THE MAXIMAL SEMILATTICE DECOMPOSITION OF AN n-SEMIGROUP

Pano Kržovski

The purpose of this paper is to generalize the notion of the maximal semilattice decomposition of a semigroup to n-ary case.

 $\underline{1}$. Some definitions. Let S be an n-semigroup i.e. an algebra S whit an associative n-operation

$$(x_1, x_2, \dots, x_n) \rightarrow x_1 x_2 \dots x_n$$

S is called an n-semilattice if S is commutative, idempotent and satisfies the following identity

$$x_1^{i_1}x_2^{i_2} \dots x_k^{i_k} = x_1^{j_1}x_2^{j_2} \dots x_k^{j_k}$$

where
$$i_1+i_2+...+i_k = j_1+j_2+...+j_k = n, i_v, j_v > 0$$
.

A congruence α on an n-semigroup S is called a semilattice congruence if S/α is an n-semilattice.

An ideal I of S is said to be completely simple iff

$$\mathbf{x}_1\mathbf{x}_2\cdots\mathbf{x}_n\in\mathbf{I}\Leftrightarrow\mathbf{x}_1\in\mathbf{I}\quad\text{or}\quad\mathbf{x}_2\in\mathbf{I}\text{ or }\dots\text{ or }\mathbf{x}_n\in\mathbf{I}.$$

A subset F of S is a filter in S iff I = $S\F$ is a completely simple ideal.

- $\underline{2}$. Characterisation of semilattice congruences whit completely simple ideals.
- $\underline{2.1}$. Let Σ be the set of all completely simple ideals in S. Then the relation α defined by

$$x_{\alpha}y \iff (\forall I \in \Sigma) (x, y \in I \text{ or } x, y \in I)$$

is a semilattice congruence.

<u>Proof.</u> Since the elements of Σ are completely simple ideals, one easily obtains that α is a congruence on S; so it remains to show that α is a semilattice congruence. Let $I \in \Sigma$ and $x_1, x_2, \ldots, x_n \in S$ ince I is a completely simple ideal we have that

$$\begin{aligned} \mathbf{x}^{n} \in \mathbf{I} &\Leftrightarrow \mathbf{x} \in \mathbf{I}; \ \mathbf{x}_{1} \mathbf{x}_{2} \dots \mathbf{x}_{n} \in \mathbf{I} \Leftrightarrow \ \mathbf{x}_{i_{1}} \mathbf{x}_{i_{2}} \dots \mathbf{x}_{i_{n}} \in \mathbf{I} \\ \text{where } \mathbf{v} &\to \mathbf{i}_{\mathbf{v}}, \text{ is a permutation of } \{1, 2, \dots, n\}; \\ \mathbf{x}_{1}^{i_{1}} \mathbf{x}_{2}^{i_{2}} \dots \mathbf{x}_{k}^{i_{k}} \in \mathbf{I} \Leftrightarrow \mathbf{x}_{1}^{j_{1}} \mathbf{x}_{2}^{j_{2}} \dots \mathbf{x}_{k}^{j_{k}} \in \mathbf{I}, \\ \mathbf{i}_{1}^{i_{1}} + \mathbf{i}_{2}^{i_{2}} + \dots + \mathbf{i}_{k}^{i_{k}} = \mathbf{j}_{1}^{i_{1}} + \mathbf{j}_{2}^{i_{2}} + \dots + \mathbf{j}_{k}^{i_{k}} = \mathbf{n}, \end{aligned}$$

which implies

$$x^{n} \alpha x; x_{1} x_{2} \dots x_{n} x^{\alpha} x_{i_{1}} x_{i_{2}} \dots x_{i_{n}};$$
 $x_{1}^{i_{1}} x_{2}^{i_{2}} \dots x_{k}^{i_{k}} \alpha x_{1}^{j_{1}} x_{2}^{j_{2}} \dots x_{k}^{j_{k}}$

i.e. α is a semilattice congruence. \square

Let us denote the congruence α of 1.1. by $\alpha_{_{\widetilde{L}}}.$ We shall show now that the converse of 1.1. is also true:

2.2. If α is a semilattice congruence on S, then there is a family Σ of completely simple ideals in S such that $\alpha = \alpha_{\Sigma}$.

