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The well known Cohn-Rebane Theorem ([1.IV.4],
[8.512]) states that any universal algebra can be
embedded in a semigroup in such a way that the ope-
rations of the algebra are induced by inner left
translations of semigroups. Several results concer-
ning this Theorem are obtained in the following pa-

pers: [2] - [7], [9] - [12].

In this paper we make some investigations about
representations of semigroups of finitary operations
in semigroups of left translations. Namely, three

classes 9(1),C(2),g(3} of semigroups of operations
are associated to a class C of semigroups. In general

we have that 2(3}g Q(ZJQ;Q?I), and we consider some
sets of classes of semigroups such that g(1’=g(2)=
=E[3)' — 9(3)C_£(2)=£(11_

0. First we state necessary preliminary definitions.

let A be a nonempty set, n>1, and On(A? be the set of
n-ary operations on A. penote by O (A) the set of all non-nulla-
ry operations on A, and define a binary operation "o" on
O(a) in the usual way, i.e. by:

fog(xl,...,xm+n_1] = f(g(xl,.;.,xm),...,xm+n_1), (1)
where ge&om(ﬁ}, f6()n(Al. Then, (2(A),0) is a semigroup,
and any subsemigroup of this semicroup is called a semigroup

—— e = - ——

Let C be a class of semigroups. A semigroup I' of opera-
tions on & sev A is said to be a memher of g(l, if there is
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a semigroup SE€C and a mapping fw f of I into S such that
ACSS, and

f(algoocfan) = -fa.l..-an; (2}

for each fer, =r1no,(d), n21, and a,;,...,a €A. (The
right hand side of (2) is a "product” in the semigroup S,

and the left one is the element a€ A such that f: (al,...,an)»a).
Replacing the word "mapping” by "homomorphism", "injective
homomorphism" we get the class Q(ZJ ,9(3} respectively.

Throughout the paper the class of all: semigroups, can-
cellative semigroups, nilpotent semigroupe, abelian semigro-
ups, abelian cancellative semigroups, abelian nilpotent se-
migroups, abelian groups, abelian torsion groups, abelian
groups in which orders of elements are divisors of a given
integer m2 2, will be denoted respectively by: SEM, CANCIM,

NILSEM, ABSEM, ABCANSEM, ABNILSEM, ABGP, ABTG, _A_m.

Now we can state the main results of the paper.

Theorem 1. If C € {SEM, CANSEM, ABSEM, ABCANSEM, ABGP}
then
g(l} - S(2'} =c(3)

Theorem 2. If C €{ABTG, NILSEM, ABNILSEM} U{A_ lm221,

then C'"'c C 2) =g“), and the inclusion is strict.
We note that for any class of semigroups C the following
inclusions hold: 9(3’; gfz)g g“) .

1. Here we will show that SEHB) consists of all the
semigroups of finitary operations and that will imply the
equalities sEM(}) = sem(?) = spn(3),

Let I be a semigroup of operations on a set A, and let
Fl‘ = (AUT)* bae the free monoid on AuTl, i.e. the set of all
words on AUT (including the empty word), and the operation

is the usual concatenation. A word ué€ Pr is said to be a
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r-word if uei, or u = ful.-..un, where fEI‘n, and
Ujreessty are r-words. There is a mapping u= [u] of the
set of Ir-words in A defined in the following way: (&) if
ucA, then [u] = u; (b) if u = fu,...u , then fu] =
= f([ulj,...,[un]).

We define a relation |— in FI‘ in the following way:
(c) if a = f(al,...,an), then ...a...p ...fal...an... p
(d) if £f = goh in T then ...f...f «ceghees o

Let H be the symmetric extension of I—(i.e. u v iff
ub-Vv Or v u), and =~ the transitive and reflexsive exten-

sion of |+, i.e.:
uav@(ﬂuo,...,%EFr}pzof usug, vEu, u b ou, i1
Clearly, =~ is a congruence on FI" and the following condi-

tions are satisfied:

(i) fer =p(f:;;u(:u=f1...fk and f=flc...ofk in T)

(ii) a€Bd = (a ~u&u is a r-word such that [u] = a).

This implies that we may assume that T is a subsemigroup of
Tl Fl‘/g  and that A is a subset of I'. Moreover, then any
equation of the form (2) is satisfied, with £ = T,

Thus, we have proved that any semigroup of operations

belongs to SEM(‘” .

