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ON FINITE MULTIQUASIGROUPS

Georgi Cupona, Zoran Stojakovié, Janez UfSan

In the present paper multiquasigroups and their relations to orthogonal
systems of operations and codes are studied. In the first part of the paper the
notion of an [n, m]-quasigroup of order g is defined and it is shown that for
n, m, g2 it follows that m<g — 1, in the second part, as a corollary of the pre-
ceding result, an upper bound for the maximal number of n-ary operations in
an orthogonal system of operations on a set with ¢ elements is obtained. In
the third part the existence of a class of multiquasigroups is shown, and in the
fourth part a connection between multiquasigroups and a special kind of code
is pointed out,

In the paper some results from [4] are used, but it is possible to read
it independently.

1. Let Q be a finite, nonempty set with g elements, n, m positive inte-
gers and f a mapping of Q" into Q™. The structure Q(f) is said to be an
[n, m}-quasigroup, or simply multiquasigroup, iff the following condition is
satisfied:

(A) For every injection ¢ from N,={l,...,n} into N,,,, and every sequ-
ence a,, ..., a,=Q, there exists a unique sequence b, ..., b, ., Q such that:

fbys i sb)=(byiys-ovs by and byy=ay, ...y byy=a,

g is called the order of Q (f).

One of the tasks of the paper is to discuss triples of natural numbers
(n, m, q) for which [n, m]-quasigroups of order ¢ exist. It is clear that: (i) Q (f)
is an [n, 1]-quasigroup iff Q (f) is an n-quasigroup; (ii) Q (f) is an [l, m]-qu-
asigroup iff there exist permutations f,,...,f, of Q such that f(x)=
=(f, (x), ..., f, (x)); (iii) for each pair of natural numbers n, m there exists
an [n, m}-quasigroup of order 1. Therefore, in the sequel we shall assume that
n, m, g=2.

First, we shall prove the following proposition:
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1°. If m, n, g>2 and if there exists an [n, m]-quasigroup of order g, then
m<gq-1. )
Proof. First, we note that if @ (f) is a [2, m]-quasigroup and if we put

P={(%ys - » Xppa ) [ (Xps ) =(X50 - o 5 Xmar)}s
bl={(x, ..., X,u42) EP| X, =X},
B,={bx‘|xEQ}, BI=BIU"'UBM1-2:

we get a m+ 2-net (where P is the set of points, B is the set of blocks i.e.
lines, and the incidence is the ordinary belonging) of order ¢ ([4]). It is well
known that from here it follows (see [1], p. 9) that m+2<q+ 1, i.e. (1).

Now, we shall assume that Q (f) is an [n, m]-quasigroup of order g,
where n=p+2, p=1. If aq,, ..., a, is an arbitrary sequence of elements from
Q. and if we put

f'(x’}‘)=f(an con s Gps X, ¥,

we get a [2, ml-quasigroup Q (f’). From here, considering the preceding result,
it follows that m<q—1.

As a corollary of the preceding we get:
1.1. If m, n>2, then there does not exist an [n, m]-quasigroup of order 2.

2. Let ¥ =(fy,...,f;) be a sequence of nm-ary operations defined on
the same set Q, where k=>n. ¥ is said to be an orthogonal system of n-ary
operations on Q (OSnO) iff the following condition is satisfied: '

(B) For every injectinon ¢:N,— N, the maping

(X5 oo s X (Fot)s oo+ 2 Vo))
is a permutation of Q", where y,=f, (x,, ..., X,).
A sequence ¥ =(f,,...,f,) of n-ary operations on a set Q is said to
be a strongly orthogonal system, iff the sequence X, =(8yy .. s & Sis - S0)
is an orthogonal system, where g, ..., g, are defined by:

(VIEN,) g (X1, oy X)) =X;.
It can be easily proved that in a stongly orthogonal system all n-ary
operations are n-quasigroups.

A system of binary quasigroups is orthogonal iff it is strongly orthogo-
nal, but for n>>2 a system of n-quasigroups which is orthogonal need not be
strongly orthogonal*).

