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SUBALGEBRAS OF DISTRIBUTIVE AND
COMMUTATIVE SEMIGROUPS

S. Kalajdzievski -t

Let A = (4; Q) be an arbitrary Q — algebra. Say that A is a_subal-
gebra of a semigroup S(.) if AC S and there exists a mapping » — « from
Q in S, such that:

) o 0ty a)=G-aa. ... .4

for every @ € Q(n), a:as..., a, € A(Q (i) stands for the all i-ary ope-
rators in Q).

In this note we are dealing with the class of subalgebras of distribu-
tive and commutative semigroups, i.e. the semigroups satisfying the identi-
ties:

2) X-y=y.x
3 Xy Z=x*.y.2

Denote the variety of the distributive and commutative semigroups
by D and by D(Q) the class of subalgebras of the semigroups belonging
to De- D, (Q) is a quasivariety ([1], p. 274). Let D be the class of distri-
butive semigroups, i.e. the semigroups satisfying the identities x- Pag ==
=x-y.x-z and x-y-z=x.2.y.z. The class D(Q) of the Q-subal-
gebras of the semigrops in 9 is a variety iff (if and only if) | QN Q(0)|=1
(2D. The fact that D,(Q)is a subcalss of D(Q) can not be used directly in
order to conclude whether D4 (Q) is, or is not a variety. Namely, we shall
show in this notice that D.(Q) is always a variety and it is well known that
every algebra is a subalgebra of some semigroup (13D

Let € be an Q-term, or a term interpretation in a certain algebra.

Then  will stand for the set of symbols oceuring in £ and |Z| for the length
of ¢ ;
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Using the last notation we can determine the complete system of iden-
tites in D in a rather simple manner: { = 7 is an identity (valid) in 9, iff

t; 7; and |C], In| = 3, or it is a trivial one.
Let us state the following easy-to-check properties:

Proposition 1. DLQ) is a variety iff D2\ (0)) is a variety.

Proposition 2. { =17 is an identity in D,(€) iff f=;; and |%}|, |9l
> 3, or it is a trivial one.

The first property enables us to suppose that Q (o) = (7.
5 I;,et the algebra A = (4:; Q) satisfy the identities in D4(£2) and let
Q={o|o € (ﬁ be 4 set disjointed from the set A, its elements satisfying
the implication © = 7 = © = 7. Let S(-) be the free semigroup in 9, gene-
rated by the set 4 U Q. If u;, u, € S, we say that u, and u, are neighbours
(that is #: is a neighbour to u, and vice versa) if uy =... a ... and uy =

=... ®.0;.09 ....a,,.-.wheremeﬂ(n)andm(al,a,, oy Oy) =@

We denote thlS by (44, ©, u3) or by (g, 0, uy). The fact that u and Ui, are
neighbours for every i € {1,2, ..., m—1} is designated by (uy, w, u,,m,,
U3, . .. s Wmy Uy) being clear the mea.mng of the operators g, ws. ... »
Now, let = stand for the reflexive and transitive extension cf the relatmn
of neighbourhoodness in S(-) . & is a congruence on S(-). Let D () = S() =.
We shall show that the origin algebra A is a subalgebra of the semigroup
D( +) € De, this fact being independent on the signature Q. There by we can
conclude that A € D(Q) and moreover, that e({2) is a varicty defined by

all identities £ =+ for £ =7 and |£|, || = 3.

It will be convenient an element s€ S () to stand for the class
s¥€ D) as well, being clear from the context which of the cases is
applicd. Now, it is easy to see that o/(ay,ay ..., a,) =a in A implies
that @ @3 *@3. ... .ay=a in D(:) for any o« €Q@m), n€N and a,,
Gy .. .»a,CA. It remains to check out whether the implication

4 ax~b=>a=b
s satisfied for any a, b€ 4.

