Proceedings of the Symposium n-ARY STRUCTURES, Skopje 1982

REPRESENTATIONS OF SEMIGROUPS OF OPERATIONS
IN SEMIGROUPS OF LEFT TRANSLATIONS
G.Čupona, S.Crvenković, G.Vojvodić

The well known Cohn-Rebane Theorem ([1.IV.4], [8.§12]) states that any universal algebra can be embedded in a semigroup in such a way that the operations of the algebra are induced by inner left translations of semigroups. Several results concerning this Theorem are obtained in the following papers: [2] - [7], [9] - [12].

In this paper we make some investigations about representations of semigroups of finitary operations in semigroups of left translations. Namely, three classes $\underline{C}^{(1)},\underline{C}^{(2)},\underline{C}^{(3)}$ of semigroups of operations are associated to a class \underline{C} of semigroups. In general we have that $\underline{C}^{(3)} \subseteq \underline{C}^{(2)} \subseteq \underline{C}^{(1)}$, and we consider some sets of classes of semigroups such that $\underline{C}^{(1)} = \underline{C}^{(2)} = \underline{C}^{(3)}$, or $\underline{C}^{(3)} \subseteq \underline{C}^{(2)} = \underline{C}^{(1)}$.

 $\underline{0}$. First we state necessary preliminary definitions.

Let A be a nonempty set, $n \ge 1$, and $\binom{0}{n}(A)$ be the set of n-ary operations on A. Denote by O(A) the set of all non-nullary operations on A, and define a binary operation "o" on O(A) in the usual way, i.e. by:

 $fog(x_1,\ldots,x_{m+n-1}) = f(g(x_1,\ldots,x_m),\ldots,x_{m+n-1}), \qquad (1)$ where $g\in O_m(A)$, $f\in O_n(A)$. Then, (O(A),o) is a semigroup, and any subsemigroup of this semigroup is called a <u>semigroup</u> of operations on A.

Let \underline{C} be a class of semigroups. A semigroup Γ of operations on a set A is said to be a member of $\underline{C}^{(1)}$ if there is

209

a semigroup $S \in C$ and a mapping $f \mapsto \overline{f}$ of Γ into S such that $A \subseteq S$, and

$$f(a_1, \ldots, a_n) = \overline{f}a_1 \ldots a_n, \tag{2}$$

for each $f \in \Gamma_n = \Gamma \cap O_n(A)$, $n \ge 1$, and $a_1, \ldots, a_n \in A$. (The right hand side of (2) is a "product" in the semigroup S, and the left one is the element $a \in A$ such that $f: (a_1, \ldots, a_n) \mapsto a$). Replacing the word "mapping" by "homomorphism", "injective homomorphism" we get the class $\underline{C}^{(2)}, \underline{C}^{(3)}$ respectively.

Throughout the paper the class of all: semigroups, cancellative semigroups, nilpotent semigroups, abelian semigroups, abelian cancellative semigroups, abelian nilpotent semigroups, abelian groups, abelian torsion groups, abelian groups in which orders of elements are divisors of a given integer $m \geq 2$, will be denoted respectively by: SEM, CANSEM, NILSEM, ABSEM, ABCANSEM, ABNILSEM, ABGP, ABTG, A_m .

Now we can state the main results of the paper.

Theorem 1. If $C \in \{SEM, CANSEM, ABSEM, ABCANSEM, ABGP\}$ then

$$\underline{c}^{(1)} = \underline{c}^{(2)} = \underline{c}^{(3)}$$
.

then $\underline{\underline{C}^{(3)}} \subset \underline{\underline{C}^{(2)}} = \underline{\underline{C}^{(1)}}$, and the inclusion is strict.

We note that for any class of semigroups \underline{c} the following inclusions hold: $\underline{c}^{(3)} \subseteq \underline{c}^{(2)} \subseteq \underline{c}^{(1)}$.

<u>1</u>. Here we will show that $SEM^{(3)}$ consists of all the semigroups of finitary operations and that will imply the equalities $SEM^{(1)} = SEM^{(2)} = SEM^{(3)}$.

