ON A REPRESENTATION OF ALGEBRAS IN SEMIGROUPS
G. CUPONA

0. Preliminary definitions and results. Necessary definitions and main
results will be stated first.

0.1. Definitions. Let F be a nonempty set of finitary operators, such
that Fy'_' F; = (7). (F, is the set of n-ary operators in F). If 4 is a set and each
n-ary operator f is interpreted as an n-ary operation on 4, then A = (4; F)
is said to be an F-algebra. Let S = (§;.) be a semigroup and £ : 4 — § such
a mapping that

E(fX1...%y) =E(x1)...E(xp) ©.1)

for each m-ary operator f€ F, and all x,,...,x,€ 4. Then we say that
E:A—>Sisa semigroup homomorphism. The notion of uni-
versal semigroup homomorphism is defined in the usual —
manner. If A : A — A ~ is the universal semigroup homomorphism, then A * is

called the universal semigroup, for A. The cardinal number
[ (4)| of the set A (4)1s called the Wﬁ roup order (i.e. scorder)
of A, and it is denoted by ||A|. The algebra A is said to be s-finite
(s<infinite) iff Al is finite (infinite); if ||A]| =1 then we say that A is
s-singular. If the universal semigroup homomorphism A :A — A" is
a monomorphism, then A is said to be a semigroup F-algebra.

An algebra A = (A4; F) is said tobe a weak F-associative
iff for all fC€ F,, g€ Fy and i€{1,2,...,n} the foﬁowmg identities are
satisfied

S8y . Xy pn—1 =81 . . Xp g a—1
=fx1...x‘_.1gx¢ oo Xmgn—1 -

A weak F-associative is called an f-associative iff for every pair of
sequences f3,...,fp £1,...,8 sSuch tha

i€ Fp 41 ngFm,-g.-n 4.t n=m+...+m
the following identity is satisfied:
JrooSr X Xn =81...8¢ Xg+ .. Xn. 0.3)

(0.2)
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6 G. Cupona

Throughout the paper, by d will be denoted the greatest common
divisor of the numbers in the set:

J={n—1|F,== @)} 0.4)

0.2 Main results
(i) A is s-finite iff A~ is finite.
(i) If A is s-infinite then [A| =[4"|.
(iii) If A is s-singular, then A ~is the cyclic group with order d.
(iv) If & (# 0) is a given cardinal number, then each F-algebra is a
subalgebra of an F-algebra with s-order «.
. (v) If 4 is a set and « a cardinal such that 0 < « < [4], then there is
an F-algebra (4; F) with s-order .
(vi) If |F| > 2, then the class of weak F-associatives satisfies the pro-
positions (v).
~ (vii) If the direct product of a collection of algebras is s-singular, then
all algebras of the collection are s-singular. If |F| > 2 and [I| > 2, then there
exist I-collections of s-singular weak F-associatives whose direct products
are not s-singular.
(viii) Every semigroup F-algebra is an F-associative, and all F-asso-
ciatives are semigroup f-algebras iff d¢J.
(ix) An associative is s-finite iff it is finite. If an F-associative A = (A4;F)
is infinite then |Al = [A4|.
(x) An associative (A; F) is s-singular iff |4] = 1.

1. Universal semigroup homomorphisms. Let A = (4: F) be an F-al
gebra. A semigroup homomorphism % : A— A ~issaidtobe a universa®
one iff for every semigroup homomorphism £ : A — S there is a unique
homomorphism ¢ : A” — S such that § =g A,

Clearly:

1.1. If A:A > A”%and %, : A — B are universal semigroup homomor-

phisms, then there is a unique isomorphismg : A* — Bsuch tha 2, =o A J

The existence of the universal semigroup homomorphism will be shown

now.
Let T = (T;-) be the semigroup which is freely generated by the
carrier A of the algebra A. Thus,

T ={ay..05| 81,585 €A, n > 1) (1.1)

is the set of finite sequences on A, and the operation is the usual concatena-
tion of sequences.

Let

8=al...a,—, b:bl...b‘, a‘,bjEA.
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On a Representation of Algebras in Semigroups 7

We write a7, b iff there exist ¢, ¢y, ..., ¢y.¢"n...,e"s €T and conti-
nued products IT’; (¢';), I1”; (¢”;) in A such that

c= crl o c’r == cul s cu‘ o 7 =H'§ (c!‘), bj =nu’ (cuj). (12)

(If, for example, ¢’ = ¢’y £ A, then a; =IT'y(¢'y) = ¢'y.)
Now we shall prove the following statement:
1.2. The transitive extension © of 7, is a congruence on T, and the ca-
nonical mapping:
X:a—ar (1.3)

is a universal semigroup homomorphism from A into A" = T/r.

