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POST THEOREMS FOR UNARY ALGEBRAS
G.Cupona, N.Celakoski, A.SamardZiski

The well-known Post Coset Theorem ([1]) states
that any n-group (Q,f) is embeddable into a group
(G,0) in such a way that f is the restriction of

o™ ! on 0. Several generalizations of this Theorem
are known (ex. [2], [3] and [4]). It is assumed in
all of them that the arities of the corresponding
operations are larger than 1. We show in this paper
that almost all known "Post Theorems" have corre-
sponding "unary translations”.

1. Embeddings of unary algebras in unars

An algebra B = (B; "), where B is a nonempty set and
“:x +x° is a transformation of B, is called a unar ([5]).
A mapping (x,n)—x" of Bx N into B (where N is the set of
nonnegative integers) can be defined in the following way:

1+ n,’
lo] xr1=

- g TR {1.1)

Let F be a nonempty set of elements called unary ope-

—_—S====

interpreted as a unary operation fA:xr-vxf on A (i.e. fA

— — '

is a transformation of A), then we say that A is a (unary)
F-algebra with a carrier A, Let L :f~+|[f| be a mapping of
F into the set N of nonnegative integers. (Throughout the

paper it is assumed that any appearing F-algebra is consi-

dered with a mapping L :F+N.) A mapping 4¢:A+-B is called

an L -homomorphism of an F-algebra A = (A;F) into a unar
B = (B;") if
£y - | £]
(Vxeh, £€F) ¢(x7) = ¢(x) . (1.2)
71
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An F-algebra A is called an _f -subunar of a unar B iff there
exists an injective & -homomorphism of A into B. Thus, 2 is
an & -subunar of a unar iff there exists a unar (B;”) such

that
AcB and (YxeA, fer) xf = xlIfl, (1.3)

A description of the class of j -subunars of unars will
be given below.

First we define the notion of universal & -enveloping
unar. Namely, if A is an F-algebra with the carrier A, then
the unar é" with the following presentation (in the class
of unars)

{a; b =alfl|p=af, aeca, ferd .4

Now we will give a more explicit description of _Q" .

Define a transformation of AXN by (a,n)” = (a,n+l).
Then the algebra C = (AXN; ) is the free unar on A. If
b = af in A, then we write

(b,n) — (a,n+|£]), (a,n+|{£f])—] (b,n).

Denote by 4 the disjunction of —and — , i.e. H is the
symmetric extension of —j. Let = pe the reflexive and transi-
tive extension of 4, i.e. oz is defined in the following

way:
uxvéer»(3p20, UprenesBy) B SqEL, VS U,
L]
(1z21=u,_;Hu).

Then =z is an equivalence relation on AX N and u = v =u"=Vv",
i.e. =~ is a congruence on C = (AX N; ). The factor unar
C/a is in fact the universal ¢t -enveloping unar 5" of A.

The following proposition gives another description of
the universal 1% -enveloping unar é" .
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1.1, The mapping A:ama™ (where a™ is the m-equiva-
lence class containing a) is an g -homomorphism of A into
A* , and if ¢:A-B 1is an arbitrary 2 -homomorphism of A
into a unar B, then there exists a unique homomorphism
¢* :A* - B* such that ¢ = ¢* a.

(In other words, A is a universal 2 -nomomorphism.)

Now assume that A is an & -subunar of a unar B, i.e.
there is an injective j -homomorphism ¢:A - B. If a,,a,€A

and a;& = a;'", i.e. Ala;) = A(ay), then
- ad - ) o
Hall = ¢-A(ay) = ¢ A(az) = ¢(a2}
and this implies a, = a,. Therefore we have:
a,,a, €A z;;»(al::;azzbal = a,). (1.5)

Conversely, if (1.5) is satisfied, then A is an injecti-
ve &~-homomorphism of A into A% .

We can assume in this case that AcaA’ by putting
a = a~ for any a€A, and we say that A* 1is the universal

- ——— - ——

Thus we proved the following proposition.