Let Γ be a semigroup of operations on a set A, and let $F_{\Gamma} = (A \cup \Gamma)^*$ be the free monoid on $A \cup \Gamma$, i.e. the set of all words on $A \cup \Gamma$ (including the empty word), and the operation is the usual concatenation. A word $u \in F_{\Gamma}$ is said to be a

 Γ -word if $u \in A$, or $u = fu_1 \dots u_n$, where $f \in \Gamma_n$, and u_1, \dots, u_n are Γ -words. There is a mapping $u \mapsto [u]$ of the set of Γ -words in A defined in the following way: (a) if $u \in A$, then [u] = u; (b) if $u = fu_1 \dots u_n$, then $[u] = f([u_1], \dots, [u_n])$.

We define a relation \vdash in F_r in the following way:

- (c) if $a = f(a_1, ..., a_n)$, then ...a... $\vdash ...fa_1 ...a_n ...$,
- (d) if $f = goh in \Gamma then ...f... \vdash ...gh...$

Let \mapsto be the symmetric extension of \mapsto (i.e. $u \mapsto v$ iff $u \mapsto v$ or $v \mapsto u$), and \approx the transitive and reflexsive extension of \mapsto , i.e.:

 $u \approx v \Leftrightarrow (\exists u_0, \dots, u_p \in F_p) p \ge 0$, $u = u_0$, $v = u_p$, $u_{i-1} \mapsto u_i$, $i \ge 1$. Clearly, \approx is a congruence on F_p , and the following conditions are satisfied:

- (i) $f \in \Gamma \Rightarrow (f \approx u \Leftrightarrow u = f_1 \dots f_k \text{ and } f = f_1 \dots o f_k \text{ in } \Gamma)$
- (ii) $a \in A \Rightarrow (a \approx u \Leftrightarrow u \text{ is a } \Gamma\text{-word such that } [u] = a)$.

Thus, we have proved that any semigroup of operations belongs to $SEM^{(3)}$.

 $\underline{2}$. The problem of embeddings of universal algebras in cancellative semigroups is considered in [11]. A detailed proof of the statements: CANSEM $^{(3)}$ =CANSEM $^{(2)}$ =CANSEM $^{(1)}$, ABCANSEM $^{(3)}$ =ABCANSEM $^{(2)}$ =ABCANSEM $^{(1)}$, will be given in [5], and here we will only state some results.

Assume first that $\Gamma \in \text{CANSEM}^{(1)}$. Let F_{Γ} be defined as in $\underline{1}$, and let $u', u'', u_1, u_2, v, w \in F_{\Gamma}$ be such that $u'vu'', u'wu'', u_1vu_2, u_1wu_2$ be Γ -words. Then:

(a)
$$[u'vu''] = [u'wu''] \implies [u_1vu_2] = [u_1wu_2].$$

Conversely, let Γ be a semigroup of operations on a set A such that all the implications (α) are satisfied. Consider first the case $\Gamma \neq \Gamma_1$, and define a relation Ξ in F_Γ in the following way: $v \equiv w$ iff there exist $u', u'' \in F_\Gamma$ such that u'vu'', u'wu'' are Γ -words and [u'vu''] = [u'wu'']. Then, Ξ is a congruence on F_Γ , the semigroup $\Gamma = F_{\Gamma/\Xi}$ is a cancellative semigroup. Moreover we have:

$$a,b \in A \Rightarrow (a = b \Rightarrow a = b)$$

 $f,g \in r \Rightarrow (f = g \Rightarrow f = g)$
 $f,g,h \in r \Rightarrow (f = goh \Rightarrow f = gh)$

 $f \in \Gamma_n, \ a_1, \dots, a_n \in A \implies (f(a_1, \dots, a_n) = fa_1 \dots a_n),$ and this implies that $\Gamma \in CANSEM^{(3)}$.

It remains the case when $\Gamma = \Gamma_1$. We may assume that Γ is a monoid. Define an operation \bullet on the set $S=A^* \times \Gamma$ (A* is the free monoid on A) in the following way:

$$(\underline{a},f) \cdot (\underline{b}\underline{c},g) = (\underline{a}f(\underline{b})\underline{c},g)$$

 $(\underline{a},f) \cdot (\underline{1},g) - (\underline{a},fog),$

where $\underline{a},\underline{c} \in A^*$, $b \in A$. Then we get a cancellative semigroup and moreover we may assume that $A \subseteq S$, and that Γ is a subsemigroup of S such that

$$f \in \Gamma, \ a \in A \Rightarrow f(a) = (f(a),1) = (1,f)(a,1) = f \bullet a.$$
 Thus, $\Gamma \in CANSEM^{(3)}$, i.e.
$$CANSEM^{(1)} = CANSEM^{(3)}.$$

 $\underline{3}$. Let $r \in ABSEM^{(1)}$. Then the following condition is satisfied:

(β) If $u,v \in F_{\Gamma}$ are two Γ -words such that v is a permutation of u then [u] = [v].