Proof. Clearly, =, is a reflexive and symmetric relation in 7, such
that

UTeV = UW TR VW, WRTEW Y,

and this implies that = is a congruence on T.
I fEF,, a=ja,...a, in A, then atya,...a, n T, ie.

[P@=da"=a~...a,"

=A(ay)...A(ay).

Thus, A: A —» A” is a semigroup homomorphism.

Let S =(S;-) be a semigroup, and £:A — S a semigroup homo-
morphism. If (1.2) is satisfied, and if ¢ =e;...¢; (¢; € A), then we have:

E(@)...8(a) =E(e)...5(e) =E(b)...E(by),
and this implies that
@@y, ...a) —E(@)...5(a)
is a mapping from A4 * into §. Clearly, ¢ is a homomorphism from A * into

S and it is the unique mapping such that £ =g A N

1.3. Let A =(A4:F), A’ =(4’;F) be F-algebras and A:A— A"
N :A'— A’ ” the corresponding universal semigroup homomorphisms. If
% :A— A’ is a homomorphism, then there is a unique homomorphism
¢*:A” 5 A'” such that Mg =@~ A 4

Proof. Let T, T', ~ and 7" be defined as in the proof of 1.2. It is easy
to show that: :

ay...a;why. .. by=>0(@)...o (@) oM ... b)),
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and this implies that
" i(ay...a) > (p(a)...9 (@)

is a mapping from 4 * into A’ ~ . Clearly, ¢ is a homomorphism from A * into
A’'”, and itis theunique mapping which satisfies the equation 2’ ¢ =o * A |§

It is easy to show that:

1.4.~ is a covariant functor from the category of F-algebras into the
category of semigroups. f§

= T L ®:A — A’ isan epimorphism (isomorphism), then ¢~ is an
epimorphism (isomorphism) too.

Proof. If @ is an epimorphism, and (a’y...4d’;)" , then
@s...a)"” =92 ((ar...a))
where a'; = ¢ (a).
If ¢ is an isomorphism then:
e*@ N =@~ " =>U)" 0N "=()" . §

We notice that the statement for monomorphisms is not true. Namely
the proposition 2.8 states that each algebra A is a subalgebra of an s-sin-
gular algebra B. Thus, if A is not singular, then the embedding homomor-
phism. e:A— B is a monomorphism, but e*: 4" —+B" is not a
monomorphism.

In the following, T, A, & and t will have the same meaning as in the
proof of 2.1. If k is a positive integer, then A; is a subset of 4 * defined by:

Ak={(ﬂ'l...ak)'rlﬂ‘,...,ﬂ'gGA}. (1.4)

16. If n€J then A" =A,\,...U 4, .
Proof. This is a consequence from the following relations:

” E J ﬂ Aﬂ-+l g Al
AA=A1L‘_J...UAkU A1+1 U .
1.7. A is s-finite iff A * is finite. If A is s-infinite then [|A|| = 4" |.
Proof. From (1.4) and 1.6 follows that if n€J then
Al <47 <Al + (A2 + ...+ A B

The following propositions are obvious.
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On a Representation of Algebras in Semigroups 9

18. ||A]| =« iff |£(4)| < « for every semigroup homomorphism
£:A—S, and | (4)| = « for a semigroup homomorphism 7 : A — S.

1.9. If A’ is a homomorphic image of A, then [A’|| < [|A|l.
1.10. If F'CF then ||(4;F)|| < | (4;F)|-

2. Semigroup-singular algebras. Some example of s-singular algebras
will be given first.

2.1. Let A be a nonempty set, 0 a fixed element of 4, and ¢ : x — x
an injection from 4 into A. If £ is an n-ary operation on 4 such that

fin=x fx'xi=f10=0, (2.1)

then the algebra A = (4;f) is s-singular.
Proof. If £ : A — S is a semigroup homomorphism, and a€ A, then

E(a) =E(fa™) =E(f2a'm a™Y)
=E@PE@P—t =E(fa"" fa" a*)
=E(fa""10)=£(0). §

2.2. Let /. g be two distinct elements of F, such that fEF,, g€ Fy.
If there is an element e & A such that

fren—1l=x, gxe®—1l=e, (2.2)

for every x € A, then the algebra (4; F) is s-singular.

