: On <u>decomposition</u> of a <u>commutative</u> semigroup, Kodai Math. Sem. Rep. 1954 (109-112)
- [2] Clifford, A.H. and Preston, G.B.: The algebraic theory of semigroups; vol. I, 1961, Providence
- [3] Колесников О.В.: Вполне регулярные n-полугруппы; "Алгебра и Теория чисел" Вып. 2. 1977 (93-107
- [4] Колесников О.В.: <u>Полиадические полугруппы и Математика</u>, 1977, 9 A 217 ДЕП
- [5] Трпеновски Л.Б.: <u>Антикомутативни п-групоиди</u>; Годишен зборник на Електро-машински факултет во Скопје кн. 1(1967)
- [6] Kržovski, P.: The maximal semilattice decomposition of an n-semigroup: Algebraic Conference, Novi Sad 1981
- [7] Kržovski, P.: On separative n-semigroups; Математички билтен. 1979-1980 (49-60)

Faculty of Mathematics, Skopje, P.O.Box 504, Yugoslavia