SUBALGEBRAS OF DISTRIBUTIVE AND COMMUTATIVE SEMIGROUPS

S. Kalajdžievski

Let $A = (A; \Omega)$ be an arbitrary Ω —algebra. Say that A is a *subalgebra of a semigroup* S(.) if $A \subseteq S$ and there exists a mapping $\omega \to \overline{\omega}$ from Ω in S, such that:

(1)
$$\omega(a_1, a_2, \ldots, a_n) = \overline{\omega} \cdot a_1 \cdot a_2 \cdot \ldots \cdot a_n$$

for every $\omega \in \Omega(n)$, $a_1 a_2 \dots$, $a_n \in A(\Omega(i))$ stands for the all i-ary operators in Ω).

In this note we are dealing with the class of subalgebras of distributive and commutative semigroups, i.e. the semigroups satisfying the identities:

$$(2) x \cdot y = y \cdot x$$

$$(3) x \cdot y z = x^2 \cdot y \cdot z$$

Denote the variety of the distributive and commutative semigroups by \mathcal{D}_e and by $\mathcal{D}_e(\Omega)$ the class of subalgebras of the semigroups belonging to $\mathcal{D}_e \cdot \mathcal{D}_e$ (Ω) is a quasivariety ([1], p. 274). Let \mathcal{D} be the class of distributive semigroups, i.e. the semigroups satisfying the identities $x \cdot y \cdot z = x \cdot y \cdot x \cdot z$ and $x \cdot y \cdot z = x \cdot z \cdot y \cdot z$. The class $\mathcal{D}(\Omega)$ of the Ω -subalgebras of the semigrops in \mathcal{D} is a variety iff (if and only if) $|\Omega \setminus \Omega(0)| = 1$ ([2]). The fact that $\mathcal{D}_e(\Omega)$ is a subcalss of $\mathcal{D}(\Omega)$ can not be used directly in order to conclude whether $\mathcal{D}_e(\Omega)$ is, or is not a variety. Namely, we shall show in this notice that $\mathcal{D}_e(\Omega)$ is always a variety and it is well known that every algebra is a subalgebra of some semigroup ([3]).

Let ζ be an Ω -term, or a term interpretation in a certain algebra. Then $\hat{\zeta}$ will stand for the set of symbols occurring in ζ and $|\zeta|$ for the length of ζ .

Using the last notation we can determine the complete system of identites in \mathcal{D}_c in a rather simple manner: $\zeta = \eta$ is an identity (valid) in \mathcal{D}_c iff $\hat{\zeta} = \hat{\eta}$ and $|\zeta|$, $|\eta| \ge 3$, or it is a trivial one.

Let us state the following easy-to-check properties:

Proposition 1. $\mathfrak{D}_{c}(\Omega)$ is a variety iff $\mathfrak{D}_{c}(\Omega \setminus \Omega(0))$ is a variety.

Proposition 2. $\zeta = \eta$ is an identity in $\mathfrak{D}_{0}(\Omega)$ iff $\hat{\zeta} = \hat{\eta}$ and $|\zeta|, |\eta| \geqslant 3$, or it is a trivial one.

The first property enables us to suppose that Ω (o) = \emptyset .

Let the algebra $\mathbf{A} = (A; \Omega)$ satisfy the identities in $\mathfrak{D}_{c}(\Omega)$ and let $\overline{\Omega} = \{\overline{\omega} \mid \omega \in \Omega\}$ be a set disjointed from the set A, its elements satisfying the implication $\overline{\omega} = \overline{\tau} \Rightarrow \omega = \overline{\tau}$. Let $S(\cdot)$ be the free semigroup in \mathfrak{D}_{c} generated by the set $A \cup \overline{\Omega}$. If $u_{1}, u_{2} \in S$, we say that u_{1} and u_{2} are neighbours (that is u_{1} is a neighbour to u_{2} and vice versa) if $u_{1} = \ldots a \ldots$ and $u_{2} = \ldots \omega \cdot a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n} \cdot \ldots$ where $\omega \in \Omega$ (n) and ω ($a_{1}, a_{2}, \ldots, a_{n}$) = a. We denote this by (u_{1}, ω, u_{2}) or by (u_{2}, ω, u_{1}) . The fact that u_{i} and u_{i+1} are neighbours for every $i \in \{1, 2, \ldots, m-1\}$ is designated by $(u_{1}, \omega_{2}, u_{2}, \omega_{3}, u_{3}, \ldots, \omega_{m}, u_{m})$ being clear the meaning of the operators $\omega_{2}, \omega_{3}, \ldots, \omega_{m}$. Now, let \approx stand for the reflexive and transitive extension of the relation of neighbourhoodness in $S(\cdot) \cdot \approx$ is a congruence on $S(\cdot)$. Let $D(\cdot) = S(\cdot)/\approx$. We shall show that the origin algebra A is a subalgebra of the semigroup $D(\cdot) \in \mathfrak{D}_{c}$, this fact being independent on the signature Ω . There by we can conclude that $A \in \mathfrak{D}_{c}(\Omega)$ and moreover, that $\mathfrak{D}_{c}(\Omega)$ is a variety defined by