<u>Proof.</u> Let α be a semilattice congruence on S and let us associate to each element $x \in S$ the subset F_X of S defined by

$$F_{x} = \{ y \in S \mid x \alpha x^{n-1} y \}.$$

The set F_X is nonempty and a filtre in S. Namelly it is clear that $x \in F_X$. If $u_1, u_2, \dots, u_n \in F_X$, then we have that

$$x^{\alpha x^{n-1}}u_{n}^{\alpha x^{n-2}}(x^{n-1}u_{n-1})u_{n}^{\alpha x}$$

so we get

 $\mathbf{x}_{\alpha\mathbf{x}}^{(n-1)}(\mathbf{n}^{-1})\mathbf{u}_{1}\mathbf{u}_{2}...\mathbf{u}_{n}$, so $\mathbf{u}_{1}\mathbf{u}_{2}...\mathbf{u}_{n}\in\mathbf{F}_{\mathbf{x}}$. Conversely let $\mathbf{u}_{1}\mathbf{u}_{2}...\mathbf{u}_{n}\in\mathbf{F}_{\mathbf{x}}$. Then

$$x_{\alpha}x^{n-1}u_1u_2...u_n\alpha x^{n-1}u_1u_2...u_nu_n^{n-1}\alpha xu_n^{n-1}\alpha x^{n-1}u_n$$
,

i.e. $u_n \in F_x$. Since $x^{n-1}u_1u_2...u_n\alpha x^{n-1}u_1u_1u_2...u_n$ where $v \to i_v$, is a permutation of $\{1,2,...,n\}$ we get $u_1,u_2,...,u_n \in F_x$, i.e. F_x is a filtre.

Put $I_x = S \setminus F_x$ and let $\Sigma_\alpha = \{I_x \mid x \in S\}$. So Σ_α is a set of completely simple ideals in S. We shall show that $\alpha = \alpha_{\Sigma_\alpha}$.

Let yaz, $I \in \Sigma_{\alpha}$ and $y \notin I_{x}$. Therefore $y \in F_{x}$ i.e. $x\alpha x^{n-1}y$. Since $x^{n-1}y\alpha x^{n-1}z$ we have that $z \in F_{x}$, i.e. $z \notin I_{x}$. We have thus shown that $\alpha \subseteq \alpha_{\Sigma_{\alpha}}$. Conversely, let $x\alpha_{\Sigma_{\alpha}}y$; then $x \in F_{x}$

implies $y \in F_x$, i.e. $x \alpha x^{n-1} y$. For the same reason $y \in F_y$ implies $y \alpha y^{n-1} x$. But since α is a semilattice congruence, we have

$$x^{n-1}y \alpha y^{n-1}x$$
 and $x \alpha y. \square$

Let us note that:

 $\underline{2.3}$. If Σ_1 and Σ_2 are sets of completely simple ideals and $S \notin \Sigma_1$, $S \notin \Sigma_2$, then $\alpha_{\Sigma_1} = \alpha_{\Sigma_2}$ if and only if $\Sigma_1 = \Sigma_2$.

3. The least semilattice congruence.

It is clear that the intersection η of all semilattice congruences is a semilattice congruence. So:

3.1. xny iff for every completely simple ideal I in S x,y \in I or x,y \notin I. \square

Now we shall give another description of η . Let us denote by N(x) the minimal filtre in S containing x, i.e. N(x) is the filtre generated by x.

A direct consequence of 3.1. and the definition of N(x) is

3.2.
$$xny \iff N(x) = N(y) . \square$$

The classes of the congruence η are called $\eta\text{-classes}.$ If $x\in S,$ then the $\eta\text{-class}$ which contains x is denoteed by $N_{\underline{x}}.$ With this notations we have that:

$$3.3.1)$$
 $N_{x_1 x_2 \dots x_n} = N_{x_{i_1} x_{i_2} \dots x_{i_n}}$, where i_1, i_2, \dots, i_n is a permutation of $\{1, 2, \dots, n\}$.

II)
$$N_{x}n = N_{x}$$
.

III)
$$N_{x_1}^{i_1} x_2^{i_2} \dots x_k^{i_k} = N_{x_1}^{j_1} x_2^{j_2} \dots x_k^{j_k}$$
, where $i_1 + i_2 + \dots + i_k = j_1 + j_2 + \dots + j_k = n$.

IV) N_{x} is a subsemigroup of S. \square

As in the binary case S is said to be η -simple iff S has no proper completely simple ideals.

For the n-ary case, and in a similar way as in the binary case, we can prove some analogous properties for the semilattice decomposition, a part of wich is formulated below.

A constructive way for abtaining $N\left(x\right)$, which has an inductive nature, is given with the following statement:

 $\frac{3.4. \text{ Let } x \text{ be an element in S. Let } N_1(x) = \{x, x^n, x^{2(n-1)+1}, \ldots, x^{k(n-1)+1}, \ldots \} \text{ and let } N_{n+1}(x) \text{ be the n-semigroup generated by all elements } y \text{ in S such that } N_n(x) \cap J(y) \neq \emptyset, \text{ where } J(y) = y \cup S^{n-1}y \cup U \cap S^{n-2}y \cap U \cap S^{n-1} \cup S^{n-1}y \cap S^{n-1} \cap S^{n-1$

