Algebraic conference Skopje 1930

ON A CLASS OF NORMAL SEMIGROUPS P. Kržovski

A semigroup S is called normal if xS = Sx for all elements x of S (S.Schwarz [1]). It is considered in this note the class of normal semigroups with the property $Sx = Sx^2$ for all x of S. Two characterizations for the semigroups of this class are obtained here.

 1° . If a semigroup S is normal and regular, then $Sx = Sx^2$ for all x of S.

<u>Proof.</u> If $x \in S$ and x = xyx, then $Sx = Sxyx \subseteq SxSx = S^2x^2 \subseteq Sx^2 = Sx$.

The following example shows that the converse does not hold: If S is a semigroup such that |S| > 1 and $|S^2| = 1$, then obviously $Sx = xS = Sx^2$ and S is not regular.

 2° . A semigroup S is normal and has the property $Sx = Sx^2$ for all $x \in S$ if and only if S is an inflation of a semilattice of groups.

<u>Proof.</u> Let S be a normal semigroup with the property $Sx = Sx^2$ for all $x \in S$. Denote by T the set of all regular elements of S. We shall prove that $T = S^2$. If $z \in S^2$, then there exist $x,y,u,v,s,t \in S$ such that

 $z = xy = uy^2 = uy^2v = xyv = (xy)^2s = xytxy$

which means that $z \in T$, i.e. $S^2 \subseteq T$. The inclusion $T \subseteq S^2$ is obvious. Now we shall prove that T is normal If $x,y \in T$, then there exist $s,u \in S$ such that $xy = sx = sxusx \in S^2x = Tx$ and this implies that $xT \subseteq Tx$. By symmetry $Tx \subseteq xT$ and thus the semigroup $S^2 = T$ is regular and normal. According to $\begin{bmatrix} 4 \end{bmatrix}$, S^2 is a semilattice of groups. We note that idempotents of S are in the centre of S $\begin{bmatrix} 1 \end{bmatrix}$, and thus the set of idempotents T is a subsemigroup of T in the set of idempotents T is a subsemigroup of T in the set of idempotents T is a subsemigroup of T in the set of idempotents T is a subsemigroup of T in the set of idempotents T is a subsemigroup of T in the set of idempotents T is a subsemigroup of T in the set of idempotents T is a subsemigroup of T in the set of idempotents T is a subsemigroup of T in the set of idempotents T is a subsemigroup of T in the set of idempotents T in the set of idempotents T is a subsemigroup of T in the set of idempotents T is a subsemigroup of T in the set of idempotents T is a subsemigroup of T in the set of idempotents T is a subsemigroup of T in the set of T in the set of T is a subsemigroup of T in the set of T in the set of T is a subsemigroup of T in the set of T

Define a transformation ϕ of S as follows. If $x \in S$, then $x^2 \in S^2$ and thus there exists an idempoten e such that $x^2 \in G_e$. Then $\phi(x) = xe$ defines a transformation of S.

If
$$x,y \in S$$
 and $x^2 \in G_e$, $y^2 \in G_f$, then:
 $(xy)^2 = f = xyxy = f = xyx = f = (xy)^2$
and thus $(xy)^2 \in G_e = f$, i.e.
 $\phi(xy) = xy = f = xe \cdot y = \phi(x) \phi(y)$.

Moreover, there exist $u,v \in S$ such that

$$\phi(xy) = xyef = x(ye)f = x(uy^2)f =$$

$$= xuy^2 = xye = vx^2e = vx^2 = xy.$$

Therefore φ is an endomorphism of S which fixes the elements of S² and this implies that S is an inflation of S².

Conversely, assume that T is a semilattice of groups, and S is an inflation of T. Then, clearly, T is a normal semigroup such that $Tt = Tt^2$ for each $t \in T$, and this implies that S is also a normal semigroup satisfying the equality $Sx = Sx^2$ for every x of S.

- 3° . Let S be a normal semigroup. The following statements are equivalent:
 - (i) $Sx = Sx^2$ for all $x \in S$;
 - (ii) $N(x) = \{y \in S \mid Sx \subseteq Sy\}$ for all $x \in S$. \underline{Proof} . (i) \Longrightarrow (ii). First we shall prove that $F = \{y \in S \mid Sx \subseteq Sy\}$
- is a filter which contains the element x.

Let $y,z \in F$. Then $Sx \subseteq Sy$ and $Sx \subseteq Sz$ and since $Sx = Sx^2 = Sx^4 = Sxx^2x \subseteq SxSx \subseteq SySz = S^2yz \subseteq Syz,$ it follows that $yz \in F$.

Conversely, if $yz \in F$, then $Sx \subseteq Syz \subseteq Sz$ and $Sx \subseteq Syz = ySz \subseteq yS = Sy$ which means that $y,z \in F$, i.e. F is a filter. Since $Sx \subseteq Sx$, it follows that $x \in F$ and this implies that $N(x) \subseteq F$. To show the inclusion $F \subseteq N(x)$ we use II.2.10 of [3]. If $y \in F$, then $x^2 \in Sx \subseteq Sy \subseteq J(y)$. Since $x^2 \in N_1(x) \cap J(y)$, we get $y \in N_2(x) \subseteq N(x)$ and so $F \subseteq N(x)$. Hence F = N(x).

(ii) \Longrightarrow (i) Obviosly $Sx^2 \subseteq Sx$ for any $x \in S$. Since $x^2 \in N(x)$, it follows that $Sx \subseteq Sx^2$. Therefore $Sx = Sx^2$.

REFERENCES

- [1] Schwarz S.: A theorem on normal semigroups, Чехословацкий математический журнал, 10(85), 1960, 197-200
- [2] Clifford H.A. and Preston B.G.: The algebraic theory of semigroups, Vol. I, American Mathem. Society, 1961

- [3] Petrich M.: Introduction to semigroups, Charles E. Merill Publ. CO., Columbus, Ohio 1973
- [4] Donald R. La Torre: On semigroups that are semilattice of Groups, Czechoslovak Mathematica.

 Journal 21(96) 1971, 369-370
- [5] S.Lajoš: On semigroups that are semilattices of groups, Department of Mathematics Karl Marx University of economics Budapest, 1971

ЗА ЕДНА КЛАСА НОРМАЛНИ ПОЛУГРУПИ П. Кржовски

Во оваа статија се разгледани нормалните полугру- пи $(xS=Sx\$ за секој $x\in S)$ кои го задоволуваат условот $Sx=Sx^2$.

Ако полугрупата S е нормална и регуларна, тогаш $Sx=xS=Sx^2$. Меѓутоа обратното не важи. На пример, ако S е полугрупа таква што |S|>1 и $|S^2|=1$, тогаш $Sx=xS=Sx^2$, но S не е регуларна (1°), со што покажуваме дека оваа класа е поширока отколку кога S е полумрежа од групи. За класата полугрупи $Sx=xS=Sx^2$ добиваме две карактеристики:

S е нормална полугрупа со својството $Sx=Sx^2$ ако и само ако S е инфлација на полумрежа од групи (2^0) .

Ако S е нормална, тогаш следниве искази се еквивалентни:

- (i) sa cekoj $x \in S$, $Sx=Sx^2$
 - (ii) sa cekoj $x \in S$, $N(x) = \{y \in S | Sx \subseteq Sy\}$ (3°).