Proof. If £ : A— S is a semigroup homomorphism and a¢€ 4 then
we have:

£ (@) = E (gfaemtn— ) =E (@) E ()m+n—?
— E(fgaem+n—2) = (fer)
=E().

23. Let F=F UF, FN\F'=Q, F# 2, F'# .16 =(G;")

is a semigroup with a zero 0 and an identity e, and ifan F-algebra G (F', F"')
is defined by:

FEFNFy > fXy... % =0 (2.3)
BEF'NEy 8%y Xm = X1+ Xms
then G (F', F”') is an s-singular weak F-associative.
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Proof. Tt is easy to see that G (F', F") is a weak F-associative. Let
E:G(F', F')— S be a semigroup homomorphism. If f€ F,\F', g€ F,(\F"
and a € G, then we have:

£(a) =E(gn—tae =0 —1)—E (a) £ () =~ m—1)
=E(fm1lge oD m—D) = £(0),

and this implies that G (F, F”) is s-singular. §

24. If 4 is a nonempty set, and f an n-ary operator, then thereisan
s-singular algebra (A;f).

Proof. Let 9 :x-— x' be an injective transformation of 4 and 0 a
fixed element of 4 such that

X =x or X =0=x=0, (2.4

Clearly, there is an n-ary operation on f such that (2.1) is satisfied, and if f
is such an operation, then by 2.1 (4; f) is s-singular. §

25.If | F| 2 and if 4 is a nonempty set, then there is an s-singular
weak F-associative.

Proof. First, a semigroup (A; -) with a zero and an identity can be built,
and then an s-singular weak F-associative can be obtained as in 2.3.

If F=F, ={f}, then a weak associative (4;f) is called an n-semi-
group. It is well known that:

2.6. If (4;f) is an n-semigroup, then there is a semigroup B = (B; )
such that 4 Z B and

0,2 L, T I

for all x,, ..., x, € A. And, if B is generated by 4, then B is said to be a
covering semigroup of (4; f).([4], p.- 25). j§

As a consequence of 2.6, we obtain that the assumption [F| =2 is
essential in 2.5. Namely, we have:

2.7. An n-semigroup (4; f) is singular iff |4 =1.

Now, we shall show that the class of s-singular F-algebras is not
hereditary.

2.8. Every algebra is a subalgebra of an s-singular algebra,

Proof. Let A =(A4; F) be an F-algebra.

(i) Let f€ F,, g € F,, be two distinct elements of F, and e & A. An
algebra B = (4 |J {e}: F) can be defined such that A is a subalgebra of B,
and (2.2) is satisfied for all x € B. Then, by 2.2, B is s-singular.

(ii) Let F=F, = {f}.and let Bbeasetand ¢ : x — x’ an injective trans~
formation of B, such that 4 C B\ ¢ (B), 0¢ B, and (2.4) is satisfied. Then,
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an algebra B = (B;f) can be defined in which A is a subalgebra and (2.1) is
satisfied. By 2.1, B is s-singular.

2.9 The class of subalgebras of s-singular weak F-associatives is a
proper subclass of the class of weak F-associatives.

Proof. 1) Let A be a weak F-associative and A:A > A" the universal
semigroup homomorphism. In a similar way as in the proof of 4.6, it
can be shown that if a,b€ A and A(a) =A(b), then there exist two
sequences of operators f...fy, £1.--8s such that:

fr-Sfr @Xy. 0 Xp =81 -85 bxy...Xn, (2.5)

for all x;,..,%; € 4.

2) Let B be a nonempty sct and A the weak F-associative which
is freely generated by B. It is easy to see that if a €C and b A are two
distinct elements of A4, then no equation of the form (2.5) is satisfied in A.
Therefore A can not be embedded in an s-singular weak F-associative.

2.10. If A is an s-singular F-algebra, then A" is the cyclic group with
d elements.

Proof. Let C; be the cyclic group with a generator ¢ and order d. It is
easy to see that the mapping £ : A —»Cy defined by: (yx) £ (x) = ¢ is a uni-
versal semigroup homorphism. §

3. Algebras with arbitrary semigroup orders. The main results in thiS
part are statements 3.6 and 3.7 which are generalizations of 2.4, 2.5, 2.8,

and 2.9.
31. f FAH=yU U f4 and A* = AN_F(4),
=0 fCF,
then
Al = |4* + L.