Conversely, let Γ satisfy (β). Clearly, we may assume that Γ is a monoid, for if it is not one, we can consider

the monoid $\Gamma^1 = \Gamma \cup \{1_A^A\}$, which also satisfies the condition (β) . Denote by B_A the free abelian monoid on A, and consider the direct sum $L = \Gamma \oplus B_A$. If \approx is the minimal congruence on L such that:

$$f(a_1,...,a_n) = a \Rightarrow fa_1...a_n \approx a,$$

(i.e. \approx is the reflexive and transitive extension of \mapsto , where \mapsto is defined as in $\underline{1}$), then it distinguishes the elements of $\Gamma \cup A$. This implies that Γ can be embedded in $K = L/\approx$ in the desired way.

4. It is shown in [5] that $ABCANSEM^{(3)} = ABSEM^{(3)} \cap CANSEM^{(3)}$, and this implies that:

Clearly, ABGP (i) = ABCANSEM (i).

Thus, the proof of Theorem 1 is completed.

5. Here we will show that NILSEM⁽³⁾ \subset NILSEM⁽²⁾ = NILSEM⁽¹⁾.

Assume that $\Gamma \in NILSEM^{(1)}$. Then, it is clear that the following condition is satisfied.

(i) There exists a positive number m ≥ 2, such that if u and v are r-words with lengths not less than m, then [u] = [v].

Let Γ be a semigroup of operations on a set A, such that (γ) is satisfied. Then, there exists an element $e \in A$ such that:

$$f(a_1,...,a_{i-1},e,a_{i+1},...,a_n) = e, [u] = e,$$

for any r-word u with a length $\geq m,$ any $\,f\in\Gamma_n^{},\,\,a_j^{}\in A,$ and $i\in N_n^{}.$

Consider the semigroup $\Gamma^{\dagger} = \Gamma^{\uparrow} \{1\}$, where Γ^{\uparrow} is defined in $\underline{1}$ and recall that if $a \in A$, $u \in F_{\Gamma}$, then $a \approx u$ iff u is a

r-word such that [u] = a. Let $I = \{\overline{u_1}\overline{u_2}...\overline{u_m} \mid u_1,...,u_m \in E_\Gamma^\dagger\}$, where \overline{u} is the element of Γ^\dagger defined by $u \in F_\Gamma^\dagger$. Then $I \cap \overline{A} = \{\overline{e}\}$, and this implies that we may assume that $A \subset \Gamma^\dagger/I$. The semigroup $S = \Gamma^\dagger/I$ is obviously nilpotent. The mapping $f \mapsto \overline{f}$ is injective iff $\Gamma = \Gamma_1$. This shows that

NILSEM (3) C NILSEM (2) = NILSEM (1),

and the inclusion is strict.

In the same way it can be shown that

ABNILSEM(3) ABNILSEM(2) = ABNILSEM(1),

with a strict inclusion. We note that NILSEM⁽³⁾ (ABNILSEM⁽³⁾) consists of (abelian) nilpotent semigroups of unary operations.

- <u>6.</u> The class ABTG⁽³⁾ will be described here. First, if $f \in \Gamma \setminus \Gamma_1$ then f has an infinite order, and therefore, if $\Gamma \in ABTG^{(3)}$, then $\Gamma = \Gamma_1$ is a semigroup of transformations on a set A. It is also clear that then $\Gamma \in ABTG$, and that the following condition is satisfied:
- $(\gamma) \qquad (\forall f, g \in \Gamma) \{ [(\exists x \in A) f(x) = g(x)] \Rightarrow f = g \}.$

We will show now that if Γ is a group of permutations on A such that $\Gamma \in ABTG$ and the condition (γ) is satisfied, then $\Gamma \in ABTG^{(3)}$.