2. The problem of embeddings of universal algebras in
cancellative semigroups is considered in [11]. A detailed
proof of the statements: CANSEM ' -)=cansem(?)—cansem(1),
ascanseM (%) =apcansem ‘2)=apcansem(!), will be given in [5],
and here we will only state some results.

Assume first that reCanseM!). Let F_ be defined as
in 1, and let u',u”,ul,uz,v,wer‘r be such that u“vu~”,
u’mm‘',t.11w|.12..ulm‘t2 be I'-words. Then:

(a) [uvu”"]=[uwu""] = (u,vu,] = [u,wu, 3.
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Conversely, let r be a semigroup of operations on a
set A such that all the implications (a) are satisfied. Con-
sider first the case r # I',, and define a relation = in F,
in the following way: v = w iff there exist u”,u”’€ FI,
such that u“vu”",u‘wu’” are r-words and [u’vu”“J=[u’wu”"].
Then, = is a congruenqe on Fr" the semigroup r = FI‘/‘:’ is a
cancellative semigroup. Moreover we have:

a,beEA = (azb = a =b)

g = £ = qg)

Lt

f,gcr = (f

f,g,her—={(f = goh = £ = gh)

fEI‘n, al,...,anEA = {f(alfﬁvl"Il) ;fﬂluo.ﬂn)'
and this implies that re cansem(3).

It remains the case when ' = T,. We may assume that T
is a monoid. Define an operation e on the set S=A*xT (A*

is the free monoid on A) in the following way:
(2,f)e(bc,g) = (af(b)c,q)
(a,£)«(1,9) = (a,T09),

where a,ccA*, beA. Then we get a cancellative semigroup
and moreover we may assume that ACSS, and that T is a sub-
semigroup of S such that

fer, a€A =f(a) = (£(a),l) = (1,£f)(a,l) = fea.
Thus, I'G.CANSEH”), i.e,
cansem () = cansem(3),
3. Let reABsEM(}). Then the following condition is
satisfied:

(8) If u,vefF, are two r-words such that v is a permutation
of u then [ul = (v].

Conversely, let T satisfy (g8). Clearly, we may assume
that T is a monoid, for if it is not one, we can consider
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the monoid r1= Tuy{ IA}' which also satisfies the condition
(g) . Denote by B, the free abelian monoid on A, and consider
the direct sum L =T & BA’ If ~ is the minimal congruence

on L such that:

f(al,...,an) = a =¢»fa1...an =~ a,

(i.e. =~ is the reflexive and transitive extension of 1,
where i is defined as in 1), then it distinguishes the
elements of [VA. This implies that I can be embedded in
K = L/ in the desired way.

4. Tt is shown in [5] that aBcansem(3) = apsem‘®)n

A canseM‘3), and this implies that:
aBcansem(3) = apcansem(2) = aBcansem (1,

clearly, aBep(l) = apcansem(),

Thus, the proof of Theorem 1 is completed.

5. Here we will show that NrLSEM(3) < n1nsem(?) -
= niusem‘D),

Assume that r eNILSEM‘!), Then, it is clear that the
following condition is satisfied.

(i) There exists a positive number m2 2, such that if
u and v are r-words with lengths not less than m, then
(u] = [v].

Let T be a semigroup of operations on a set A, such
that (v) is satisfied. Then, there exists an element e€A
such that:

f(al;--o;ai_l;e'ai_'_l'-uo’an) = E' [u] = e'
for any r-word u with a length 2m, any fern, ajeh, and
iENn.

Consider the semigroup rf = r-\{1}, where r* is defined
in 1 and recall that if a €4, uEFr, then a =~ u iff u is a
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r-wgrd such t_l':at (u] = a. Let I =+{T.t'17.1'2...ﬁm | “1"';'um€
€F.}, where U is the element of r' defined by ué€F,. Then
INA = {e}, and this implies that we may assume that

AC r+/I. The semigroup S = I‘*/I is obviously nilpotent.
The mapping f~f is injective iff r = r,. This shows that

ninsem (e nrnsem(?) = nrnsem(??,
and the inclusion is strict.
In the same way it can be shown that
apntLseM (3 aBntrsem(?) = asnrisem(1),

with a strict inclusion. We note that NrLsEM(3) (aBnILSEM'?))

consists of (abelian) nilpotent semigroups of unary opera-
tions.