Proof. 16 0. & A%, § = A* ) {0}, (yx.y€S) x-y =0 and
x if xCA*
5(")==0 if xCAN A%

then £ : A — (S; -) is a semigroup homomorphism such that & (4)| =1+
+ |4*. §

As a consequence of 3.1 we obtain that:

3.2. If A is s-singular, then it is surjective, Le. F(d)=A.§

33. If A = (4; F) is a subalgebra of B = (B; F), then

|[BY] < [[A]] + B\ 4l
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Sacal

Proof. Let g :B— B” be the universal semigroup homomorphism.
The restriction £ = Az |4 : A — B " is a semigroup homomorphism and this
implies that:

IIB| = [As(B) | < | A (4) | + | A (B 4)|
L|IE@D|+ BN\ A<|A]+[B\ 4. B

34. Let A = (4; F) be an algebra, C a’set disjoint with 4 and 0 a fixed
element of C. If B = A 1 C and if an algebra B = (B; F) is defined by:

(i) A is a subalgebra of B;

(ii) fEFy (byy ..., by) EBA\ A" = fby ... b, =0,
then

Bl = [[A]] + |€]-

(The algebra B will be denoted by A (C).)

Proof. Let £E:A —S be a semigroup homomorphism such that
[E(4)| = ||A||, and SN C= (. Define a groupoid D = (S U C; ) such
that S is a subgroupoid of D and

X% ED XD\ SXS=>x#y=0.
Clearly, D is a semigroup and the mapping n : B — D defined by

_[E® i xea
W(x)"{ x v‘ XEC

is a semigroup homomorphism 7 :B — D. We also have:
(n@B) =[nD]|+[2(O)|=|EA|+|C|=
= [|All +[C],

and this implies that ||A|| 4 |C| <||B||, whence by 3.3 we obtain that the
equality holds. [§

It is obvious that:

3.5. If A is a weak F-associative, then A (C)is also a weak F-associative. J§

3.6. Let « (# 0) be a cardinal number. Every algebra is a subalgebra
of an algebra with semigroup order «.

603



604

On a Representation of Algebras in Semigroups 13

Proof. Let A be an F-algebra. By 2.8, A is a subalgebra of an s-sin-
gular algebra B. Let C be a nonempty set suchthat B\ C =, and x =1 +
+ |C|. Then A is a subalgebra of B (C). By 3.4, we have:

1B (C)| = [1Bl| + [C| =1 + |C] =

3.7. Let A be aset and «(#0) a cardinal number.

(i) There exists an F-algebra A = (4; F) with semigroup order w iff
o< |4].

() If |F|>2 and a<_|A|, then there is a weak F-associative
A = (4; F) with semigroup order o.

Proof. (i) If A= (A4;F) is an algebra then ||A|| =|A(4)|< |4l

Assume that a < (4|, and 4 =BUC, BNC=), 1+|C|=u
By 2.4 and 2.5 there exists an s-singular algebra B = (B; F), and by 3.4 if
A =B(C)=(4;F), we have

lAll ={|Bf| +|C| =1+ |C] =«

(ii) By 2.5, 3.4 and 35.

Some properties of semigroup orders of direct products will be shown
now.

38. If (A is a collection of F-algebras, then:

IT[[Aqf| < || TTA¢f| < IT |44,
icr i€l i€l

Dier

Proof. If (3 : Aj—Ay
sal homomorphisms, then

3 ),_ €1 is the corresponding collection of univer-

€= Oi)fEI :HA‘ ‘—-inA‘A
i€l i€l
is a semigroup homomorphism such that
ST 4) =TI (4y). §
i€l i€l
As corollary of 3.8 we obtain the following statement.

3.9. If the direct product of a collection of algebras is s-singular, then
all algebras of the collection are s-singular.

