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REPRESENTATIONS OF UNARY ALGEBRAS IN UNARS
G. CUPONA, N. CELAKOSKI

A unary F-algebra is a universal algebra A = (A4: F) with a carrier
A on which each f€ F induces a unary operation @ |—» a/. If F={f} is
a one-element set, then A — (4;f) is called a unar, and then we usually
write @’ instead of &/. If (B;’) is a unar, then a mapping (b, k) | — b*
of BXN into B is defined by: b°=b, b*+!= (b*), where bEB, kEN
(N is the set of non-negative integers). Let /:f |~ |f| be a mapping of
F into N, A= (A4;F) be an F-algebra and B = (B:’) be a unar. A
mapping @: 4 — B is called an l-homomorphism of A into B if

() = (e () 17!

for any x€ A4 and f€ F. If « is a cardinal number such that Card g(4) <
< a for every -homomorphism ¢: A — B and the equality « = Card {(A4)
holds for at least onme /-homomorphism ¢:A — B, then we say that
« is the l-order of A, and we write ||A|; =« or, simply, ||A| =« If
||A|l=1, then A is said to be l-singular.

Some properties concerning /-orders, or [-singularity of wunary
algebras are shown in this paper. Namely, we show that almost all the
results obtained in [2] for semigroup orders of universal algebras have
corresponding analogies for unary algebras.

1. SINGULAR UNARY ALGEBRAS

Consider first the case when Card F > 2. Let f,g be two different
elements of F such that m = |f|> | g| = n. Suppose that 4 is a non-empty
set and e a fixed element of 4. Let A = (4;F) be a unary F-algebra
such that

(VxEA) xX=x,x9=ce.

If B=(B;’) is a unar and ¢: A— B an l-homomorphism, then we have:
@) =N =@EN"=(@EENI™ " =@EE)N™ " =@ @E)™ ™=
=@EN™ " =(@E"M ™™ = (@)™ =¢(e) = 9 (e),
for any x € A. Therefore A is an /-singular algebra.
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Thus we have proved the following proposition:

1.1. If Card F > 2, then any non-empty set A is the carrier of an
I-singular algebra. §

Assume again that Card F>2, and let f,g,m,n be as above.
Let A be a non-empty set and e¢ an object such that e 4 x N. Let
A* be an F-algebra with the carrier 4* — {e} \J 4 X N such that:

(i) e — ef = e,
@) (x,k+1)=e, (xk+ 1) = (x,k) for any xc 4, kEN.
Let @: A* — B be an Fhomomorphism from A* into a unar B.
Then we have:
9 (x, k) = 0 ((x, k+1)1) = (9 (x, k+1)™ = (@ (x, k+1)")m— =
= (¢ ((x, k1)) = (p ()" " = ((p ()" ™ =
=@ =e@E) =120,
for every x € 4, k € N. This implies that A* is an /-singular algebra.

Now, we can show the following proposition.

1.2. If CardF > 2, then every F-algebra is a subaigebra of an
I-singular F-dlgebra.

Namely, a unary F-algebra A = (4: F)can be embedded as a sub-
algebra in an algebra A* defined as above. K

It remains the casz when F = {f} is a one-element set. Then, if
|f1 =n, we say ,an n-singular unar instead of ,an l-singular unar<,

We have shown in [3] that if (4:f) is a unar and 7> 1, then
there exists a unar (B;’) such that 4 C B and af =4" for any a€ A.

This implies the following result:
1.3. If n > 1, then a unar (A;f) is n-singulgr iff Card A = 1.}§

We recall (see, for example, [5]) that if a relation ~ is defined in
a unar (4;f) by

x~ye (Ip,gEN) x1° =",

then a congruence is obtained, and if (B; ) is the corresponding factor-unar,
then we have: b'= b, for any b€ B. Then the canonical mapping

nat.: al— b (a€b)
is a 0-homomorphism of (4:f) in (B;’). Assume now that o is an arbi-
trary O-homomorphism from (A4;f) into a unar (C;*), i.e. ¢ (a’) = 9(a)
for every a& A. This implies that:

x~y=>09(X)=9(), ie~Ckerg
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A ~ -equivalence class is called a connected class of (A;f) and the unar
is connected iff there exists only one connected class.