So, let @ =~ b, i.e. there is a sequence uo, Uy, ... , g (t = 0) of ele-
ments in S, such that

) (@ = tho, Wy, Uy, gy .. . 5 O, Uy = b)

Ths number of appearances of the operators in (*) is a distance
between a and b, denoted by d(a, b).

A
let U= H, u; and W be the set of the all operators occuring in (*).

1°. Let WC Q).
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Proposition 3. Let e € A, W’ be an arbitrary subset of W and o= (e) #
F, for every o € W'. Then {w(e); o € W'} is an one-element set.

Proof. Let o, 7, € W’ and w(e) =v. We have: 7(e) =t (c2) =
=z00() =Tu(e =T(M=r0le) =0r(e)=0 1T(c)=0 T (cx)=w(e) =v.

Propositiond. Leti € {0,1,...,t} and d€A N u; Then a = wy o .
. @y, (d) for some iy, iy, ..., 1,6 {1s2,. .51}, or @ —d(S:mme:ricaIy,
b=m,‘m,’... oy, (d) for some jyjo ... je € {i+1,14+2,..., 1},

or b=d).
Proof. First, exclude this case:

(a = Uy Wy, W Gy, Wy, A5 W3, W3z, W, A . . )

Namely, then we have immediately: d—=a, of a = w;(d) for
de A z?,, lgigr.

Otherwise, u, — m; m, d and g = @, O (@) for scme iy, iy, | < iy <
<ig<t1—2. Momover, m‘l fd)ye= o, (a) = a, and by Proposition 3,
©; (@) = a for every w; € W, such that w1 (a) £ Q. :

Now, if d€ AN\, then d=a. If dE€A (4, then ©,(d) = a.
Let the statement in the proposition be true for the elements ug, uy, ... , 14—y,
The corelation between the elements ., and u;, is described by one of the
following cases:

(a)u._1=...;kc”., u,=...d...,m,(0)=
(b)uH=...C..., utz...(;;d..., C:@t(d).

By the hypothesis, Wp @ . - - OF, (c) =a for some ky, kg, ... ke €
€{1,2,...,k—1} or ¢ ~a. )f (b) ther. a = o m.‘mt(d)ora-
= g (d). 1.et (2) be applied. Then o, = w; for some ] < k Let i be the mi-

nimal number such thatw, = ;. Then, w4y =... ¢ ..., yy=... od ..
oy (d) = ¢. By the hypothesis, ©; @i ...w (") =a for some iy, i,,
sig<ior ¢ =a. So wy ... m;rm(é’) =a or w;(d)=a and cer-
tainly w1 (@) (3. There by a — o (a) — wg (@) = oron o - 0,6 =
=g O - O, (d) or a=wi(@) =w; (@ =w;(c) =

Proposition 5. If w € W, then o (a) # ().

Proof. Let W — {oy, 0, ... 0} It is clear that s <k. Let
1<j<s,1<r<kand r be the minimal number such that o = o,.
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Then p—y=...C..., Ur=. ..opd... and or (d) =c. By Proposition 4,
a= (0‘1 mg‘ e O (6) = Wy (I){l b)(.. - O, (d) == &)‘j m;l 0)“ See Oy (d): or
a=c=ow,d- .

Now, in order to prove that @ = b we can use an induction on the
distance between @ and b. If d(a, b) = 0, trivialy @ = b. If d(a, b) > 1 then
d(a,b) >2 If d(a,b) =2 we have (@, &y, 0, w, b) and clearly a=p
Let @ = b for d(a,b) < t. We have two posibilities:

i) (a, oy, a1“).: 0, g5 - . .)

ii) (a, "31’;;1 Ay Wy (—*’1 aﬂ dgs --+)

If i), then apply the inductive hypothesis.

If ii), then ©, (@) = @, (@) = a. By the Propositions 5. and 3. w () =
=a for every € W. By Proposition 4., o; ;... (@) =b for some
Ty | . s 2
Nl i & 1. S0 asmglco;....m,;k(a):b.

2°. WC Q) ie. QN W#£QU1).

