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TERM REWRITING SYSTEM FOR SOLVING
THE WORD PROBLEM FOR STEINER LOOPS

Smile Markovski and Ana Sokolova

Abstract

The variety of Steiner loops (or sloops) consists of algebras of
type < 2,0 > satisfying the laws (S1), (S2) and (53). It is shown
in [7] that the word problem for the variety of sloops is solvable,
but that proof is obtained as a consequence of a theorem of T.
Evans [3]. Here we use a direct approach, i.e. we define a term
rewriting system that solves the word problem for sloops, in such
a way obtaining a more effective algorithm than that given in [3].

1. Preliminaries

Given a variety V of algebras of type {2, we say that the word problem
for V is solvable if there is a decision procedure answering the following ques-
tion. Given arbitrary terms u, v from an absolutely free finitely generated
algebra of type 2 and a finite set of defining relations
{(uiyv;) | i = 1,2,...,n}, whether (u,v) is in the congruence generated
by the defining relations and the identities defining V. By a suitably de-
fined term rewriting system here we will present such a procedure for the
variety of sloops. In what follows we assume that the notions such as free
algebra in a variety of algebras, absolutely free algebra (or term algebra),
and related ones are known ([8], (9]).
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8 Smile Markovski and Ana Sokolova

A Steiner loop, or a sloop, is an algebra (L,-,1), where - is a binary
operation and 1 is a constant, that satisfies the following identities

(S1) 158 =8
(S2) Toy=1y-a
(S53) r-(z-y)=y

A Steiner triple system (STS) is a pair (L, M) where L is a finite set,
M is a set containing three-element subsets of L with the property that
for any a,b € L (a # b) there is a unique ¢ € L such that {a,b,c} € M.
It is evident that any STS on a set L enables a construction of a sloop
on the set L U {1} where 1 ¢ L, and vice versa. So, there is a one-to-one
correspondence between Steiner triple systems and finite sloops.

By Termy = (Termy,-,1) we denote the absolutely free algebra (the
term algebra) over a set of free generators X, in the signature -, 1.

Further on we will use in great extend the notions and results from [7],
and for that sake we present the needed definitions.

The mapping d : Termy — N (the weight of a term), where N is the
set of nonnegative integers, is defined inductively as follows:

d(1):=0, d(z):=0fora e X, d(t;-ty):=d(t1)+d(tz)+ 1.

Note that d counts the number of the operation symbols - in the terms.

In what follows we shall assume that X is a finite ordered set.
The ordering of X can be extended to a well ordering of Termy by us-
ing an induction on d as follows. 1 is the smallest element and for any
t.s € Termy we define: if d(t) < d(s) then t < s, and if d(t) = d(s),
t =11 -t3, s =81 -5 thent < siff t; < sy or t; = 83, 2 < 383.

The definition of the mapping R : Termy — Termy given in [7] (re-
duction of a term) is a complex one and here we note that R can be defined
by induction on d as follows. R(1) = 1, R(z) = & for « € X, and for
t,s € Termy, such that t = R(t), s = R(s),

(1 g=i
s fii=e]]
t g=]1
RBll-s)=¢n s =808 = - BF

t=3s-4 Oor & = -8

s-t s <t and none of the previous holds

[ 15 otherwise

For arbitrary s,t € Termy we define R(s-t): = R(R(s)- R(t)).
An element 1 € R(Termy ) is called a reduced term.
The mapping R has the following properties ([7]).
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TERM REWRITING SYSTEM FOR SOLVING THE WORD PROBLEM FOR STEINER LOOPS 9

Proposition 1. R" = R, for each n > 2, and for all t,s € Termyx we
have:

(i) R(1-t)= R(t);

(i) R(t-s)=R(s-1);

(i) R(t-(t-5)) = R(s)

(iv) R(t-s)=t-s= R(t)=t, R(s)=s;
(v) R(R(t)-s)= R(t-s);

(vi) R(R(t)- R(s)) = R(t-s);

(vii) ‘R(t)#t=> R(t) <t.

a
An operation o on R(Termy) is defined by
tos:= R(t-s)forall t,s € R(Termy)
and it is shown that the following holds([7]).
Proposition 2. (R(Termy),o0,1) is a free sloop with free base X .
. a

Let E = {(t;,s:) | i=1,...,q, t; # si} C Termy X Term x be a finite
set of defining relations, and denote by Ay the subset of Term x X Termx
defined by Ax ={(t,s) | t,s€Termx, t=s is an instance of (S1) — (S3)}.
Let a be the congruence on Termy generated by E U Ax, ie.
a = Cgrermx(E£U Ax).