all identities $\xi = \eta$ for $\xi = \eta$ and $|\xi|$, $|\eta| \ge 3$. It will be convenient an element $s \in S(.)$ to stand for the class $s \in D(.)$ as well, being clear from the context which of the cases is applied. Now, it is easy to see that $\omega(a_1, a_2, \ldots, a_n) = a$ in A implies that $\omega \cdot a_1 \cdot a_2 \cdot \ldots \cdot a_n = a$ in D(.) for any $\omega \in \Omega(n)$, $n \in N$ and a_1 , $a_2, \ldots, a_n \in A$. It remains to check out whether the implication

$$(4) a \approx b \Rightarrow a = b$$

s satisfied for any $a, b \in A$.

So, let $a \approx b$, i.e. there is a sequence u_0, u_1, \ldots, u_t $(t \ge 0)$ of elements in S, such that

(*)
$$(a = u_0, \omega_1, u_1, \omega_2, \ldots, \omega_t, u_t = b)$$

The number of appearances of the operators in (*) is a distance between a and b, denoted by d(a, b).

Let $U = \bigcup_{i=0}^{t} \hat{u}_i$ and W be the set of the all operators occurring in (*).

1°. Let
$$W \subseteq \Omega(1)$$
.

Proposition 3. Let $e \in A$, W' be an arbitrary subset of W and $\omega^{-1}(e) \neq \emptyset$, for every $\omega \in W'$. Then $\{\omega(e); \omega \in W'\}$ is an one-element set.

Proof. Let $\omega, \tau, \in W'$ and $\omega(e) = v$. We have: $\tau(e) = \tau \omega(c_1) = \tau \omega(c_1) = \tau \omega(c_1) = \tau \omega(e) = \tau \omega(e) = \omega \tau(e) = \omega \tau(c_2) = \omega \tau(c_2) = \omega(e) = v$.

Proposition 4. Let $i \in \{0, 1, \ldots, t\}$ and $d \in A \cap \hat{u_i}$. Then $a = \omega_i \omega_{i_2} \ldots \omega_{i_s}$ (d) for some $i_1, i_2, \ldots, i_s \in \{1, 2, \ldots, i\}$, or a = d (Simmetrically, $b = \omega_{j_1} \omega_{j_2} \ldots \omega_{j_r}(d)$ for some $j_1, j_2, \ldots, j_r \in \{i+1, i+2, \ldots, t\}$, or b = d).

Proof. First, exclude this case:

$$(a = u_0, \omega_1, \overline{\omega_1} a_1, \omega_1, a, \omega_3, \overline{\omega_3} a_3, \omega_3, a, \ldots).$$

Namely, then we have immediately: d=a, of $a=\omega_i(d)$ for $d\in A\cap \hat{u_i}$, $1\leqslant i\leqslant t$.

Otherwise, $u_n = \overline{\omega_{i_2}} \overline{\omega_{i_1}} a'$ and $a = \omega_{i_2} \omega_{i_1}(a')$ for some $i_1, i_2, 1 \le i_1 < < i_2 \le t - 2$. Moreover, $\omega_{i_1}(a) = \omega_{i_2}(a) = a$, and by Proposition 3, $\omega_{i_1}(a) = a$ for every $\omega_{i_2} \in W$, such that $\omega_{i_1}^{-1}(a) \neq \emptyset$.