1.2. An F-algebra is an & -subunar of a unar iff (1.5)
is satisfied. ]

It is also clear that:

1.3. If A is an i -subunar of a unar and if f&€T is such
that |f| = 0, then (VY x€a) xf = x.0

Now consider the case when F = {f} (F consists of one
operator only), and let |f| = n>0. Then it can be easily
shown that the condition (1.5) is satisfied, which will imply
that (A;f) is an 2 -subunar (or, more specific, an n-subunar)
of a unar. Thus we have the following proposition:

1.4. If (A;f) is a unar and n a positive integer, then
there exists a unar (B; ") such that A<B and xf = x" for any

xea.l
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We note that a direct proof of 1.4 is more convenient.
Namely, let B = AUAX{l1l,2,...,n=1} and let u—~u” be a

transformation of B defined by

x* = (x,1), (x,n-1)" = xf, (x,i) " = (x,i+1)

for any x€A and i€ {1,2,...,n-2}. Then (B; ) has the de-
sired property. Namely, the unar (B; ") is the universal t -
covering of (A;f), and it is called the universal n_covering
of (aA;f).

Consider again the general case. Let A be a unary F-al-
gebra and let F* be the free monoid on F, i.e, the monoid of
finite sequences (including the empty sequence e) on F. Then
a unary F-algebra A* = (A;F*) with the same carrier A can

be defined by

f

£-|.£ f o‘of
1 ¥ x,l r41 r(l.ﬁ)

e=x,x = {

(Vxea, £,,...,£ €F) x
And, if L :f++ |f| is a mapping of F into N, then it can be
extended to a mapping L*;f» |£|* of F* 1nto N in the ‘
following way:

lel* =0, [f,...£.|* = [£,] + ... + [£]. (1.7)
(Namely, ¢* is the unique homomorphism from F* into N, which
extends i.) Further on we will often write |f| instead of

| £]*.

It is easy to show that the following properties hold.

1.5. A is an & -subunar of a unar iff A* is an ¢ * -
subunar of a unar.l

1.6. Let A be an F-algebra, B = (B;”) a unar and
¢:A+B a mapping. Then ¢ is an i -homomorphism iff ¢ is an
2 * ~=homomorphism. ]

1.7. The universal i -enveloping unar of A and the uni-
versal &* -enveloping unar of A* coincide. []

1.8. The set J = {|f|* |[f€F*} is a submonoid of the
additive monoid of nonnegative integers and it is generated
by the set {(|f| | f€Fl.q
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2. The gquasivariety of & -subunars of unars

As a consequence of a more general result (see, for
example, [6], p. 274 or [7]), it follows that the class of
L -subunars of unars is a quasivariety of F~algebras. The
proposition 1.2 gives a description of this quasivariety.-
and below we will give a more explicit description of the
set of quasiidentities which determines this gquasivariety.

Namely, by 1.2, an F-algebra A is an ¢ -subunar of a
unar iff: a,b€A = (a=~b = a = b)., By the definition of
the relation =~ it follows that: a =b iff there exist
al,az,...,aPE.A and fl'f2'°°"fzpeF* such that the fol-
lowing relations are satisfied (we write |f| instead of
[£|*, as it was mentioned before 1.5):

£ f £ £ 3
- - R | 2p-2 _ _“2p-1 o

a = a, f a,” = a, ,...,ap_1 = ap ’ ap =b; (2.1)
FE ] = [£5] + my,
€3] + my = [£4] + m,, (m, 20)  (2.2)
[€5p-3] + mo_p = [£50 51 +
ifzp'—ll + mp‘-]: = !fzplf

i.e.
24 2p-1
v+l - v+l
\;:1(-” [£,] 20, |f2p§ = vg_:_,i (-1) va! (2.3)

(iE{ngp-.-'P}}o

We note that if fu=e for some v (e is the empty sequ-
ence on F), then we can "shorten”" the sequence fl'fz"“'pr'
i.e. (2.1). For example, if f2=e, then we can consider the
sequence fl,f3,f4,...,f2p and then

£.£ f £ £
_ 313 4 _ 5 2p _ 2
a=a, P2, = a5 ,....ap = b, {(2.1°)

Thus we have the following proposition:
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2.1. Let A be an F-algebra. A is an & -subunar of a
unar iff it satisfies any quasiidentity of the following
form:

f £ f
2r - 3 2p _ _
b Ex; 7 = x, &...&xp = ¥=>X

n
”

Y (2.4)
where fve F* are such that (2.2) and (2.3) hold.[]

Now, we will find the set of identities which hold in
every § -subunar of a unar,

Let A be an ¢ -subunar of a unar (B; ). If £C€F is such
that |[f| = 0, then for any a€A we have

£ _ Ifl _ -0 -
a- = a = a = a.