Now, the word problem for the variety of sloops is the decision problem
- whether u a v for arbitrary given u,v € Termx. .| =Ry

If o = CgTermy(E'UAx), where E' = {(R(t:),R(si)) | i=1,...,4},
then @ = o', since o R(z) and 2z o' R(z) for all 2 € Termx. So, from
now on we consider t;,s;(1 = 1,...,¢) reduced.

Using the general T. Evans’ result in [3] we show in [7] that

Theorem 1. The word problem for the variety of sloops is solvable.
a

In what follows we present a term rewriting system for solving the
word problem for sloops, whose definition in a way captures the ideas of
Evans’ algorithm for universal algebras but is less complex, directed and
precise. Much more, differently than the Evans’procedure, the term rewrit-
ing system depends only on E and so, for a given E, one can check whether
w a v for any u,v € Termy.

In general, a term rewriting system (TRS) is a set of rewrite rules of
the form l; — r;, where I;, r; (i € I) are terms in some signature € and
over a set X.
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We must also mention here the notion of a context C'[—] ([5]). Namely,
context C[—] is any term in signature Q over a set X U {~} (— ¢ X) that
has exactly one occurrence of — in it. By replacing any term ¢ € Termy

for — in C[—] we get a term C[t] whose subterm is z. Sometimes we shall

also use indices, i.e. C;[t] will denote a context of a certain term .

Given a TRS on Termy it generates a relation — (rewrites in one
step) on Termy as follows. For u,v € Termx, v — v iff there exists
a rewrite rule /; — r; such that u = C[l;], v = C[r;]. The transitive
and reflexive closure of — is called rewrite relation, and will be denoted
by —. We say that — is terminating if there is no infinite sequence
g — &3 — T3 — ... such that z; # z;_;.

A TRS is said to be locally confluent if

(Vz,y,2 € Termx )(3w € Termy )(z — yAz — 2=y = wAz — w)
and it is said to be confluent (or Church-Rosser) if
(Vz,y,z € Termy )(3w € Termy )(z Ziyhe — z=>y = wAz = w).

In what follows we shall need the following Newmann’s Lemma ([2], [5]):

Lemma 1. If a TRS is terminating, then it is locally confluent if and
only if it is confluent. n)

One important property of a TRS is the unique normal form property
(UNF). A TRS has the UNF property if for every term u € Termy, there
is a unique term u* € Termy such that u . u* and for all w € Termy
if u* == w then u* = w. It is clear that when the TRS has the UNF
property, the relation — on Termy defined by u « v <= u* =7v" is
a congruence on Termy.

For the TRS we shall define, we shall also prove its UNF property
as well as that for any u,» € Termy, u a v iff certain terms uniquely
corresponding to u and v respectively, rewrite to the same normal form.

2. Definition of the TRS and the main results

In this section we give a definition of the TRS for solving the word
problem for sloops and state the main results, without clarifying all the
details in the definitions and without proofs, for sake of readability. All the
detailed construction as well as proofs will be given in the next section.

Given a set E of defining relations and a generating set X, both finite,
we take Y to be the set of all subterms of ¢;, s; (i = 1,...,¢) union X U{1}
and take an equivalent disjoint set B = {1',by,...,b,} to Y and a bijection
b:Y — B, such that b(1) = 1’. For simplicity we shall also denote 1’
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by 1. The restriction of b over X U {1} extends to a monomorphism from
Termy into Termp, and the image of any term ¢ € Termx under this
monomorphism will be denoted by £. It is in fact a transcription from the
alphabet X into the alphabet b(X).