Now, if $d \in A \cap \hat{u}_0$, then d = a. If $d \in A \cap \hat{u}_1$, then $\omega_1(d) = a$. Let the statement in the proposition be true for the elements $u_0, u_1, \ldots, u_{k-1}$. The corelation between the elements u_{k-1} and u_k is described by one of the following cases:

(a)
$$u_{k-1} = \ldots \overline{\omega_k} c \ldots$$
, $u_k = \ldots d \ldots$, $\omega_k(c) = d$

(b)
$$u_{k-1} = \ldots c \ldots$$
, $u_k = \ldots \overline{\omega_k} d \ldots$, $c = \omega_k (d)$.

By the hypothesis, $\omega_{k_1}\omega_{k_2}\ldots\omega_{k_s}(c)=a$ for some $k_1,k_2,\ldots,k_s\in\{1,2,\ldots,k-1\}$ or c=a. If (b) then $a=\omega_{k_1}\omega_{k_2}\ldots\omega_{k_s}\omega_{k}$ (d) or $a=\omega_k$ (d). Let (a) be applied. Then $\omega_k=\omega_j$ for some j< k. Let i be the minimal number such that $\omega_k=\omega_i$. Then, $u_{i-1}=\ldots c'\ldots,u_i=\ldots\overline{\omega_i}d'\ldots\omega_i$ (d') = c'. By the hypothesis, $\omega_{i_1}\omega_{i_2}\ldots\omega_{i_r}(c')=a$ for some $i_1,i_2,\ldots,i_r< i$ or c'=a. So $\omega_{i_1}\omega_{i_2}\ldots\omega_{i_r}\omega_i$ (d') = a or ω_i (d') = a and certainly $\omega_i^{-1}(a)\neq\emptyset$. There by $a=\omega_i$ (a) = ω_k (a) = ω_k $\omega_{k_1}\omega_{k_2}\ldots\omega_{k_s}(c)=\omega_{k_s}\omega_{k_s}\ldots\omega_{k_s}(d)$ or $a=\omega_i$ (a) = ω_k (b) = d.

Proposition 5. If $\omega \in W$, then $\omega^{-1}(a) \neq \emptyset$.

Proof. Let $W = \{\omega_{i_1}, \omega_{i_2}, \ldots, \omega_{i_s}\}$. It is clear that $s \leqslant k$. Let $1 \leqslant j \leqslant s$, $1 \leqslant r \leqslant k$ and r be the minimal number such that $\omega_{i_j} = \omega_r$.

Then $u_{r-1} = \ldots c \ldots u_r = \ldots \omega_r d \ldots$ and $\omega_r (d) = c$. By Proposition 4, $a = \omega_{i_1} \omega_{i_2} \ldots \omega_{i_m} (c) = \omega_r \omega_{i_1} \omega_{i_2} \ldots \omega_{i_m} (d) = \omega_{i_j} \omega_{i_1} \omega_{i_2} \ldots \omega_{i_m} (d)$, or $a = c = \omega_{i_j} (d)$.

Now, in order to prove that a = b we can use an induction on the distance between a and b. If d(a, b) = 0, trivialy a = b. If $d(a, b) \ge 1$ then $d(a, b) \ge 2$ If d(a, b) = 2 we have $(a, \omega_1, \omega_1, \omega_1, b)$ and clearly a = b Let a = b for d(a, b) < t. We have two posibilities:

- i) $(a, \omega_1, \overline{\omega_1}a_1, \omega_1, a_1, \ldots)$
- ii) $(a, \omega_1, \overline{\omega}_1 a_1, \omega_2, \overline{\omega}_1 \overline{\omega}_2 a_2, \ldots)$

If i), then apply the inductive hypothesis.

If ii), then $\omega_1(a) = \omega_2(a) = a$. By the Propositions 5. and 3. $\omega(a) = a$ for every $\omega \in W$. By Proposition 4., $\omega_{i_1} \omega_{i_2} \dots \omega_{i_k}(a) = b$ for some $i_1, i_2, \dots, i_k \leq t$. So $a = \omega_{i_1} \omega_{i_2} \dots \omega_{i_k}(a) = b$.

2°. $W \subseteq \Omega(1)$, i.e. $\Omega \cap W \neq \Omega(1)$.

Previously we ought to define ",value" of some of the elements in $D(\cdot)$.