Also, if fl""'fr' g],...,ggeF are such that

[£31 +eeat 1£L] = 1oy +...4 g ], (2.5)
then for any a€ A we have
I |
afl"‘fr _ a}_fll+...+gfr|= a!gl,+...+igs|= agl...gs

Conversely, assume that
£roesf 9,++4G
1 r % 1 s

o - (2.6)

is an identity in the class of & -subunars of unars. Consi-

der the unar (N; ), where x~ = x+1, and define an F-algebra
N with a carrier N by putting
(VxeN, f€EF) xf = x + |£], (2.7)

Then, clearly, N is an g -subunar of the unar (N;”) and the-
refore we have

fl...f gy+e9

|f1' ...t lfrl =0 T = 0 ® = !qll"'"""]gsll

i.e. (2.5) is satisfied.
Thus we have proved the following propesitien:

2.2. An identity holds in every i -subunar of a unar
iff it has a form (2.6) when (2.5) is satisfied, or
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xf = x when |[f| =0.0 (2.8)

An F-algebra is called an ¢ -unar if it satisfies all
the identities that hold in the class of all j -subunars of
unars, i.e. xf = x when [f] = 0 and

Fiuoak Gieal a
1 2 1 s :
x = 3 when if1|+...+|fr| = Igl|+...+[gBL
Let F* and 1 * be defined as in Section 1 and let F be

a subset of F* such that
(£l | £ern
is a generating subset of the additive monoid J (cf. 1.8).
Then, by 1~ is denoted the restriction of 3* on F~ and by
A” the corresponding F -algebra A*|F~.
It is easy to see that the following propositions hold.

2.3. An F-algebra A is an ¢ -unar iff A* is an 2™-unar.

—_—

2.4. If A is an g -unar, then A~ is an & “~unar, and
if in 1.5, 1.6, 1.7 we replace A* by A" and ¢*,F* by ¢ ,F~
respectively, then the corresponding statements 1.57, 1.6°,

1.7° are also true. [

Now we can give a description of the class of mappings
¢ :F+N such that every i-unar is an & -subunar of a unar.

First, if |f| = 0 for all £€F, then any g -unar is an
t -subunar of a unar. Namely, in this case, an ¢ -unar A is
an 1t -subunar of any unar (B; ) such that ACB, and the free
unar (AXN; ) on A is the universal i -covering unar of A.

Thus we have to consider the case when |f| >0 for some
f €F. Assume that the least positive integer p of (|f| IEEF}
is a divisor of any number of this set. Then, if F° = {f7},
where [f°| = p, we have that p is a generator of J. Thus A
is an g -subunar of a unar iff A” = (A;f") has the correspon-
ding property; but then, by 1.4, A" is a p-subunar or a unar

and therefore A has the same property.
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It remains the case when there exists ge F such that p
is not a divisor of q = |g|; assume that g is the least
integer with this property. We will show that there is an

¢ —unar which is not an ¢ -subunar of any unar.

Let A = {a,b,c} be a set with three elements. An
F-algebra with the carrier A can be defined as follows:

0 = (Yxen) xf = X

ferF, 1f[ =q ':af=bf=a, Cf=b!

tEF, . ||

n

£CF, |£| #0, ¢ = (Vxea) x' =a

(where g is as above). It is easy to see that A is an ¢ -unar.

This algebra is not an ¢ -subunar of a unar, for if it were,
when |f| =p, |g] = q and p»fq. then we would have
b = ¢ = Cq - (cp)q_P - (cf}q_P . {af)q-p =
= (aP)TP = 39 = 39 = a,
which is a contradiction.

Thus we proved the following proposition:

2.5, Let F and 2t :F+N be given. The class of 2 -unars
coincides with the class of ¢ -subunars of unars (i.e. the
class of % -subunars of unars is a variety) iff there exists
a geF such that |g| is a divisor of |f| for all fEF.