Previously we ought to define ,,value” of seme-of the elements in D (-).

Let u€D() u =y ... O Gds. O, |##] > 3 and at least
one of the operators &y, Gy, - .. » 6% (Supose ;) does not belong to Q(1)
(here u stands for the class u™). Value of the element u, designed by [u], is
the element wjwg... @ (45,45 ...s ap—1,4,); Where 7 and 5 are any
positive integers such that ©] ey . .. XXy ... X7 is an  Q-term, Further,
if ©,0g...0pX; X3... Xm isanarbitrary Q-term, then the value of| the ele-
ment ¥ =y Wy...0p8; Gy... Gm S D(-) is the eclement

[u]=mlt')$"'mk(allai)--- sall)'
It can be easily seen that:

Proposition 6. The value is a well defined mapping from a subset of
D in the set A "

Proposition 7. If (u#y, ;, ts), u, has a value and u; has a value thea
(4] = [ua]. ©

Let 0;€Q(n), n>2, 1<i<t and o;EQ(1) for j<i That
means that ey =...C... > Ug=... @;*C1.Cs .. Cp... 30d €=
=y (€1 € ..+ 3Cq). Using the similar reasoning as in Proposition 4, it
can be shown thatazm(tmg’...m;‘(c] for some iy, iy, . . . 5 is < i. We have:
u,(a,a,...,a)*——-m;(m;l...m;,(c),...,mi mgx(c))=m¢‘...m¢,m‘(c,c,
cees€) =0 O D fCisChss v Ch)= co;l...cw,(c) =a. So, (4 =
=a¥“is Wi Wf Ug—3s Wf—gs s v v m?un (l);,_:l?a =a£ a,, a), and by Propo-
sition 7., [u] =la] =a.
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Similarly, if w, € Q(m), m>2, i<k <t and w; € Q(1) for j >k,
then [“k] =h. :
Lot up =...0p dyody.... dm... 0, €Q(m). We have:
(Ug =E¢ Cr...CpUy m(.!.l,z)‘ Cio o Cpllpiqs--vs
csuy ;‘clcul c”uk =a‘cl---c“akdlo.o%uk,mk’ -‘;‘61op.
o Ol s - e iy 2 DO Brsrs =+ Cg Ot o O By B

=m;.d1...d,u;, 'm‘_,_l,mkdi... dau(ﬂ,...,m,dl...

...dmu,= llk).

Again, by Proposition 7., [u] =[u,]. Thus, finaly @ =b and A<
£ De (L2).

Thus we have proved the following theorem:

Theorem. The class of subalgebras of the distributive and commutative

sg:migroups is a variety defined by the all identities € =1 for ¢ — 7 and
IS Inl =3.
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MOJAJATESEPH OJ1 JTUCTPUBYTUBHH U KOMYTATHUBHHU IIOJIVIPYIIH
Cauwo KATAJITHEBCKH
Pesume

Aarebpara A = (4;0) ¢ moxanre6pa on momyrpynata S(:) ako AC S u
axo 3a cexoja n-apua (n> 0) onepaurja o € Q MOCTOK enement w €5 Taxa W10 © (@,
Q,...,ap) = @-0Gy+Gy~...an. Hexa co P, ja o3HauMMe MHOTYKPATHOCTA HA MHC-

TeprOYTHBHA KOMYTATHBHR IONYTDYIH, T.e. KJACATA DOIYTDYNH NedMHMpAHA CO HICH-
THTETE X+P =y -X F X+y-2z = x?.y.r. [lokaxkana e cnemuEasa

Teopema. Kiacara anre6pi Bo IPON3ROIEH ja3uK, KO Cce moRanreGpn O MOIYTpy-

1K BO 9, € MHOTYKPATHOCT AShHHADAHA CO CHTE AASHTUTETH L= 7 TakBA WITO { KMA HCTA
CONPHEA KaKO ¥ 7 A { H 7 HMaaT JOUKMHK HE NOMAIR OA 3.
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