The following proposition shows that the converse is not true.
3.10. If |F| > 2 and |I| > 2, then there exists a collection (A‘)"Ef of
-singular weak F-associatives whose direct product is not s-singular.
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Proof. Let F', F”, I' and I'" be nonempty, and

F=F UF', . IsFyl', FPAF' =INI'"=@Z.
If G is a semigroup with a zero 0 and an identity e (#0), and if:

i€l' > Ay =G (F, F"),
icI" = Ay =G(F", F),

then (A‘)fé 7 is a collection of s-singular weak F-associatives. The direct pro-

duct 4 =II A, is a weak F-associative which is not surjective, and thus (by
ic1
32) it is not s-singular.

e ‘ 4. As.s‘ocfa'rfves; IHere. it will be shown that nontrivial s-singular asso-
ciatives do not exist (Theorem 4.8) and that the semigroup order of an in.
finite associative is the ordinary order of the associative (Theorem 4.11)

In the following it will always be assumed that A = (4; F) isan F-asso-
ciative and that K is the additive semigroup of nonnegative integers ge-
nerated by JU! {0}.

The following general associative law can easily be shown.
41. Letngy,...,n., My, ..., my €J and n K be such that

Ao+ ...+ np=n=my- ...+ mg,

and L€ F,, ., 8€Fy, , . Hpy ooy py is a sequence of nonnegative inte-
gers such that py< py 4, <o+ ...+ n,, then the following identity is
satisfied:

Co---8eXo.o Xn=JoXo... fiXp .- SrXp, ... Xn

In the following, every continued product Il(x, ..., x,) will be de-
noted by (x...x,); if n =0 then II (xy) = x,.

The following results (in slighty different formulations) are known,

4.2. The class of semigroup F-algebras is equal to the class of F-asso-
ciatives iff dcJ. [3]

4.3. The class of semigroup F-associatives admits homomorphic ima”
ges iff dcJ. [2].
4.4. A is surjective iff (47 +1) = 4, for each n€ K. [2]. R

4.5. (i) There exist ny, ..., n. €J such that every n€ K has a form
n = v ny+ ...+ v ng where v; 0. If k is the minimal number with the
above property, then {m,, ..., n;} is uniquely determined and it is called
¢he basis of K.
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(ii) There is a positive integer ¢ such that
K*={vd|v>4q]CK,

and if ¢ is the least such a positive number, then K* is said to be the regular
part of K. [1]

46.IfnEK* vE{l,...,n+ 1} a b€ Aand a v b, then the following
identity is satisfied in A:
(X0 Xy ey Oy s Xy ) s 0y s 2y g D s X)) “.1)

Proof. If a =ay...a,, b=0,...b, a;, by A and a tyb, then by
1.2, there exists an eyey. .. ¢, & T (e, € A) such that the following equations
are satisfied: :

iy =(l°-n—-«f'moaal'—-("mu+1----"mo+m1+1)s wivy Bp=(.c.0)
4.2
by :(ﬁ’o---epa)’ l"1=("“-’g.;v‘,+1---"31.?,,4-;5-1“9 cessbg=(..e),
and
Potoeotprtr=t=m+...4+my+s (4.3)

Db nivs Py My o 5oy Mg C KL
From (4.3) it follows that d|r <> d | s, and if this is satisfied, then
n+r,n+s€cK* forn+4r,n+s>qdand d|n+r, d|n+s.
This implies that:
s 3 By i s XY= (X oy g Cptnls ORI e Xog) (4.49)
=Xy o Xy BEXy & e X ) I

for all xy,...,x,€ A
Assume now that a, b A and a tb. Then there exist

clacm“-»e'rET!
such that

('Ty €1, €y TyCa; s » 5 €. Ty By

and this, by (4.4), implies that:
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— e —— —— — e g— ——

4.7. If A is surjective, and @, b€ A, a < b, then (4.1) is an identity in
A, for each n€K, and vE€{1,...,n+ 1}

Proof. This is a consequence from 4.4 and 4.6. |
48. If A is s-singular then |4|=1.
Proof. By 3.2, A is surjective, and by 4.7 the following identity is satisfied
(1. X)) = (1.0 00) =Ca
for all Xy, ..., Xay Vis o0 YA and #EK.

If m,n€ K, then

en =(o.- - ym) X1 Xn) =W . - Ym—1 WXy ... Xn)) = € (= ©).