Define a relation on A in the following way:

$$a \approx b \iff (\exists f \in \Gamma) b = f(a)$$
.

Then \approx is an equivalence on A. Let B be a subset of A such that for each a \in A there exists exactly one element b \in B such that a \approx b.

Then the following statement is satisfied:

(i) For any $a \in A$ there exists one and only one pair $(f,b) \in \Gamma \times B$ such that a = f(b).

Namely, if $a \in A$ then, there exist $b \in B$, $f \in \Gamma$ such that f(b) = a. If $g \in \Gamma$, $c \in B$ are such that g(c) = a, first we get b = c, and then by (γ) f = g.

Let P_B be an abelian torsion group generated by B, and let $G = \Gamma \times P_B$. A typical element of G will be denoted by $fb_1^{\beta 1} \dots b_s^{\beta S}$, $b_{\nu} \in B$, $b_{\nu} \neq b_{\lambda}$ if $\nu \neq \lambda$. If $b \in B$, $f \in \Gamma$ and $f(b) = a \in A$, then we will assume that a = fb. Let $b \in B$, $g, f \in \Gamma$ and f(b) = a. Then we have

$$g(a) = g(f(b)) = gfb = g(fb) = ga.$$

This completes the proof that $r \in ABTG^{(3)}$.

It is not difficult to give an example of a group of permutations $r \in ABTG$ on A such that (γ) is not satisfied. For example, if $A = \{a,b,c\}$, and $f = \begin{pmatrix} a & b & c \\ a & c & b \end{pmatrix}$. then $\{1_A,f\} \in ABTG$, but (γ) is not satisfied.

7. Let $r \in ABTG^{(1)}$. Then, there is a mapping $m: z \mapsto m(z)$ of $A \cup r$ in the set of positive integers such that the following condition is satisfied.

(6) Let $u, v \in F_{\Gamma}$ be two Γ -words such that $|u|_{z} \equiv |v|_{z} \pmod{(m(z))}$ for every $z \in A \cup \Gamma$. Then, [u] = [v]. (Here, $|u|_{z}$ is the number of occurences of z in u).

We shall show now that if $\Gamma \neq \Gamma_1$ and if Γ satisfies the condition (8) then $\Gamma \in ABTG^{(2)}$, and this will imply that $ABTG^{(1)} = ABTG^{(2)}$.

First we note that if Γ is not a monoid and if we put $m(1_{\hbox{$A$}})=1$, then the monoid $\Gamma^1=\Gamma\cup\{1_{\hbox{A}}\}$ satisfies the condition (δ) . Further on we will assume that Γ is a monoid.

Define a relation \sim in Γ in the following way: $f \sim g$ iff there exists a sequence f_1, \ldots, f_p of elements of Γ such that $p \geq 3$ and:

216

$$f = f_1 \circ f_2^{m(f_2)}$$

$$f_1 \circ f_3^{m(f_3)} = f_4 \circ f_5^{m(f_5)}$$

$$\vdots$$

$$f_{p-2} \circ f_p^{m(f_p)} = g.$$
(3)

It can be easily seen that:

(i) The relation \sim is a congruence on Γ and $\overline{\Gamma} = \Gamma/\sim \in ABTG$.

Now we will prove the following proposition:

(ii) If $f \in \Gamma_n$, $g \in \Gamma_n$, $a_1, \ldots, a_q \in A$ and α_v, β_v are nonnegative integers such that $f \sim g$, $\alpha_v \equiv \beta_v$ (mod m(a_v)), and $\alpha_1 + \cdots + \alpha_q = n$, $\beta_1 + \cdots + \beta_q = n$, then

$$f(a_1^{\alpha_1},...,a_q^{\alpha_q}) = g(a_1^{\beta_1},...,a_q^{\beta_q}).$$

Assume that equations (3) are satisfied. For technical reasons we will consider the case when p = 6, i.e.

$$f = f_1 \circ f_2^{m_2}, f_1 \circ f_3^{m_3} = f_4 \circ f_5^{m_5}, f_4 \circ f_6^{m_6} = g,$$

where $m_v = m(f_v)$.