Then we deal with Termp. By an inductive construction we obtain
two finite sets D C B - (B - B) and V C BU B - B that "capture all the
consequences” of the defining relations in E.

The TRS on Termp is defined by the following four rules schema.

(WPS1) t — R(t) t € Termp,t # R(t)
(W P52) by — 1 b;eVNB
(WPS3) b — b; bjb; e VNB-B
(W PS4) bib; — by bi(bib;) € D

Proposition 3. The relation — has the UNF property and if t*
denotes the UNF of t € Termp then:

(i) (Vz € Termp) z* = R(z)%;

(ii) z = yz € Termg = 2" = (y*2")";

(iii) (V2,97 € Termp)(z*=y* => (22)"=(29)" A (22)"=(y2)");
(iv) (Vz,y € Termp) ((2y)" =1 <<= 2" =y"). .

Define a relation § on Termy x) by s Bt <<= s* =1".

Proposition 4. The relation 3 is a congruence on Termyx) and, for
all t € Termyxy, t B R(t). |

Theorem 2. (Yu,v € Termy )(u a v < u § 9). il

Now, since Termy(x) C Termp, the solvability of the word problem for
sloops is a consequence of the property that for each v € Termx the UNF
u* of % can be found in finitely many steps.

3. Precise definitions and proofs of the results

First in this section, we focus to construction of the sets D and V', and
then we present proofs of all the results.
By induction on weight d, define a mapping P:Termy — P(Termy )
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as follows.

{{f} i te Xu{l}
g {t}UP(t)U P(ty) t=1tt,.

Y = (\ U (0 P(_r;)) U (O P(.s,-))) \ {1}.

The set Y is finite. Let n = |Y|, B = {b,:..,b,} be a set such that
BNnY =0, and let b:Y — B be a bijection that we extend to bijection
from Y U {1} into BU {1} by b(1) = 1.

The restriction b| x {1} can in a unique way be extended to a monomor-
phism ~:Termy — Termp, and the image of ¢t € Termx will be denoted
by t.

For the construction that follows we shall need two types of mappings:
—1k: Termp — Termp for | # k, and —;: Termp — Termp for I,k €
{1,...,n} defined inductively by d as follows. '

t t#b, teB
=k ()= ¢ b t=0;
R(—u1k (t1) =1 (12)) t=1t 1.
t t#b, teB
=+ (t):=41 t=1¥

R(— (t1)- =1 (t2)) t=1 -1

Note that the element b; does not appear in the terms —; ;. () and —; (2).
Now, we shall define the sets D,V C Termpg. First we form sets D;
and V;.

Let Vo = 0 and let Dy = My U My U M3, where
My = {b | {b1,1} = {8(t).b(s0)}, (ti,50) € E},
My = {bibs | 1 < k, {bi,bx} = {b(t;),b(s:)}, (i, i) € E},
Ms = {bj(bibi) | u = uyuy € Y, {by,bg,b;} = {b(w),b(ur),b(uz)}, I < k}.

Note that, for each u = uyus € Y, there are 3 different elements in Mj,
since we assumed that ;. s; are reduced.
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If D,, and V,, are formed we put Dy, 0 = Dy, and Vi o = Vo BB s
is formed and if: /

1) Dm.sN B # 0 and b; € Dy, sN B is the element with smallest index,
then we define '

Dm,s+1 == (Dm.s)\{l}a Vin,s41 = Vm's u {bf}

(Then b; ¢ D,, s+1 and b; does not appear in the terms of Di.iy1.)
N DB =9, Du.NB-B'# @ and by € Dy s N B - B is the
element with lexicographically smallest index [k, then we define

Dm,s+l ===k (Dm,s) \ {1}1 Vm,s+l b Y (Vm,s) U {blbk}-

(Then biby € Dy sy and b; does not appear in the terms of D, s4+1.)
3) DpsNB=0and Dy ,NB-B= ( then

!
Dm = Dm,sa Vm{—l = V;n,s:

and finish here with forming the sets Dy, ;.