6. The class aB7G(3) will be described here. First, if
fer\rl then f has an infinite order, and therefore, if
I‘EA.BTG(” ; then T = Ty is a semigroup of transformations
on a set A. Tt is also clear that Lhen [ & ABTG, and that
the following condition is satisfied:

(v) (Ve,gen{[(Ixen)f(x) = g(x)] = £ = gl.

We will show now that if I' is a group of permutations
on A such that T &€ABTG and the condition (y) is satisfied,
then reasrc(3),

Define a relation on A in the following way:
a=x=b < (3dfer) b = £(a).

Then = is an eguivalence on A. Let B be a subset of A such
that for each a €A there exists exactly one element D&B
such that a = b.

Then the following statement is satisfied:

(i) For any a€A there exists one and only one pair
(f,b) €erxB such that a = f(b).
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Namely, if aeA then, there exist beB, f€T such
that f(b) = a. If geTr, c&€B are such that g(ec) = a, first
we get b = ¢, and then by (y) £ = g.

Let PB be an abelian torsion group generated by B, and
let G =rxPp. A typical element of G will be denoted by

B 8
f5,'...b %, b eB, b #b if v # 1. If b&B, fer and
f(b) = a€ A, then we will assume that a = fb. Let beB,

g,fe€r and f(b) = a. Then we have

g(a) = g(f(b)) = gfb = g(fb) = ga.

This completes the proof that Tre ABTG(3} )

It is not difficult to give an example of a group of
permutations re ABTG on A such that (y) is not satisfied.
For example, if A = {a,b,c}, and f =(: 2 g; then
{1,,f} € ABTG, but (y) is not satisfied.

7. Let re RB'I‘G“'). Then, there is a maopinag m:z—mlz)

of AuUTl in the set of positive integers such that the
following condition is satisfied.

(8) Let u,veF, be two I'-words such that quzs Evlz{mod{m(z)‘
for every z €AUT. Then, [u] = [v]. (Here, Inlz is the
number of occurences of z in u).

We shall show now that if r # T and if T satisfies the
conditicn (&) then TEA.B‘!‘GQ)
aprc(l) = aprc(?),

, and this will imply that

First we note that if T is not a monoid and if we put

m(lA} = 1, then the monoid I‘l = FU{IA} satisfies the con-

dition (&). Further on we will assume that T is a monoid.

Define a relation ~ in T in the following way: f ~ g

iff there exists a sequence fl""'fp of elements of !
such that p 2 3 and:
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£=f of’z“(fz)
A i U L
(3)

- e 8 e (%l; B
fp_zofg P g.

It can be easily seen that:

(i) The relation ~ is a congruence on I and

T = r/~ € ABTG.

Now we will prove the following proposition:

r
,anA and cv'sv are

14y If f€r‘n,, gETp-2r Ayrens
(mod m(a )),

nonnegative integers such that f ~ g, a =B,

and Gl+o-o+uq = n'j al+npc+8q = n”p then

B B

oy aq - 1
f{a1 ,...,aq ) = g{a1 ,...,aq

Assume that equations (3) are satisfiea. For technical

9.

reasons we will consider the case when p = 6, i.e.
".'l‘lz m3 m5 mﬁ
f - f10f2 r f10f3 = f40f5 r f40f6 - g:
where m = m(f ).
v v
Let fu €Ty, ¢ and ny, ng 2 2. Then, we have
\J
n- = nl+m2(n2—1), n1+m3{n3—1) = n4+m5(n5-1},
n4+m6(n6-1) B - i
Let 33,t3,56,t5:>0 be such that
53m3(n3-1) = t3m]’_, s3m(f6)(n6-1) = tsmi,
where m”~ = m(all.
1

Then we have:

a a m, S,m t.m +a, a a
1 g, _ 3 3 31 -1 2 q
f(al ,-.-;Eq ) e flfz f3 1 32 '---raq )
m (s,-1)m my £ +u e,
= 2 3 3 3™ q =
- fz f3 flf3 l 'az ’noa'aq ) .