Let $f_v \in r_{n_v}$, and n_3 , $n_6 \ge 2$. Then, we have $n' = n_1 + m_2(n_2 - 1), n_1 + m_3(n_3 - 1) = n_4 + m_5(n_5 - 1),$ $n_4 + m_6(n_6 - 1) = n''.$

Let $s_3, t_3, s_6, t_6 > 0$ be such that

$$s_3m_3(n_3-1) = t_3m_1', s_3m(f_6)(n_6-1) = t_6m_1',$$

where $m_1 = m(a_1)$.

Then we have:

$$f(a_1^{\alpha_1}, \dots, a_q^{\alpha_q}) = f_1 f_2^{m_2} f_3^{s_3 m_3} (a_1^{t_3 m_1' + \alpha_1} a_2^{\alpha_2}, \dots, a_q^{\alpha_q}) =$$

$$= f_2^{m_2} f_3^{(s_3 - 1) m_3} f_1 f_3^{m_3} (a_1^{t_3 m_1' + \alpha_1}, a_2^{\alpha_2}, \dots, a_q^{\alpha_q}) =$$

$$= f_{2}^{m_{2}} f_{3}^{(s_{3}-1)m_{3}} f_{4}^{m_{5}} f_{5}^{t_{3}m_{1}^{\prime}+\alpha_{1}}, a_{2}^{\alpha_{2}}, \dots, a_{q}^{\alpha_{q}}) =$$

$$= f_{2}^{m_{2}} f_{3}^{(s_{3}-1)m_{3}} f_{4}^{m_{5}} f_{5}^{s_{6}m_{6}} (a_{1}^{(t_{3}+t_{6})m_{1}^{\prime}+\alpha_{1}}, a_{2}^{\alpha_{2}}, \dots, a_{q}^{\alpha_{q}}) =$$

$$= f_{2}^{m_{2}(s_{3}-1)m_{3}} f_{5}^{m_{5}} f_{6}^{(s_{6}-1)m_{6}} g(a_{1}^{(t_{3}+t_{6})m_{1}^{\prime}+\alpha_{1}}, a_{2}^{\alpha_{2}}, \dots, a_{q}^{\alpha_{q}}) =$$

$$= g(a_{1}^{\beta_{1}}, a_{2}^{\beta_{2}}, \dots, a_{q}^{\beta_{q}}).$$

If n_3 = 1 then s_3 = 1, t_3 = 0, and also if n_6 = 1 then s_6 = 1, t_6 = 0.

As a corollary of (ii) we get that:

(iii) If $f \sim g$ and $f, g \in \Gamma_n$ then f = g.

Let $a \in A$ and let C_a be the cyclic group with a generator a and order m(a). Consider the direct sums

$$H = \bigoplus_{a \in A} C_a, K = \overline{\Gamma} \bigoplus H.$$

A typical element of K will be denoted by $\overline{f}a_1^{\alpha_1}a_2^{\alpha_2}...a_q^{\alpha_q}$ where $f \in \Gamma$, $a_v \in A$, and $a_v \neq a_\lambda$ if $v \neq \lambda$. Then:

$$\overline{f}a_1^{\alpha_1}...a_q^{\alpha_q} = \overline{g}a_1^{\beta_1}...a_q^{\beta_q} \iff f \sim g \text{ and } \alpha_v \equiv \beta_v (\text{modm}(a_v)).$$

An element $u=\overline{fb}\in K$ is called a Γ -word with a value a=[u] iff the corresponding element $\underline{fb}\in F_\Gamma$ is a Γ -word with a value a. By (ii) the value [u] of a Γ -word $u\in K$ is uniquely determined.

Define a relation \vdash in K in the following way: if $u = \overline{g} a_1^{\alpha_1} \dots a_q^{\alpha_q}, \ \alpha_v \ge 0, \ \alpha_1 > 0 \quad \text{and} \quad a_1 = h(a_1^{\gamma_1}, \dots, a_q^{\gamma_q}), \text{ then:}$ $u \vdash \overline{gh} \ a_1^{\alpha_1 + \gamma_1^{-1}} a_2^{\alpha_2 + \alpha_2} \dots a_q^{\alpha_q^{+\alpha_q}}.$

Let \mapsto be the symmetric extension of \mapsto , and \approx the transitive extension of \mapsto . Then \approx is a congruence on K which satisfies the following propositions.