3. Injective and surjective J-unars

As in Section 1, the set J = {|f| l fEF} is a submo-
noid of the additive monoid N. Further on we will assume that
|f] >0 for some fEF (therefore J is infinite) and d will
denote the greatest common divisor of the numbers in J. Then
(cf. ex. [8]) there exists an integer t €J such that

R(J) = {t + vd |v € N} €J;

if t is the least positive integer with this property, then
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Let A be an £ ~unar and £,9€F* be such that
| £] = |gl. Then xf = x9 for any x €A and thus A induces a
mapping

(x,n) —= x-0

of AXJ into A with the following properties

(Vxea, mned) x 0 = x, (x[®1)In] _ ,(mén] (3.1)

By this reasen we will say a "J-unar" instead of " ¢-
unar" and a "J-subunar of a unar" instead of " L-subunar of
a unar"; we will sometimes write (A;J) to indicate that A

is a J-unar.

Let A be a J-unar and a,b€A be such thdt a =~ b. Then
by 2.1, there exist Nyfg, e ,n2p€d‘ and ayr@y,4..,3 €A

P
such that
[ny] [ny]  [ng] [ny.] [n ]
i - 24 _ 3 2p-2- _ [ 2p—13 [nzp
=a ", a = a, RETTL W e e ap =b, (3.2)
where:
Wy = Ry =Wy
n + m =n + m
STk T (3.3)
B * By =g M3y
Bop-1 ¥ ¥p-1 T By
anc =m  20. Clearly, from (3.3) it follows that d is a divi-
sor or m,,...,n_ _, and thus, if t belongs to P(J), then
t+m is also in R(J) for any v€1{1,2,...,p}.

Lel _ L]

We will show that a . Assume, for technical

reasons, that p=4. Then we have:
(] _ (- 1] £ I:"‘2““‘1“]
( 1 2 (
= agn3+m1 ] = a£n4+m2+tj ( (
ag“S*m2+t] . ag“s+“h+t] _ agngq)[m3+t] : a£h7])[mb+t] 2

[n,] [m +t] [n.,_] ["1 -H:"
2 =@, ) !
[n;] [mz*t]

a

["'4] [m2+t_']

]
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[nymgtt] [n+tJ [ngl.le] _
=a4“7*’°3 8 (“a)
=oft],

Thus we proved the following proposition:

3.1. If A is a J-unar and if t is in the regular part
R(J) of J, then

~b = alt] =b[t].ﬂ (s

________ [n] is an
injective mapping for all n€J, i.e., A satisfies any guasi-
identity

x[?d = yI0) _, x =y, (3.5)

where n€J.

We note that it is enough to assume that (3.5) is sati-
sfied for one n€J, n#0. Namely, then we have x[sn]

= y[sn] —> x =y for any s€N and therefore if meJ, then
xf:mr13 = y[mj:, X =Y. Now, if a[m] = b[m], then a[Sm] -

= bl®®] for any seN and so al™J = pI™), yhich implies
that a = b.

As a corollary of 3.1 we obtain:
3.2. If A is an injective J-unar, then it is a J-subunar

of a unar. [

[n]

(VxE‘A)(_':ly(-:A, neEN) n#0, x =y . (3.6)
Clearly, if there is an n€ J, n#0, such that the mapping
xeoxtP s surjective, then the J-unar A is surjective. In

a similar way as the corresponding property of J-associati-
ves (see [4]) it can be shown that the converse is also true.

3.3. If A is a surjective J-unar, then for any n€J

[n]

the mapping xwx is surjective. |
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Now we will give an example of a surjective J-unar

which is not a J-subunar of a unar.

Assume that déJ. Let t be the least positive integer
in the regular part R(J) of J. Consider the free J-unar
B = (CuD)XJ on CyuD, where C = {co,cl,...}, D= {do,dl,
.} are disjoint infinite sets, and (b,m) (P! = (n,mtn).

Define a relation-~ on (CUD)X J by:

(cyrt) ~ (g k), (€5,0) ~(cy yst)y (3,00 ~(dy,,.T)
for any i€ N. Let = be the minimal congruence on B generated
by ~ . Then the factor J-unar A = B/ io surjective, bul
it is not a J-subunar of a unar. Namely, we have (c_,t) =
= (d,,t), but (c,t+d) # (4 ,t+d).