891



892

217

m, (53-1)1113 Mg t3m£+u1 ap a

9 =

- fz f3 f4£5 {al 'az ;--.;aq }

m, (s,~1)m m. s.m (ta+t )mi+a, « a

2 3 3 5.0 b g i Uit G - R

- fz f3 f4f5 f6 (al ray ,...,aq )

m,(s4=1)m, m (s=1)m (to+t )m +a, o o

23 3.5 6 6 < s oo S (e gy, -
= £, £7f, c;g(.*:l1 3y ,...,aq )

By B3 B
= 9
g(a1 ray ,...,aq ¥

it n, = 1 then Sy = 1, ty = 0, and also if ne = 1 then
Sg = 1, t-.6 =0,

As a corollary of (ii) we get that:
(iii) If f ~ g and f,gern then £ = g.

Let a€A and let Ca be the cyclic group with a genera-
tor a and order m(a). Consider the direct sums

g H=0) C,, K=T®H.
a€eA ul az o
A typical element of K will be denoted by Ta, a, ...aqq,
where fer, a €A, and a # a, if v # ). Then:
Cl Clq — Bl Bq
'fal Peedgt = G2y L & f ~g  and uvzav(mdm(av)).

An element u = TbeK is called a I-word with a value
a = [u] iff the corresponding element fbe€ Fr is a r-word
with a value a. By (ii) the value [u] of a r-word uek is

uniquely determined.

Define a relation — in K in the following way: if

-— 31 uq Yl Yq
u = ga, ...aq, uvzo, :1>0 and al=h{a1 ,...,aq),then:
al+vf u2+uz uq+uq
u —gh a, a, R 5

Let +H be the symmetric extension of |—, and & the transitive
extension of +{. Then =z is a congruence on K which satisfies
the following propositions.,

(iv) f(al....,an} =a=pa g'fal...anr

and
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(v) a,beA - (a=x=b =a =>»),
from which it follows that I‘EABTG(Z) .

The proposition (iv) is namely obvious, and (v) is an

immediate consequence from the follewing statement:

(vi) Let u,v€K be such that u t-v. Then u is a T'-word iff

v is a r-word, and then [u] = [v].

Assume first that f0 ern , when n, =22, and that u is a
0

r-word. Then we have:

o o B B
7T Tt U B~
u 'f.a1 eedgt = Gaytaaaad,

e
wher a,

B, (modm(a )), « , B, 20, 8,>0, f~ g,
ﬂ1+.oo+ﬂq =Ny fe Fn and:
Bytyy—1 Byty, eqtvg

v = Eﬁial a, L -

, Y Yq
where hGI‘n” n — Yl+-o|+qu al = h(al peeepd )-
Denote m(fo) by m;, and m(av) by m‘:.

For any s,t>20 we have:
_ = sityymAnmy ayty, eqtYg
v = fha\1 a, ...aq =
s a; ¥y~ l+(r,+t)m; a,+y a_+y
= fhf, o1 P 1272, a9,
1 2 q
where B, = ul+r1m(al}. If we chose s,t >0 such that
r,+t20 and sm;(ny,-1) = (ry+t)m;/, then we get that:
smg
fhf ET

n+n - l+sm0 {no-l 44
and:

n+n ’-1+sm0 (no-l) = a;+.. .+aq+~rl+. i .+Yq+ [r1+t)m1'-

Therefore, v is r-word and:

» sm a,+y,~1+(r.+t)m; a,+y a_+y
[¥1=me O(a, ! G 5 2,...,aq°1 9 -
sm a,=1l+(r,+t)m; o
i Ly oy 9

a Y Y
1
0 (al ra, ,...,amc;!,h(aa1 ,...,aqq))=
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sm aH(ry+t)mT o a a
ffu c’(al1 > l,azz,...,aqql = f(all,...,a

[ul.

