E. Let φ and ψ be two endomorphisms of (S, \cdot) and

(16)
$$(y x, y) x_{\varphi} \cdot \psi y = \varphi(x) \psi(y)$$
.

We have

 $,, \cdot$ " s. $,, \cdot$ " \rightarrow $,, \cdot$ " s. $,, \varphi \cdot \psi$ ",

and

[,, ·" l. a. ,, ·", ,,
$$\varphi$$
 · ψ " = ,, φ ·* ψ "] \rightarrow ,, ·" s. ,, φ · ψ ".

$$,, \varphi \cdot \psi$$
" = $,, \xi \cdot \eta$ " $\rightarrow \varphi = \xi, \psi = \eta$.

Let e, o be the identity element of (S, \cdot) and (S, +) respectively. From \dots 's. \dots ' it follows \dots '" = \dots '"; in this case (S, \cdot) (=(S, +)) is a commutative semigroup.

A semigroup with identity e is commutative if and only if there exists an operation ",+" such that ", " s. ",+" and $(v x)(\pi u, v)u + e = e + v = x$.

F. Let
$$\prod_{r=1}^{r} x_r = \sum_{r=1}^{r} x_r = x_r$$
 and $\prod_{i=1}^{n} x_i \left\{ \sum_{i=1}^{n} x_i \right\}$ be an arbitrary product

(sum) of the elements $x_1, x_2, \dots x_n \in S$. We have

$$,,\cdot\text{`` s. },,+\text{``} \to (V x_{l,j}) \prod_{l=1}^{n} \Big(\sum_{j=1}^{m} x_{ij} \, \Big) = \sum_{j=1}^{m} \Big(\prod_{l=1}^{n} x_{lj} \, \Big).$$

3. Some notes

A. The fact that we have supposed some known properties of the groupoid (S, \cdot) , and not of (S, +), is not essential, because "l. c.", "c." and "s." are simetric relations, and "·" l. a. "+" \rightleftarrows "+*" l. a. "*".

B. The all results which we have got above can be transfered to five other relations:

(17)
$$(y u, v, x, y) u (x + y) = yx + u$$

$$(18) \qquad = x + uv$$

$$(19) \qquad (u+x)y=y + xu$$

$$(20) = ux + v$$

(21)
$$(u+v)(x+y) = yx + vu.$$