*) An example for this are four ternary quasgroups given in [2] on pages 18] and 182.
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We shall show that:

2°. If n, g=2 and if (f;....,f;) is an OSnO on a set Q with g ele-
ments, then

k<n+g-—1. )

Proof. For k=n and k=n+1 there is nothing to prove. So, we shall
assume that k=n+m, where m>2. If a mapping f:0"—>Q™ is defined by

S e s X)=Xpsqs 0005 X) ©
thi-'-!INEQ)xlsfl(rls-'-!rn}'"“lxk=fk('r1""'tn)l
we get an [n, m]-quasigroup Q (f), and from 1° it follows that m=k—n<

=q-—1, ie. (2).
As a corollary of 2° we get the following:

2.1. If n, g=2, then the number of n-ary operations in an OSnO defined
on a set with ¢ elements is bounded, and if w,(g) is the maximal number of
elements in such a system, then

w,(Q)<n | g 1. (2.1)

From 2° it follows also that the maximal number of n-ary operations in
a strongly orthogonal system on a set with ¢ elements is not greater than g — 1.

We note that in [3] (the same result is quoted in [2]) the following the-
orem is proved:

2.2. If n>2, ¢=3 and if =, (q) denotes the maximal number of n-quasi-
groups which make an orthogonal system of n-quasigroups on a set with @«
elements, then

T (@<(n—1)(g—1). (2.2)
Since every orthogonal system of n-quasigroups is also an OSnO, we have
7, (9)<w,(q), so (2.1) improves (2.2).
It is easy to see that the upper bound for w,(g) is:
(i) better in (2.2) for n=¢g=3 and for n=2, ¢ arbitrary;
(ii) the same in (2.1) and (2.2) forn=3, g=4 and for n=4, ¢=2;

(iii) better in (2.1) in all other cases.

Using the corresponding result on the nonexistence of of an OSnO, we
get that:

2.3. If n,m=2 then there does not exist an [n, m]-quasigroup of
order 6.
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Proof. If Q(f) is an [n, m]-quasigroup and if f},...,f, are defi-
ned by

F 0%y 0w00 5 XYWy 000y Pa) S KoL (s w55 %)

a system of n-quasigroups is obtained. For m=>n this system is orthogonal.
So, if we define a [2, m]-quasigroup Q(f’) as in the proof of 1° then we
obtain an orthogonal system of binary quasigroups f,’,...,f, and such a
system, as it is well known, for m>=2, ¢=6 does not exist.

3. All the results of the two preceding have ,,negative character*, i.e.
they consider the cases in which there do not exist multiquasigroups. Here, we
shall show the existence of a class of multiquasigroups which we shall call

linear multiquasigroups.

3° Let F be a ficld and A=[ag,] an n % (m+n) matrix over F such that
every minor of A of order n is nonsingular. If a mapping f: F"—F" is
defined by

FGys e s X)=(Farrs - e s Xrm) © GLEF) x=t 4, 3)
where x=(x,, ..., X,,,), then we get an [n, m]-guasigroup F (f).

Proof. Let ¢=(¢y ..., c,)CF" be a scquence of elements from F,
and ¢ an injection from N, into N,,,. The matrix B=[b,] of order n, where
b,=a;,(y, is nonsingular, which means that the equation ¢=tB has a unique
solution t=cB~', and from here we get that there exists a unique sequence
b=(b,, ..., b,,,)EF"*™ such that b,y =c, and b=tA4, ie. f(b,,...,5,)=
:(ba-!-l’ LR n+rr)'

Putting in 3° t=(x,, ..., x,) the following proposition is obtained:

3.1, Let A=[ay) be an nxm matrix over a field F, sush that every
minor*) of A4 is nonsingular. If a mapping f: F"—F™ is defined by

TGz vs s B =i 59 F) & ¥=%A, G.1)

where x=(x,, ..., X,), Y=, --., ¥n), then an [n, m]-quasigroup F(f) is
obtained.

It is clear that, if an n x m matrix A defines an [n, m]-quasigroup, then the
transpose A7 of the matrix 4 defines an [m, n]-quasigroup. Also, every pxgq
submatrix of 4 defines a [p, g]-quasigroup.

From 3.1. it follows that if a matrix 4 with nonsingular minors can be
defined over a Galois field F=GF(p*), then the corresponding linear multi-
quasigroup is obtained. We give some examples.

3.1) F=GF(3)={0, 1, -1}, n=m=2, Az[ : : ]

S )=wv) e u=x+y, v=x-}.