Thus we have the following result:

1.4. The O-order of a unar is the number of its connected classes.
(Therefore, a unar is O-singuldr iff it is connected.) B

As a corollary we obtain the following two propositions:

1.5. Let A be a non-empty set and o a cardinal number such that
O0<a<<CardA4. Then there is a unar (A;[f) with the 0-order o. There-
fore, any non-empty set is the carrier of @ O-singular unar.)|§

1.6. Let B be a subunar of a unar A. If o is the O-order of A and
B is the O-order of B, then B < o. (Thus, every subunar of a O-singular
unar is a O-singular unar.)j§

From the above results it follows that neither of the propositions
1.1, 1.2 hold for nm-singular unars if » > 0. As concerns the 0-singu-
larity, we have the same situation with 1.2, but 1.1 is satisfied,

2. UNARY F-ALGEBRAS WITH ARBITRARY UNARY ORDERS
Let A= (4;F) be a unary F-algebra and lot /:F—~+ N bc an
arbitrary mapping. Denote by F(4) the set {x/|x< 4, f€F}, and put

B = {e} u (A F(A)), where e & A\ F(A). If a unar B = (B;') is defined
by (VxEB)x’—=e and 9: 4 - B is dcfined by

x if xCA\F(4),

Piex) = { e if x<F(A),

then an /-homomorphism from A into B is obtained. Thus:

2.1. If A= (A;F) is an arbitrary F-algebra and |:F—> N is an
arbitrary mapping, then the following inequality is satisfied:

||A|| > Card (AN F(4)) + 1. 2.1)

As a consequence from (2.1) we obtain that:

2.2. If A= (A;F) is l-singular for some [, then it is surjective,
F(A)=A. § i

Let A be a subalgebra of a unary F-algebra A* and let:p:A*—)B
be such an -homomorphism that Card ¢ (4*) = || A*||. Then the restriction
@4 of 9 on A4 is an Fhomomorphism as well and this implies that:

|| A*|| = Card ¢ (4*) = Card g, (4) + Card @ (4*\ 4)
< [|Aff + Card (4*\ 4).
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Therefore the following proposition holds:

2.3. If A is a subalgebra of a unary F—a!gebm A* = (A%; F), then
. the following inequality is satisfied:

A% <[l Al + Card (4*\4) @2.2)

for any mapping 1:F— N.

Now we will show that every F-algebra A is a subalgebra of an
F-algebra A* such that the equality holds in (2.2).

2.4. Let A be a unary F-algebra and o an arbitrary cardinal number.

There is an F-algebra A* = (A%, F) such that A is a subalgebra of A* and
the following equalities are satisfied:

@ = Card (A\4), | A% = | A [ + =

Proof. We can assume that « >0, for if ¢ =0, then there is
nothing to prove. Let C be a set disjoint with A such that e€CC and

Card C=a. Let A*= AUC and let A* = (4*;F) be defined in the
following way:

(i) A is a subalgebra of A*;

(i) (Vx£C, fEF) x/=e.
Then, by 2.3, we have: |[A*]| <||A]| + «.

Let 9: A—> B be an Il-homomorphism such that BN C=§ and
Card ¢:(4) = ||A||. Define a unar B* = (BUC;’) such that:

(iii) B is a subunar of B*;

(iv) (Vx€C) x' =e.
Extend the mapping ¢ to a mapping {: A* = 4| JC—-BUC =B* by

, o(x) if x€4
y(x):{ x  f-32eC;

Then ¢: A* - B* is an /-homomorphism such that ¢ (4*) = ¢ (4)UC and
therefore we obtain: |A*|| > Card § (4*) = Card o (4) + o= | A|| + «.
This, finally, implies that || A*|| = || A|| + «, which completes the proof.H

Further on the algebra A* obtained in the proof of the previous
proposition will be denoted by A (C).