We note that the above J-unar A can be described better

as a J-unar given by the following presentation

Et]' dl [t]

This example shows that a surjective J-subunar of a

P £ -4 [ I 5 N i ft]

CuUD; co =do ' o= . c1=c2 ,...,do-d
unar satisfies some additional conditions, which will.be
considered below.

Assume that A is a J-subunar of a unar (B; ) and let
m,n,p €N be such that m,n,m+p,n+p€J. If c,d€A and
cml = d[nj, then

c[m+p] = c:m-hp _ (cm)p . (dn)p = g"tP = d[n-!-p]'
L g

Therefore we have the following propositicn:

3.4. If A is a J-subunar of a unar, and if m,n,p€ N are
such that m,n,m+p,n+p€J, then the following quasiidentity

is satisfied:

(m]

x [n] _, xlmtpd o yOndpd g (3.7)

=y
Before we give a characterisation of surjective J-sub-
unars of unars, we will establish a lemma.
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3.5. Let A be a J-unar which satisfies any quasiidenti-

ty of the form (3.7) and let a,a ~ra ,bEA, n Ny,

1;-- p
....,nszJ, ml,mz,...,mp_IE.N be such that (3.2) and (3.3)
are satisfied. If, in addition, m1+n21+le J for any

i€e{1,...,p~1}, then a=b.

Namely, by (3.2), (3.3), (3.7) and the fact that

m, + n21+le J, we have:

1
n,] [n,+m.]

. 61[ L

a[_‘1'12+ml:| ) a‘I:n3+'ml] : a[n4+m2]

1 2 2 !

a[n4+m2] - a[n5+m3] N [ng+my]

2 =~ %3 =73 y

a[“Zp-2+mp-IJ _ a["‘2;:3-1""’";1-1:I _ L“ZD] i

prl p '
i.e. a=b. ﬂ

Now we can prove the following theorem:

3.6. A surjective J-unar A is a J-subunar of a unar iff
A satisfies all the quasiidentities (3.7).

Proof. Assume that A is a J-unar which satisfies all
the guasiidentities (3.7). Let a,b€ A be such that a = b.
Then there exist al,...,apeh, nl,...,nszJ, ml,...,mp_leﬂ
such that (3.2) and (3.3) are satisfied. Let t be an element
of the regular part R(J) of J. By 3.3, there exist bl""'b
such that a = bt, and thus we have:

[n#t] [n,+t] [n*t] [ +] [ +] [n, ]
a=b, "2 =b23 ,...,b;?hz =bpn7‘?1 by,

1 o ¢

P

+
rr
1

881
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and also n21+;+t+miGiJ. Now, by 3.5 we obtain a=b, and this
(with 3.4) completes the proof of 3.6. (0

We note that the necessary condition (3.7) for a J-unar
to be a J-subunar of a unar is not sufficient, which is seen
by the following:

Example. Let J =<3,4>= (3,4,6,7,8,...}. Consider the
J-unar A generated by the set A = {a,b,c} under the condi-
tions:

a3 - pl4] af6+v] o 4 [7+v]

p[31 _ p041  pl6+v] | ([74] (v=0,1525404) s

Clearly, (3.7) is satisfied, but A = (A3;J) is not a J-sub-
(4] # CCGJ; it A were a J-subunar
of a unar (B;g), then it could be easy to obtain the equality
aEd] = cfsj, a contradiction.)

unar of a unar. (Namely, a

and surjective. By 3.2, a bijective J-unar is a J-subunar of
a unar. Moreover, the following proposition holds.

3.7. Let A be a bijective J-unar and let d be the grea-
test common divisor of the numbers in J. (It is also assumed
that J # {0}). Then there exists a bijective unar (A; ") such
that

(Vx€a, ned) x[0] - n/d

To prove this proposition assume that t is in R(J).
Then t+d is also in R(J). Let a€A. Then there exists exactly
one b€ A such that b[t] = a, Thus we can define a” by:

a‘ = b[t+d].

It is easily seen that ak = b[t+kdl

for any k€ N and thus
we have

an/d - ple+nd _ (b[tl)[n] - a0

which completes the proof. [
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