(iv)
$$f(a_1,...,a_n) = a \Rightarrow a \approx \overline{f}a_1...a_n$$

and

(v) $a,b \in A \implies (a \approx b \implies a = b)$, from which it follows that $r \in ABTG^{(2)}$.

The proposition (iv) is namely obvious, and (v) is an immediate consequence from the following statement:

(vi) Let $u,v \in K$ be such that $u \vdash v$. Then u is a Γ -word iff v is a Γ -word, and then [u] = [v].

Assume first that $f_0 \in \Gamma_{n_0}$, when $n_0 \ge 2$, and that u is a r-word. Then we have:

$$u = \overline{f}a_1^{\alpha_1} \dots a_q^{\alpha_q} = \overline{g}a_1^{\beta_1} \dots a_q^{\beta_q},$$

where $\alpha_{\nu} \equiv \beta_{\nu} (\text{modm}(a_{\nu})), \alpha_{\nu}, \beta_{\nu} \ge 0, \beta_{1} > 0, f \sim g,$ $\alpha_{1} + \dots + \alpha_{q} = n, f \in \Gamma_{n}$ and:

$$v = \overline{gha}_1^{\beta_1 + \gamma_1 - 1} a_2^{\beta_2 + \gamma_2} \dots a_q^{\alpha_q + \gamma_q},$$

where $h \in \Gamma_n$, $n' = \gamma_1 + \ldots + \gamma_q$, $a_1 = h(a_1^{\gamma_1}, \ldots, a_q^{\gamma_q})$. Denote $m(f_0)$ by m_0 , and $m(a_n)$ by m_n .

For any $s,t \ge 0$ we have:

$$v = \frac{\bar{f}ha_{1}^{\alpha_{1}1^{+\gamma_{1}-1+r_{1}m}}\hat{1}_{a_{2}}^{\alpha_{2}2^{+\gamma_{2}}}...a_{q}^{\alpha_{q}^{+\gamma_{q}}} = \\ = \bar{f}hf_{0}^{sm_{0}}a_{1}^{\alpha_{1}1^{+\gamma_{1}-1+(r_{1}+t)m}}\hat{1}_{a_{2}}^{\alpha_{2}2^{+\gamma_{2}}}...a_{q}^{\alpha_{q}^{+\gamma_{q}}},$$

where $\beta_1 = \alpha_1 + r_1 m(\alpha_1)$. If we chose s,t>0 such that $r_1 + t \ge 0$ and $sm_0 (n_0 - 1) = (r_1 + t)m_1$, then we get that:

$$\mathrm{fhf}^{\mathrm{sm}_0} \in \Gamma_{\mathrm{n+n}} \, \mathrm{-l+sm}_0 \, (\mathrm{n}_0 - \mathrm{l}) \, \mathrm{'}$$

and:

$$n+n'-1+sm_0(n_0-1) = \alpha_1+...+\alpha_q+\gamma_1+...+\gamma_q+(r_1+t)m_1'-1.$$

Therefore, v is I-word and:

$$[\overline{v}] = fhf^{sm_0}(a_1^{\alpha_1+\gamma_1-1+(r_1+t)m_1'}, a_2^{\alpha_2+\gamma_2}, \dots, a_q^{\alpha_q+\gamma_q}) =$$

$$= ff_0^{sm_0}(a_1^{\alpha_1-1+(r_1+t)m_1'}, a_2^{\alpha_2}, \dots, a_q^{\alpha_q}, h(a_1^{\gamma_1}, \dots, a_q^{\gamma_q})) =$$

=
$$ff_0^{sm_0}(a_1^{\alpha_1+(r_1+t)m_1'}, a_2^{\alpha_2}, \dots, a_q^{\alpha_q}) = f(a_1^{\alpha_1}, \dots, a_q^{\alpha_q}) = [u].$$

It remains the case when v is a r-word. Namely, let $v = \overline{f}a_1^{\alpha_1}...a_q^{\alpha_q} = \overline{gh}a_1^{\beta_1}...a_q^{\beta_q}, u = \overline{ga}_1^{\beta_1-\gamma_1+1}a_2^{\beta_2-\gamma_2}...a_q^{\beta_q-\gamma_q},$

where $f \in \Gamma_n$, $g \in \Gamma_n$, $h \in \Gamma_n$, $n = \alpha_1 + \dots + \alpha_q$, $n = \gamma_1 + \dots + \alpha_q$ $+\gamma_{G}$, $\alpha_{N} \equiv \beta_{N} \pmod{m}$, α_{N} , $\beta_{N} - \gamma_{N} \geq 0$, and $f \sim gh$.