Now we can generalize the proposition 1. 2.

2.5. If «(5£0) is a given cardinal and Card F > 2, then every
F-algebra A is a subalgebra of an F-algebra A** such that || A*¥|| =a.
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Proof. By 1.2, A is a subalgebra of an Il-singular algebra A*. If
« =1, then A* is the desired algebra, and thus we can assume that
«>1. Let C be a non-empty set such that ANC=§ and 1+ CardC =
— . Then A* is a subalgebra of A*(C) and by 2.4. we have

[|A*(C)|| = ||A*|| + CardC =1+ CardC=a. |§

The proposition 1.1 can be generalized as well. Assume that
Card F> 2 and that « is a given cardinal such that 1 < & < Card 4.
Let A=A*UC, A*NC=9 and |+ Card C=«. By 1.1, therc is an
I-singular algebra A* = (4*; F). If A — A*(C), then by 2.4 we have

lIAll=|A*||+ Card C =1 + Card C = «.

Thus we have the following proposition:

2.6. Let CardF =2 and let A be a non-empty set. If ¢ is a car-
dinal number such that 1 <o < Card A, then there is dan F-algebra
A = (A;F) such that ||A||=o.} ;

If F= {f} is a one-element set and if |f| = n > 1, then neither
of the propositions 2.5, 2.6 hold, for then the r-order of a unar is the
usual order of the unar. And, if |f| =0, then by 1.5 and 1.6 the
proposition 2.6 is satisfied as well, but 2.5 does not hold.

The [-order of an F-algebra is closely connected with the l-univer-
sal unar A~ for the given algebra A = (4;F). Namely, A"~ is the unar
with the following presentation:

<A;{b=d'l | b=al in A} > 2.3)

in the class of unars. A more explicit construction of A* can be found
in [31. If @, bEA and a, b define the same element in A", then we
write a= b and we say that @ and b are eguivalent. Now we can state
the following proposition:

2.7. The relation = is an equivalence on A and ||A|| = Card (4/~)-
(Therefore, A is I-singular iff (Va,b€ A) a=~b.)}

We note that if |f] = 0 for each f€ F, then =~ is the congruence
on A generated by {(a,a”)|ac A4}.

3. UNARY ORDERS OF J-UNARS
Let J be a subsemigroup of the additive semigroup of positive

integers and let A be a non-empty set. If (an) |- an is a mapping
from A xJ into A satisfying the following condition

(Vac4, mn€J) da(m+n) = (@am)n, (3-1)
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then we say that A = (4;J) is a J-unar. (In other words, a J-unar is a
right J-system [1;11.1].) A J-unar can be also considered as a unary
F-algebra, where

F={fy|n€J} and (VacA4, ncJ)d*=an.

If we define a mapping /: F— N by /(f,) =n, we can speak of the
notion of the l-order of a J-unar. In this casc we will say ,unary
order of A% instead of ,J-order of A*; and the meaning of the notion
»a Singuldr J-unar< will be clear.

We need some results on additive semigroups of positive integers.

3.1. Let J be an additive semigroup of positive integers.

(i) There exists a uniquely determined minimal generating subset
K={ny,..., me} of J, which is called the basis of J.

(iiy If d is the largest common divisor of the numbers in K, then
there exists a t € N such that t +vd(CJ, for any v>0. (If 1, is the
minimal number with that property, then the set R(J)= {to+vd|vEN)
is cadlled the regular part of J. The basis of R(J) will be denoted by
P={my....mp;.) ((4) B

The universal unar A* for a J-upar A is dcfined as in the
previous section. Therefore Card(4/~) is the unary order of the
J-unar A.