Note that 3) is achieved after finitely many steps since D, s N B#0
or Dy sN BB # 0 implies that Dy, 41| < | Dy sl Also, all terms in Dy, o
and V,, s are reduced ones.

Now we put Dyyq = DU {bibi | 1 <k, bia(bizbis), bjr(bjabjs) €
D, {ir,inyis} = {1,i,5}, {d1s g2, ds} = {k, 6,53}

Let r be the least positive integer such that D,y = D}. Such an r ex-
ists because if | Dy, 41| = | D/, |+p for some p > 0, then |D}, 4] < | D] =
2= |D! |- p < |D.|. Namely, if bjbx € Dyny1\ Dy, then by 2) we have
that biby ¢ D5, ., and some term of form b;(b;b;) (or by(bjbi) or bi(bibj) ...)
belonging to Dy, +1 will not be in Dj, ., anymore.

Finaly, we define the sets D and V by: D = Dyyq, V = Viyy.

The next proposition follows from the definition of D and V.

Proposition 5.
i) PnB=DNnB-B=10

(i) b;(bibk) € D = |[{b, by, b;}| =3

(iii) b € V, bj(bibi) € D = | ¢ {k,i.j}

(iv) bieV, bibpeV =1¢ {i,k} O
(v) bibg €V, bj(bnb;) € D = [ ¢ {m,i,j}

(vi) bibieVibphieV = k£i#1#]

(vii) bjbieV = i>j.

1933



1934

14 Smile Markovski and Ana Sokolova

In order to clarify that D and V form a kind of closed set of defining
relations, we define a mapping e: Termp — Termy by induction on d in

the following way.
b= () r€B
e(z): =

e(z1)e(z2) T =212 .

Note that = e(z) for each ¥ € Termy.

Proposition 6. For each b; € VN B, bib; € V.N B - B and each
bk(bibj) € D we have

e(b;) a1,  e(b;) ae(b;), e(br) a e(bb;).

Proof. Let b;(bbi)€ Do, I < k. Then e(bibi)=b"1(b)b~ 1 (bg), e(b;) =
b_l(bj) and there exists t € Y, t = t11a, {b;,bk,bj} = {b(i),b(!l),b[tg)},
such that t;t2 a t (by reflectivity) and tt; a s, tty a by, t1t a i, 2t a 1y,
since Ax C «a and a is a congruence. Next, bjby € Do in fact means
that (e(b;),e(bg)) € E C a or (e(bz),e(b;)) € E, so the proposition holds,
and by the same reason the case b; € Do implies e(b;) o 1. Hence, the
proposition holds for Dy, Vp. Assume it holds for Dy, Vy, and it also holds
for Dy sy Vings-

Let 2,y € BUB-BUB-(B-B). If (b)) a 1 then e(z) a e(— (z))
by the definition of —, since a(2 Ax) is a congruence (and then ¢ o R(t)
for each ¢t € Termy). Out of the same reason e(b;) a e(by) implies e(z) a
e(—1k (2)). Thus,

e(b)) @ 1A e(2) a e(y) = e(— () @ e(—i (),

e(by) a e(by) A e(z) a e(y) = e(—1k () a e(—k (¥))-

As a consequence we have that the proposition holds for Dy, 541 and Vi, 541
too.

Finally, if bil (bigb§3)a b,‘n (bJQbJS)GD:'rn {‘ila 1.21 "“3}={31]$ k}& {Jl ’ j?'s .?3} =
{i,,1}, then by inductive hypothesis e(b;b;) a e(by), e(bib;) ae(b;), and we
get e(by) a e(b)(e(b;)e(br)) ae(by)(e(bibj)e(bib;)) a e(b;). Hence, it holds
also for D41, Vin41 as well. O

. . * . . . . - .
Proposition 7. The relation — is terminating i.e. there is no infi-
nite sequence xyg — ¥ — ... where T; # Tiy1. 0

The proof of Proposition 7 is a direct consequence of the next lemma.

Lemma 2. (VYz,y € Termp) (z — y = z > y).
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Proof. The construction of the sets D and V, Proposition 1 (vii) and
Proposition 5 (vii) imply that the assertion is true for the rewrite rules
(WPS1) — (WPS4). Furthermore, for any context C[-] and any rewrite
rule /; — r; we have C[l;] > C[ri]. O

Proposition 8. The relation — is confluent.