By definition of the relation \sim , there exist $f_{\nu} \in \Gamma_n$, $1 \le v \le p$, $(p \ge 3)$ such that

$$f = f_1 \circ f_2^{m_2}, f_1 \circ f_3^{m_3} = f_4 \circ f_5^{m_5}, \dots, f_{p-2} \circ f_p^{m_p} = gh,$$

and this implies the following equation:

$$n+m_3(n_3-1)+m_6(n_6-1)+\dots+m_r(n_p-1) =$$

$$= n'+n''-1+m_2(n_2-1)+m_5(n_5-1)+\dots+m_{p-1}(n_{p-1}-1).$$
(4)

As in the proof of (ii), we will consider the special case p = 3. Then (4) reduces to

$$n+m_3(n_3-1)+m_6(n_6-1) = n'+n''+m_2(n_2-1)+m_5(n_5-1)-1.$$
 (4')

Clearly, there exist positive integers s,t such that:

$$s[m_0(n_0-1)+m_3(n_3-1)+m_6(n_6-1)] = t(m_1+m_2+...+m_q)$$

and
$$\alpha_v$$
+t $m_v >_{\gamma_v}$. Then:

$$v = ff_0^{sm_0} f_3^{sm_3} f_6^{sm_6} a_1^{\alpha_1 + tm_1} \dots a_q^{\alpha_q + tm_q}$$

and

 $n + sm_0 (n_0 - 1) + sm_3 (n_3 - 1) + sm_6 (n_6 - 1) = \alpha_1 + \ldots + \alpha_q + tm_1' + \ldots + tm_q'.$

By (4'), from the last equation we obtain:

$$\begin{array}{ll} & \text{n'} + \text{sm}_0 \left(\text{n}_0 - 1 \right) + \text{m}_2 \left(\text{n}_2 - 1 \right) + \text{m}_5 \left(\text{n}_5 - 1 \right) + \left(\text{s} - 1 \right) \text{m}_3 \left(\text{n}_3 - 1 \right) + \left(\text{s} - 1 \right) \text{m}_6 \left(\text{n}_6 - 1 \right) \\ & = \left(\alpha_1 - \gamma_1 + 1 \right) + \left(\alpha_2 - \gamma_2 \right) + \ldots + \left(\alpha_q - \gamma_q \right) + \text{tm}_1 + \ldots + \text{tm}_q \end{array},$$

and this implies that u is a I-word, for

Then we also have

This completes the proof of (vi), and therefore the equation $ABTG^{(1)} = ABTG^{(2)}$ is proved.

Let us give an example of a semigroup of operations Γ on A such that $\Gamma \in ABTG^{(2)} \setminus ABTG^{(3)}$.

Let $A = \{0,1\} = Z_2$ and $f(x,y) = x+y \pmod{2}$. Then the semigroup $\Gamma = \{f,f^2,\ldots,f^k,\ldots\}$ belongs to $ABTG^{(2)}$, for

$$f^{k}(x_{0}, \dot{x_{1}}, \dots, x_{k}) = x_{0} + x_{1} + \dots + x_{k},$$

and $\overline{f^{k}} = 0.$

<u>8.</u> From the results obtained in $\underline{7}$ it follows that a semigroup of operations Γ on A such that $\Gamma \neq \Gamma_1$ belongs to $\underline{A}_m^{(1)} = \underline{A}_m^{(2)}$ if the following condition is satisfied:

(δ_{m}) If $u, v \in F_{\Gamma}$ are Γ -words such that $|u|_{z} \equiv |v|_{z} \pmod{z}$ for every $z \in A \cup \Gamma$, then [u] = [v].

And, from $\underline{6}$ it follows that if $\Gamma = \Gamma_1$ then $\Gamma \in \underline{A}_m^{(3)} \iff \Gamma \in \underline{A}_m^{(2)}$. Moreover $\Gamma \in \underline{A}_m^{(3)}$ if $\Gamma = \Gamma_1 \in \underline{A}_m$ and if the condition (δ) stated in $\underline{7}$ is satisfied.