*) Of order k, k=1, ..., min (n, m).
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3.2) F=GF(5)={0, 1, 2, —1, —2}

1 1 TR 211
A1'= 1 2 ’ Az=[ 12 -1 ]: A3= 121
1Vi=id 112

iy 2)=@v) @ z=x+y+z, v=x+2y—z,
LG )=@rnw) S u=x+y, v=x+2y, w=x—y
LEn)=wv,w)Su=2x+y+z, v=x+2y+z, w=x+y+2z

It is natural to ask when a matrix 4 with nonsingular minors can be
constructed over a field F. A sufficient condition gives the following pro-

position.
3.2. If F is a finite field with ¢ elements and if m and n are positive

integers such that
n—1\ fm—1
Z( . )( ; )<q, (3.2)

i I

then there exists an nxm matrix A=[a;] such that every minor of 4 is
nonsingular.

Proof. It is clear that the proposition is true for n=1 or m= 1, hence,
we shall assume that n, m=>2. If (3.2) is true then the inequality

7))

is also true for every k<nm, s<<m. We shall suppose that k<n, s<m and that
we have constructed the matrices

all alz .o 'alm all alz .. .al-’
a . .
az G2 m |=B, A a;, |=C,
., G, Am [ Qg1 92 s
a4 4 a,

with nonsingular minors. The proof will be completed if we show that there
exists an element & F such that all minors of the matrix

Ay Gyt @y Qg4

...............
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are nonsingular. It is clear that D has

k s k s ) k )( s )
- B + -
(o)(6) ()25
minors in which b appears, and every such minor is singular only for one va-
lue of b, i.e. there exist at most Z(k)(s) values of b for which a minor of
o 1
D in which b appears is singular. From (3.2) it follows that we can find &
such that all minors of D are nonsingular, which completes the proof.

The matrix 4, from the example 3.2) shows that, in general, the condi-
tion (3.2) is not necessary for the existence of a matrix with the given property.

A corollary of 3.2. is the following:
3.3. For every pair of natural numbers m, n=>2 and every prime p, there

exist an infinite number of natural numbers o« such that ther exist an [n, m]-qu-
asigroup of order g=p®.

It is clear that the propositions 3° and 3.1. can be formulated in a more
general form, where instead of a field we use a commutative and associative
ring with identity, and the term ,,nonsingular minor** we replace by ,invertible
square submatrix*. As a consequence of such more general proposition, we get:

3.4. If there exists an integer nx m matrix 4=[a;], such that every mi-
nor of A is relatively prime with g, then there exists an [n, m]-quasigroup of
order gq.

Proof. If we consider 4 as a matrix over the ring Z,=Z/qZ (of resi-
due classes modulo g) we get that every minor of A is invertible.

We give some examples.

3.3) Using the matrix [ : ;] we can construct a [2, 2]-quasigroup of

any odd oder.

The matrix
-2 1 —1
-1 2 -1
1 -1 2

defines a [3, 3]-quasigroup of order g, where ¢ is any natural number relati-
vely prime with 6.

4. Multiquasigroups can be interpreted as a special kind of relations, i e.
codes. First, every subset K of QF is called a k-code over Q. Two elements
a,---a and b,- - -b, form Q are said to be on a distance d iff they differ in
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exactly d components. If d is the minimal distance between different sequences
from K, then we say that K has the code distance d. It is easy to see that
the following proposition is valid:

4° If Q(f) is an [n, m]-quasigroup of order ¢ and if a code K is defi-
ned by

a-- 'am+neK<:}f(al’ R an)-__'(ani-l’ rees aﬂ+m)! (4)

then a m+n-code with ¢" elements and of the code distance m+ | is obtained.
And conversely, if K is a m+n-code with g" elements and of the code dista-
nce m+ 1 over a set Q with ¢ elements, then by (4) an [n, m]-quasigroup of
order g is defined.

From the above proposition it follows that there exists an equivalence
between multiquasigroups and a special kind of codes.

It is natural to ask what structurc Q(f) is defined by (4) if it is given
only that K is a m+ n-code of the code distance d=m+ 1. In this casc, a
partial [n, m]-quasigroup Q (f) is obtained (the definition of which we shall
not give here). In [4] it is shown that every partial [n, m]-quasigroup can be
completed to an [n, m]-quasigroup, but then the carrier of the multiquasigroup
is essentially enlarged, and this is not of interest in the case when the car-
rier is finite.
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