Proof. By Nemann’s lemma and Proposition 7 it is enough to show
that the relation — is locally confluent. Let z,y,z € Termp, 2 — y,
@ — z. The existence of w € Termp such that y — w, z — w holds
trivially in the cases when z € B or y = z or z = C[212;], y = C[z]2;],
z = C[z124] (then we can take w = C[z{z}]) or z = Clz1], y = C[R(z1)],
21 = Cy[xs], = = C[C1[R(z,)]] (then we can take w = y). By induction
on the well ordering of Termpg we shall prove that it holds in all the other
cases. It is enough to prove it when z = zy2, y = R(¢) = R(R(21)R(z3))
and z is obtained after application of (W PS52), (WPS3) or (WPS4). Then

(1 R(z1) = R(z2)
R(z2) R(zy) =1
R(z,) R(z2) =1
y=R(z)=(t R(z1) = tR(z2) or R(x1) = R(za)t’

or R(z2) = tR(zy) or R(x3) = R(zy)t
R(z2)R(z1) R(z2) < R(x;) and none of the above holds
| R(z1)R(z;) otherwise

and 2 = 2129, T — 21 OF 2 = B12y, Ts — Z9.

It is enough to consider the following possibilities.

1. y= 1, 2= =mxs. Then we have 21 < &, 1 — 21, Ty —
R(zy) and, by inductive hypothesis, there exists w; € Termp such that

* *

7 — wy, R(21) — w;. Now z = 2129 — 2z R(23) — wyR(z3) —
wuy — 118 F

2. y=t, R(zq)=tR(23), z=212;. In this case we have x93 — 2,
23 — R(z3), 2 < ¥, so there exists w; € Termp such that zp — wy,
R(z3) — w;. Then z — (tR(22))2 — (tR(z2))wy iy (twy )w,
s

3. y=1t, R(zy) =tR(z3), 2 = z122. Now &y — 2z, &1 — R(z;) =
tR(z5), 1 < z,80 1 = wy, R(z1) —~. w, for some w; € Termpg. We
have two cases. "

(i) R(x1)R(x2) < . Since R(z1)R(x2) — wiR(22), R(z1)R(22) =
(tR(x2))R(x2) — t, by inductive hypothesis and Newmann’s Lemma there
exists w € Termp such that wy R(z3) _L, w, t — w. Hence, z = 212y —

*
w2y — wiR(23) — wand y=t — w.
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(i) R(21)R(z2) = 2. Then z; = R(z1), 22 = R(z3), z1 = tas

and'zy — 2z, i.e. try — z. Now, if 2y = tz5 and 23 — 2} then
z = ey = (tah)rs — (tah)zh — t =y, if 2y = wery and t — w then
z =122y = (was)rs — R(w) and y =t — w — R(w).

4. y = R(z3)R(x1), 2 = z123. Then z; < z, 1 — 21, T — R(21),

and there exists w; € Termp such that z; — wy, R(zy) —'-» wy which

implies y — R(22)wy, z — w12y — wy R(z2). By Proposition 1 (ii) we
have w = R(R(x3)w;) = R(w, R(z2)). O

Proof of Proposition 3. By the termination and the confluence of
the TRS we get that the relation — has the UNF property, and then
() — (422) are clear. For proving (iv) identities of sloops are used. If
z* = y* thew, By (iff), 1'= (z2)* = (29)". H(zg)* = 1 then, by (4i),
y* = (2(2y)" = (2™(2y)*)* = (2*1)" = 2. 0

Now, Proposition 4 is straightforward.
Lemma 3. The UNF of each element of the sets D, 5, Vi s is 1.