If we define a binary operation on 4 by (yx, ¥) x:y =c¢, then we
obtain a semigroup (4; -) and the identity mapping] 1, is a semigroup homo-
morphism from A in (A;-). This implies that A is both s-singular and semi-
group F-associative, and this is possible iff [4]| = 1. j§

49. Let {my, ..., mg} = Q be the basis of the regular part K* of K,
and {n,...,n,}=P =K\ K*.

If ||All =« then

A <A —a)[1 +@—1D)"+ ...+ (@—1)"] + a@™ + ... + «™). (4.5

Proof. By 4.6, if mEK*, vc{l,...,m+ 1}, and if a, bE A are
such that atb, then

o SRR TR e et ) = (2 e M - > AR 03}

This implies that |(A™+ 1) | < ™+ ! and thus

B=U A"+ ) > B|<aXam
mEK(‘ I mumeg ; (4.6)
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By 3.1, we have:
A* = AN\ F(4) > [4*| <a— 1 3 4.7

Let C = F(4) "\ B. If ¢c£C, and if n is the maximal number of P
such that ¢ € (47 + 1), then there exist @, . . .. @, & A* suchthat ¢ = (g, ... ap),
and this, by (4.7), implies that

ICl<@—1DHZ (@— D 4.8
nepP

Finally. (4.6), (4.7). (4.8), and A = A* (U BJ C imply that (4.5)
is satisfied. N

The following two statements are direct consequences from 4.9.
4.10. A is s-finite iff it is finite.
4.11. If A is infinite then ||A|| = |4].
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PE3MME
EJHO TIPETCTABYBAIGE HA AJITEBPH BO MOJYIPYIH
I". Yyiiona

Heka A = (A; F) e anrebpa co Hocute: 1 A H MHOKECTRO onepatopu Fu Heka 8 =(S5:)
e nosyrpyna. 3a fpeciHKyBameTo E:A-+S penume feka ¢ NOAYrpymneH XOMO-
Mo phusam, ako (0.1) e HACHTHTET 33 CEROj N-aPeH ONepaTop S € F. MowmoT 32 y Hu-
Bep3aneH noayrpyner xomomopguszam A:A A" ce poseayba ua oOuveH HadHil, H
mpuToa 3a A BeNHME €Ka ¢ YHUBEp3aAHa MONyTrpymna TPHAPYRKCHA HA A,
KapausanuuoT 6poj [ 2 (4) | =[|A|/ ceBuka noayrpynceH pea Ha A;axoellAll =1,
Toram 3a anreGpata A BenuMe J€Ka € CHHTryJ napHa. AnreGpata A ce uka cnab
ACOWMjATHB AKO eIeH CIOKEH NPOH3IBOA HE 3dBHCH O PACIOPEOT HA ONMEpaTOpHTE;
A CeBHKA ACOINM]ATHB aKO CIOKEHATE MPOH3BOAN 3aBUCAT CAMO O/l HHINTE C/IEMCHTH
O 11 HOCHTENOT Ha anredpaTa, HO He W 0j] HH3HTE ONCpaTopH,

2
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Ke dhopMympame HEKONKY Pe3y/ITaTH WITO ce HoxaxaHd Bo paborasa. (i) |[A]l e
xoHeuer axo A~ e komeuen; (ii) ako ||A|| e Geckoreuer, Toram||A|| = |4~ [; (iii) axo A e
CHHTYJIApHA anrebpa, Toram A~ e UHKIHYHA TPyna co pel d, kane wro d ¢ HajroNeMHOT
3aeMHMYKH geiuTen Ha GpoesuTe on MHoxectsoTo (0.4); (iv) ako «(F#0) e ganeH xapau-
Haner 6poj, Toraum cekoja anrebpa e nmomanrebpa Ha Hekoja anreGpa co monyrpynes pem o;
(v)ako e |4| =« u 0 < [ <«, Toram nocrom anrebpa (A4; F) co nomyrpynex pexn {; (vi)
axo e |F| > 2, Toram (iv) u (v) Baxar 3a knacara cnabm F-acouujaTusu; (vii) ako AHMpeKT-
HHOT NMpOM3BOJ HA €IHA KOJNEKUMja aareGpu e CHHryJIapeH, Torail cekoja aareGpa ox xo-
JIEKIIMjATa € CHHTYIapHa, HO ako e |F| > 2, o6paTHOTO HE MOpA /1A BaXH; (viii) enex acoum-
jATHB MMa KOHEYeH MONYTpyNeH pejl aKo € kowewex; (ix) monyrpymHHOT pejl Ha ezex Gec-
KOHEHeH ACOLMjaTHB € CAHAKOB CO PEIOT Ha ACOUMjaTHBOT; (X) HE MOCTOM HETPHBHMjaeH
CHHTYJApEH ACOLMJATHB.
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