Therefore: $\underline{A}_{m}^{(3)} \subset \underline{A}_{m}^{(2)} = \underline{A}_{m}^{(1)}$.

This completes the proof of Theorem 2.

9. (i) Convenient descriptions of SEM $^{(1)}$, ABSEM $^{(1)}$, CANSEM $^{(1)}$, NILSEM $^{(1)}$, ABTG $^{(1)}$, $\underline{A}_{m}^{(1)}$ are given in [1], [10], [11], [12], [4], [4] respectively. But, these papers do not deal with semigroup of operations. Namely, let Ω be a set of finitary operators and \underline{C} a class of semigroups. Then $\underline{C}(\Omega)$ is the class of Ω -algebras (A,Ω) with the following property. There exists a semigroup $S \in \underline{C}$ and a mapping $f \mapsto \overline{f}$ of Ω into \underline{C}

such that (2) is satisfied. Namely, the classes $SEM(\Omega)$, $ABSEM(\Omega)$, $CANSEM(\Omega)$, $NILSEM(\Omega)$, $ABTG(\Omega)$, $A_m(\Omega)$ are described in the mentioned papers. And, the class $\underline{A}_{r,m}(\Omega)$ is described in [3].

- (ii) From the results of the papers [3], [4] and [6] it follows that there exists a variety \underline{C} of semigroups and a set of operators Ω such that $\underline{C}(\Omega)$ is not a variety. We do not know any convenient description of the set of varieties \underline{C} of semigroups such that $\underline{C}(\Omega)$ is also a variety, for any $\underline{S} \in C$.
- (iii) We do not know any class \underline{C} of semigroups such that $\underline{C}^{(2)}$ is a proper subclass of $\underline{C}^{(1)}$.
- (iv) We find it interesting to look for corresponding description of $\underline{C}(\Omega)$, $\underline{C}^{(1)}$, $\underline{C}^{(2)}$, $\underline{C}^{(3)}$, when \underline{C} is the class of: groups, periodic groups, idempotent semigroups, inverse semigroups, regular semigroups, finite semigroups.

REFERENCES

- [1] Cohn P.M.: Universal Algebra, New York 1965
- [2] Čupona G., Vojvodić G., Crvenković S.: <u>Subalgebras of semilattices</u>, Zbor.rad.PMF.Novi Sad, 10(1980) 191-195
- [3] Čupona G., Crvenković S., Vojvodić G.: Subalgebras of commutative semigroups satisfying the law x^r=x^{r+m}, Zbor.rad.PMF.Novi Sad, 11(1981)
- [4] Čupona G., Vojvodić G., Crvenković S.: <u>Subalgebras</u> of Abelian <u>Torsion</u> <u>Groups</u>, Algebraic Conference, Novi Sad 1981, 141-147
- [5] Čupona G., Markovski S., Crvenković S., Vojvodić G.: Subalgebras of Cancellative Semigroups (to appear)
- [6] Kalajdžievski S.: <u>Subalgebras</u> of <u>distributive</u> <u>semigroups</u> (this volume, 223-228)
- [7] Žižović M.: Embedding of ordered algebras into ordered semigroups, this volume, 205-207

- [8] Kuroš A.G.: Obščaja algebra, Moskva 1974
- [9] Markovski S.: <u>Podalgebri na grupoidi</u>, doct.thes. Skopje 1980
- [10] Rebane Ju.K.: O predstavlenii universaljnih algebr v kommutativnih polugruppah, Sib.mat.Zurn. 7(1961) 878-885
- [11] Rebane Ju.K.: O predstavlenii universaljnih algebr v polugruppah s dvustoronnim sokraščeniem i v kommutativnih polugruppah sokraščeniem, Izvest.Est.akad.nauk SSR XVII, fiz.mat. (1968) No 4, 375-378
- [12] Rebane Ju.K.: O predstavlenii universaljnih algebar v niljpotentnih polugruppah, Sib.mat. žurn.XX, NO 4(1969) 945-949

Faculty of Mathematics, University of Skopje

Institute of Mathematics, University of Novi Sad, Yugoslavia