The following two results are proved in [3] :

3.2. If a,bCA and m€ R(J), then
ax~b=am—=>bm. (3-2)

3.3. If a J-unar (A:;J) is surjective, i.e. AJ = A, then An= A
for any n€J. R

Now it is easy to show that every singular J-unar is trivial.
Namely, if (4;J) is a singular J-unar, then by 2.2 it is surjective, and
by 3.3 we have An = A for any n<J. The singularity also implies that
a=~ b for any a,b€ A, and this by 3.2 implies that am = bm for any
m¢€ R(J); thus, if m¢ R(J), the mapping X |- xXm is a constant; on
the other hand we have Am = 4, and. therefore we obtain that
Card A — 1. Thus we have proved the following proposition:

3.4. A J-unar (4;J) is singular iff Card A =11

Some connections between the unar order of a J-unar (4;J) and
Card 4 will be established beclow.
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Let (4;J) be a J-unar and let K,R(J), P be as in 3.1 and
Q =J\R(J), CardQ =g¢q. Let o be the unary order of the given
J-unar and B, C, A" be subsets of A defined as follows:

B=AP, C=AI\B, A'=A\AJ.

If a,b€ A are such that @ & b, then for each m ¢ P we have am = bm,
and this implies that Card Am < o,i.e. Card B<ap. By 2.1 wo have
that CardA'<a—1. If ¢CC and if n is the maximal number of
JNR(J) such that ¢ € An, then ther¢ is an element @€ A’ such that
¢=an. This implies that Card C < g (« —1). Finally we obtain the fol-
lowing relation:

Card 4 = Card 4" + Card B + Card C (3-3)

<@—D+g@e—D+pr=a(l+p+qg)—(@+1).

The following propositions are obvious corollaries of (3. 3).

3.5. The unary order of an infinite J-unar (A;J) is the cardinal
of A, i.e. it is the usual order of the J-unar. }}

3.6. A J-unar A = (A;J) has a finite unar order « iff Card 4 =8
is finite, and then we have: :

B<(p+g+Dz—(@+1)§ (3.3)

Therefore the notion of unary order of J-unars could bc¢ of inte-
rest for finite J-unars onaly.
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PE3UME

IMPETCTABVBAKE VHAPHU AJITEEPM BO YHAPH
I. YVIIOHA, H. JEJIAKOCKH

Enna yruwsep3anna anrebpa A = (4; F) co HocaTen A H MHOXecTBo F on ymap-
HH OnepaTopH, TakBu WTO cekoj f € F unIylMpa yHapHa onepalinja a |— af Ha A, ce Buxa

ynapna F-aniebpa. Axo F={f}, Toram A =(A4;f) ce BuKa ywap w, BO Toj Ciydaj,

o6uuno nmumysame @’ HamecTo af.

Heka A = (A; F) e ynapua anre6pa, nexa I:f |—|f| e npecimxysame ox F mo

MHOXecTBOTO N Ha npupoxuuTe Gpoen m Hexa B = (B;”) ¢ yHap. Enso npeciukysame

: A — B ce suxa [-xosomoppuzam ol A Bo B axo ¢ (xf) = (p(x))|f| 2a cexoj x€A u
? €F. Axo « e xapauHaneH 6poj, Takon mro Card ¢ (4) < « 3a cekoj /-xomomopdbnsanm
@ OX A BO HEKOj YHap B m Baxu paBeHCTBOTO o = Card ) (4) BapeMm 3a egen /-xomo-
Mopdu3amM ¢ ox A, Toram 3a o BeJiMME NEKa e yHapeH I-pell HA A M NEmyBaMe
}[A|,=u M, caMo, ||A||. Axo || A|| =1, Toram 3a F-anreGpara A BelHMe feka e
-CUHIy apHha.

Bo paboTaBa ce HCIHTYBAAT HEKOW CBOjCTBAa HMa yHapHHTe anre6pm Bo ppcka co
noumute /-pefl H [-cuHrynapHoct. Ce mokaxyBa, Mefy IpyroTo, MeKa cKODO cHTe De-
3yaTaTh, A0OMeHH BO [2| 3a mOAyrpyneH peX Ha YHWBEp3aiuH anreGpu, HMaaT cOOHBET-
HH aHAJOTHH 33 YHapHE anre6pu.
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