Proof. By the definition of the TRS we have z* = 1 for each 2 € DUV
Assume the statement is true for each 2 € Dy4q U Vipgq and each ¢ €
D s+1UVin s41- 2 € (D sUVin s)\(Dim, 541UV s41) then there are two
possibilities. First one is bjbx € Vi 541, =14 (2) € Dy 41 U Vi 541 and
then b7 = b} and Proposition 3 (ii) and (#22) imply a* = (— % (2))* = L.
The other one is b; € Vi, 541, —1 (2) € Dy s41 U Vi 541 and then b} =1
implies 2* = (—; (z))* = 1. : O

Corollary 1. (Vx € Y) * = b(z)*.

Proof. 7 = b(z) for each @ € X U {1}, and if 2 = 2722 € Y then
T = 123 and b(x)(b(x1)b(x2)) € Dy or b(z)(b(z2)b(z1)) € Dy. By induc-
tive hypothesis 7 = b(21)*, 23 = b(x2)*, also (b(x1)b(z2))* = b(x)* by
Lemma 3 and Proposition 3 (iv), which further on implies 2* = (2723)* =
(b(z1)b(x2))* = b(z)*. O

Now we can give the proof of Theorem 2.

Proof of Theorem 2. By Corollary 1 we have #; — b(t;)*, § —
b(s;)* for each (t;,s;) € E. Note that b(t;),b(s;) € B i.e. b(t;)* b(s;)* €
B U {1}. It is clear that b(t;)* = b(s;)*, for {; = 1 or s; = 1 and for
b(t;)b(s;) € V or b(s;)b(t;) € V, and if it is not the case then there exists
bj € B such that b(t;)b; € V, b(si)b; € V or b(s;),b(t;) € V. Hence,
i»8i) € B. i %

If (2,y) € Ax then z 3 R(z) = R(y) B 4.

Since both a and 3 are congruences we get z a« y = 7 3 .

For the reverse implication first we should note that e(z) a ¢(y) =
e(C[z]) a e(C[y]) for any z,y € Termp (a is a congruence), and by simple
inductive arguments we also have e(z) a e(R(z)). If b — 1, b —
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by, biby — b; are rewrite rules, then e(b;) a 1, e(b;) a e(by), e(bibi) a e(b;)
by Proposition 6. Consequently, if ¢ — y for some z,y € Termp then
e(z) @ e(y) , hence 2 —— y => e(z) a e(y) (o is transitive). Finally, if
i 3 v for some u,v € Termy, then u = e() o e(u*) = e(v*) o (D) = v.

A couple of conclusion remarks at the end. One could notice that the
construction of D and V is similar to' Evans’ ([3])-construction of closed
set of defining relations, using the particular properties of the variety of
sloops, but there are a few major differences. The construction of the sets
D and V is given by a simple algorithm, so the UNF can be found quite
easily. Furthermore, once D and V' are formed, the TRS defined by them
can be applied for any two terms u, v € Term x for which we want to check
whether they are in relation «. That is quite different than the Evans’
algorithm, where u,v € Termyx are used in it’s design, i.e. it is of local
character. Furthermore, the computer implementation of our algorithm is
straightforward.
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TEPMOBCKM IIPEITUIIIY BAUKHMA CUCTEM
3A PEIITABAIBGE HA ITPOBJIEMOT HA 350POBM
3A CJIYIIN

Cwmune Mapxosckn m Ana CokonoBa

Pezume

Mmuoryobpasuero on IlltajeepoBu nymm (mam ciymm) ce cocrou
oxn anrebpm ox tvn < 2,0 > xou ru 3anoBosyBaaT 3akonuTe (S1), (52)
u (S3). Ilokaxkano e Bo [7] meka mpobiemMoT Ha 360pOBM 3a MHOI'YO-
6pa3meTo cAyNM e pPenuIMB, HO TOj AOKa3 e MobuWeH Kako mocJeauna
on Teopemara Ha T. Evans [3]. OBme xopucTuMme AMpeKTeH IpUCTAll,
ONHOCHO JlepMHUpPaMe TePMOBCKH NMPeNuillyBaYKd CHCTEM 3a pelllaBambe
Ha npobieMoT Ha 300pOBHM 3a caylu, NpuU mWTO e nobueH moepuKacen
aJAroOpuUTaM OJ OHOj HajJeH Bo [3].
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