Let $u \in D(\cdot)$, $u = \omega_1 \ \omega_2 \dots \omega_k \ a_1 a_2 \dots a_m$, $|u| \ge 3$ and at least one of the operators $\omega_1, \omega_2, \dots, \omega_k$ (supose ω_1) does not belong to $\Omega(1)$ (here u stands for the class u^{\approx}). Value of the element u, designed by [u], is the element $\omega_1^r \omega_2 \dots \omega_k \ (a_1, a_2, \dots, a_{m-1}, a_m^s)$, where r and s are any positive integers such that $\omega_1^r \omega_2 \dots \omega_k x_1 x_2 \dots x_m^s$ is an Ω -term, Further, if $\omega_1 \omega_2 \dots \omega_k x_1 x_2 \dots x_m$ is an arbitrary Ω -term, then the value of the element $u = \omega_1 \omega_2 \dots \omega_k a_1 a_2 \dots a_m \in D(\cdot)$ is the element

$$[u] = \omega_1 \, \omega_2 \dots \omega_k \, (a_1, a_2, \dots, a_m).$$

It can be easily seen that:

Proposition 6. The value is a well defined mapping from a subset of D in the set A:

Proposition 7. If (u_1, ω_1, u_2) , u_1 has a value and u_2 has a value then $[u_1] = [u_2]$.

Similarly, if $\omega_k \in \Omega(m)$, $m \ge 2$, $i \le k \le t$ and $\omega_j \in \Omega(1)$ for j > k, then $[u_k] = b$.

Let
$$u_k = \ldots \overline{\omega_k} \cdot d_1 \cdot d_2 \cdot \ldots \cdot d_m \cdot \ldots \cdot \omega_k \in \Omega(m)$$
. We have:

$$(u_i = \overline{\omega_i} c_1 \ldots c_n u_i, \omega_{i+1}, \overline{\omega_i} c_1 \ldots c_n u_{n+1}, \ldots, \ldots, \overline{\omega_i} c_1 \ldots c_n u_k = \overline{\omega_i} c_1 \ldots c_n \overline{\omega_k} d_1 \ldots d_m u_k, \omega_k, \overline{\omega_i} c_1 \ldots c_n \overline{\omega_k} d_1 \ldots d_m u_k = \overline{\omega_k} d_1 \ldots d_m u_k, \omega_{k+1}, \overline{\omega_k} d_1 \ldots d_m u_{k+1}, \ldots, \overline{\omega_k} d_1 \ldots d_m u_k = u_k).$$
We have:

Again, by Proposition 7., $[u_j] = [u_k]$. Thus, finaly a = b and $A \in \mathcal{D}_{\mathbf{c}}(\Omega)$.

Thus we have proved the following theorem:

Theorem. The class of subalgebras of the distributive and commutative semigroups is a variety defined by the all identities $\zeta = \eta$ for $\hat{\zeta} = \hat{\eta}$ and $|\zeta|, |\eta| \ge 3$.

REFERENCES

- [1] Мальцев. Д. И. Алгебраические системы. Москва 1970
- [2] Kalajdžievski S. Subalgebras of distributive semigroups, ,n = ary stryctures Skopje, 1982
- [3] Cohn. P. M. Universal algebra, New York 1965

ПОДАЛГЕБРИ ОД ДИСТРИБУТИВНИ И КОМУТАТИВНИ ПОЛУГРУПИ

Сашо КАЛАЈШИЕВСКИ

Резиме

Алгебрата $A=(A;\Omega)$ е подалгебра од полугрупата $S(\cdot)$ ако $A\subseteq S$ и ако за секоја n-арна $(n\geqslant 0)$ операција $\omega\in\Omega$ постои елемент $\omega\in S$ така што ω $(a_1,a_2,\ldots,a_n)=\overline{\omega\cdot a_1\cdot a_2\cdot\ldots\cdot a_n}$. Нека со $\mathfrak{D}_{\mathcal{C}}$ ја означиме многукратноста на дистрибутивни комутативни полугрупи, т.е. класата полугрупи дефинирана со идентитете $x\cdot y=y\cdot x$ и $x\cdot y\cdot z=x^2\cdot y\cdot r$. Покажана е следнава

Теорема. Класата алгебри во произволен јазик, кои се подалгебри од полугрупи во \mathfrak{D}_{c} , е многукратност дефинирана со сите идентитети $\zeta = \eta$ такви што ζ има иста содржина како и η и ζ и η имаат должини не помали од 3.