It remains the case when v is a r-word. Namely, let

- +1 Ba=vy ] -¥

_ =21 Cg . 81 Bq _ = 81771 212 a'q
v—'i:'al...aq —Eﬁal...aq,u—gal a, el .

where fern, gET, - her‘n“, n = a1+...+aq, n"-" = Yyte. ot
. :
trgr o= B, (modm ), a , 8 -y, 2 0, and f ~gh.
By definition of the relation ~ , there exist f\,. er'n '
1 <v<p, (p>3) such that *
m m m m
N 2 3 5 P
f = {:'lcsf2 . flof3 = Fanfs "“'Fp-znfp = gh,

and this implies the following equation:

n+m3 (n3-1) +1'u6 (ns-l)i—. " .+mr (np-l] =

(4)
=n"+n -1+m2{n2-1)+m5(_n5-1)+...+mp_1(np_1..” 3

As in the proof of (ii), we will consider the special
case p = 3. Then (4) reduces to

g (ny-1) 4mg (ng=1) = n™n"“m, (n,~1)+mg (n.-1)-1. 47
Clearly, there exist positive integers s,t such that:
s[my (ng=1)+my (ny=1)+mg (ng-1)] = t(m1‘+m2'+...+mc;)

and o +t m’ >y, . Then:

- s..'r-.o; s::z3F 5m6a°l+tm1 auq+tmq
=0 =3 e 1 S -
and

mgzb(no—l}@(nflhﬂneins—l] = a1+...~1-aq-l~tml'+...-ltnc;.
By (47), from the last eguation we obtain:
n“+snn{nn-l}-l-mz[nz—llﬂrs(ns—l)+(5—1)m3(n3-1}+(s-1)m5(n6—1) =
- (31-¥1+1)+(02-72}+. : .+{aq~yq) -H:nl'h . 'H:mfi'
and this implies that u is a r-word, for

- smy m, Mg (s-1)my (s=l)mg )=y, +lHm ay-y,#my o -y, Hm
us=gfy £, ‘£f, £ a a, ..ad d

6 q
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Then we also have

ﬂq,mzng L&ddm3(sénnb al-yfﬁnﬁ ﬁiwiﬂmg)’g

1.1'-1_:,:En f2 f5 3 6 , (a ;.3 ,....aq
(s~1) s-1) 'I'm] a s
==ghf:n° mzf?f:,‘ "3 £ % 1 R Y = (vl

This completes the proof of (vi), and therefore the
equation ABTG“') = ABTGQ) is proved.

Let us give an example of a semigroup of operations T
on A such that I‘EABTG(z)\ ABTGIB) .

Let A = {0,1} = 2, and £(x,y) = xty(mod2). Then the
semigroup I = {f, fz....,fk,...} belongs to ABTG(Q), for

fk (xo ,JEI. e pxak) = x0+x1+. . ."'xk;

and ;E= Q.

8. From the results obtained in 7 it follows that a
semigroup of operations I' on A such that T # I, belongs to
a‘l’—n‘z’ if the following condition is A

(sm} If u,v €F, are I-words such that |u|z = fv|z(modm{z}) for
every z€AUT, then [ul] = [v].

And, from § it follows that if T = r, then I ealP e
& reg}. . Moreover reﬁm3J if T =T1,€A and if the
condition (8) stated in 7 is satisfied.

Therefore: _4;3)c (2) _ “).

This completes the proof of Theorem 2.

9. (i) Convenient descriptions of sen(l) F ABSBH“) '
cansen D, wizsem‘?, aprc(?), A{Y)  are given in [11, [10],
[11], [12], (4], [4] respectively. But, these papers do not
deal with semigroup of operations. Namely, let Q2 be a set of
finitary operators and C a class of semigroups. Then c(a)
is the class of g-algebras (A,2) with the following property.
There exists a semigroup S€ C and a mapping £~ f of @ into C
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such that (2) is satisfied. Namely, the classes SEM(Q),
ABSEM(Q), CANSEM(Q), NILSEM(Q), ABTG(Q), Am(n) are described
in the mentioned papers. And, the class ér,m(n) is described

in (3].

(ii) From the results of the papers [3], [4] and [6] it
follows that there exists a variety C of semigroups and a
set of operators 2 such that C(R) is not a variety. We do
not know any convenient description of the set of varieties
C of semigroups such that C(Q) is also a variety, for any

S eC.
(iii) We do not know any class C of semigroups such that
2(2) is a proper subclass of Q(lj.

(iv) We find it interesting to look for corresponding

description of C(®), g‘l’. g‘z’, 9(31, when C is the class

of: groups, periodic groups, idempotent semigroups, inverse
semigroups, regular semigroups, finite semigroups,
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