3.5. If I is an ideal of some η -class of an n-semigroup S, then I has no proper completely simple ideals.

<u>Proof.</u> Let S be an n-semigroup, $z \in S$ and I an ideal of N_z . It will suffice to prove that I is the only filtre of I. Let F be a filtre of I, $a \in F$ and let

$$T = \{x \in S \mid a^{2n-2}x \in F\}.$$

We shall show that T is a filtre of S. Let $x_1, x_2, \dots, x_n \in T$; then $a^{2n-2}x_i \in F$ for $i=1,2,\dots,n$. By the inclusion $F \subseteq I \subseteq N_Z$ we have that $N_a 2n-2_{x_i} = N_a n-1_{x_i} = N_{x_i} a^{n-1} = N_Z$ which implies $a^{2n-2}x_i$, $x_i a^{2n-2} \in I$. Since $a^{2n-2}x_i$, $a \in F$ it follows that $(a^{2n-2}x_i)a^{2n-2} = a^{2n-2}(x_i a^{2n-2}) \in F$ and $x_i a^{2n-2} \in F$. N_Z is an n-subsemigroup of S, so $(a^{n-1}x_1x_2a^{n-1})a^{n-2} \in N_Z$ which implies

$$N_a^{n-1}x_1^{x_2^{a^{n-1}}a^{n-2}} = N_a^{n-1}x_1^{x_2} = N_z'$$

and finally $a^{2n-3}x_1x_2 \in I$. Since F is a filtre, then $a(a^{2n-3}x_1x_2)a^{3n-n} = (a^{2n-2}x_1)(x_2a^{2n-2})a^{n-2} \in F$

implies $a^{2n-3}x_1x_2 \in F$. By induction, if follows that T is an n-subsemigroup.

Let $x_1x_2...x_n \in T$. By the inclusion $F \subseteq I \subseteq N_Z$ we have that $a, a^{2n-2}x_1x_2...x_n \in N_Z$ and $N(a) \subseteq N(a^{n-1}x_1) \subseteq N(a^{n-2}x_1x_2) \subseteq ... \subseteq N(ax_1x_2...x_{n-1}) \subseteq N(a^{n-2}x_1x_2...x_n) = N(a) = N(a)$.

So we have shown that

$$a^{n-1}x_1$$
, x_1a^{n-1} , $a^{n-2}x_1x_2$,..., ax_1x_2 ... $x_{n-1} \in N_z$.

Since J is an ideal it follows that

$$\mathbf{a}^{2n-2}\mathbf{x_{i}},\ \mathbf{x_{i}}\mathbf{a}^{2n-2},\ \mathbf{a}^{2n-3}\mathbf{x_{1}}\mathbf{x_{2}},\ldots,\mathbf{a}^{n}\mathbf{x_{1}}\mathbf{x_{2}}\ldots\mathbf{x_{n-1}}\!\in\!\mathbf{I}.$$

We have that $a^{2n-2}x_1x_2...x_n$, $a \in F$, so

$$(a^{2n-2}x_1x_2...x_n)a^{2n-2} = a^{n-2}(a^nx_1x_2...x_{n-1})(x_na^{2n-2}) \in F$$

which implies $a^n x_1 x_2 \dots x_{n-1}$, $x_n a^{2n-2} \in F$. But then

$$a^{2n-2}(x_na^{2n-2}) = (a^{2n-2}x_n)a^{2n-2} \in F$$
 and so $a^{2n-2}x_n \in F$,

i.e. $x_n \in T$. By reapeting this procedure with $a_1 a^n x_1 x_2 \dots x_{n-2} x_{n-1} \in F$ we get $x_{n-1} \in T$. Thus T is a filtre.

Ie is clear that $F \subseteq T \subseteq I$. Let $x \in T \cap I$. Then $a^{2n-2}x \in F$. Since F is a filtre, it follows that $x \in F$. But from $a \in \mathbb{N}_z \cap T$ it follows that $\mathbb{N}_z \subseteq T$. So $T \cap I = I$ and finally F = I. \square

As a consequence of 3.5 we conclude that

- $\underline{\text{3.6}}.$ Every n-semigroup is an n-semilattice of $\eta\text{-simple}$ n-semigroups. \square
- 3.7. If I is a completely simple ideal of an n-semigroup S and if $I \cap N_x = \emptyset$, then $I \cap N_x$ is completely simple.

The following is a consequence of 3.7.

- 3.8. Every completely simple ideal of an n-semigroup S is a union of n-classes. \square
- If $Y_{\rm S}$ denotes the set of all n-classes of an n-semigroup S, then the following holds:
- 3.9. If I is a completely simple ideal of an n-semigroup S, then J = $\{N_x \in Y_s \, | \, x \in I\}$ is a completely simple ideal in $Y_s.$ Conversely, if J is a completely simple ideal in Y_s , then I = $\{x \in S \, | \, N_x \in J\}$ is a completely simple ideal in S.D

REFERENCES

- [1] Tamura T., and Kimura N: On decomposition of a commutative semigroup. Kodai Math. Sem. Rep. 4. 109-112 (1954)
- [2] Yamada M: On the greates semilattice decomposition of a semigroup. Kodai Math. Sem. Rep. 59-62 (1955)
- [3] Petrich M: The maximal semilattice decomposition of a semigroup.

 Math. Zeitschnift 85, 68-82 (1964)