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ON A METHOD OF SOLVING THE PROBLEM FOR A THIRD
ORDER EQUATION

WITH MULTIPLE CHARACTERISTICS

YU.P. APAKOV

Dedicated to Academician Blagoj Popov on the Occasion of His 85th Birthday

Abstract. In the paper, the periodical solution of the second boundary value
problem is constructed for the third order equation with multiple character-
istics using the reflection method. With the help of obtained solutions, the
inhomogeneous problem is reduced to the homogeneous problem.

1. Introduction

The third order equation with multiple characteristics

Uxxx − Uyy = 0 (1)

was considered first in works by H.Block [1] and E. Del Vecchio [2, 3]. Using superpo-
sitions, specially selected elementary solutions and asymptotical methods, fundamental
solutions of the equation (1) were constructed in the form [4]:

U(x, y; ξ, η) = |y − η| 13 f(t), V (x, y; ξ, η) = |y − η| 13 ϕ(t),

where
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[
exp
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)
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(
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2√
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dλ, t < 0,

t = (x− ξ)|y − η|− 2
3 , c±, c are constants.

Then, using these fundamental solutions, various boundary value problems were in-
vestigated in [5]–[6].
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In [7], using the similarity method, we constructed fundamental solutions of the equa-
tion (1). These solutions have the form

U(x, y; ξ, η) = |y − η| 13 f(t), −∞ < t < ∞,

V (x, y; ξ, η) = |y − η| 13 ϕ(t), t < 0

where

f(t) =
2 3
√

2√
3π

tψ

(
1

6
,
4

3
; τ

)
, ϕ(t) =

36Γ
(

1
3

)
√

3π
tΦ

(
1

6
,
4

3
; τ

)
,

t =
x− ξ

|y − η|2/3
, τ =

4

27
t3;

ψ(a, b; x), Φ(a, b; x) are degenerate hypergeometric functions (see [8]).
For U(x, y; ξ, η) the following estimates are valid:

∣∣∣∣
∂k+hU

∂xh∂yk

∣∣∣∣ ≤ Ckh|y − η| 1−(−1)k

2 |x− ξ|− 1
2 [2h+3k−1+ 3

2 (1−(−1)k)]

at

∣∣∣∣∣
x− ξ

|y − η| 23

∣∣∣∣∣ → −∞ where Ckh are constants, kh = 0, 1, 2, 3, . . . .

Analogous estimates are valid for V (x, y; ξ, η) at x−ξ

|y−η|
2
3
→ −∞.

In [9, 10], we investigated some boundary value problems for the equation (1) in the
domain D = {p < x < q, 0 < y < l}. These formulated problems were studied by the
Fourier method. It was necessary in them that boundary data were homogeneous on the
bounds of the domain D : y = 0 and y = l.

2. Statement of the problem

Consider the equation (1) in the domain D where p > 0, q > 0, l > 0 are constants.
Problem A. To find in the domain D the solution of the equation (1)from the class of

U(x, y) ∈ C3,2
x,y(D) ∩ C2,1

x,y(D) satisfying the following boundary conditions:

Uy(x, 0) = ϕ1(x), Uy(x, l) = ϕ2(x), (2)

U(p, y) = ψ1(y), U(q, y) = ψ2(y), Ux(q, y) = ψ3(y), (3)

where

ϕi(x) ∈ C[p, q], i = 1, 2, ψj(y) ∈ C3[0, l], j = 1, 2, ψ3(y) ∈ C2[0, l],

moreover

ϕ1(p) = ψ′1(0) = ϕ1(q) = ψ′2(0) = ψ3(0) = 0,

ϕ2(p) = ψ′1(l) = ϕ2(q) = ψ′2(l) = ψ3(l) = 0.

3. Uniqueness of the solution

Theorem 1. The homogeneous problem A has only the trivial solution.

Proof. Let the homogeneous problem A has a non-trivial solution. Consider the identity

∂

∂x

(
UUxx − 1

2
U2

x

)
− ∂

∂y
(UUy) + U2

y = 0.
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Integrating this identity in the domain D, taking into account homogeneous boundary
conditions, we obtain

1

2

l∫

0

U2
x(p, y)dy +

∫∫

D

U2
y (x, y)dxdy = 0.

Hence, Uy(x, 0) = 0, i.e. U(x, y) = f(x).
According to the equation (1) and Ux(0, y) = 0, we have from the homogeneous

boundary condition that f(x) = 0, then U(x, y) ≡ 0. ¤

4. Existence of the solution

Consider the following subsidiary problem: to construct the function v(x, y) satisfying
the equation (1) and the condition (2) in the domain D.

Let’s construct fundamental solutions for this problem on the segment (0, l). Such
a function was constructed for one-dimensional parabolic equations by the reflection
method in [11]. Following [11], we represent the function U in the form of the series

Z(x, y; ξ, η) =

∞∑
m=−∞

[U(x, 2ml + y; ξ, η) + U(x, 2ml − y; ξ, η)] . (4)

Since U is a fundamental solution, all members of this series satisfy the equation (1).

If this series converges uniformly, then the function Z also satisfies the equation (1). To
prove convergence of the series (4), group its members in the following way:

Z(x, y; ξ, η) = U(x, y; ξ, η) + U(x,−y; ξ, η) +

∞∑
m=1

[U(x, 2ml + y; ξ, η)+

+U(x,−2ml + y; ξ, η)] +

∞∑
m=1

[U(x, 2ml − y; ξ, η) + U(−x,−2ml − y; ξ, η)]. (5)

Fixing in D arbitrary points M0(x0, y0) 6= N0(ξ0, η0), we obtain the numerical series

Z(x0, y0; ξ0, η0) = U(x0, y0; ξ0, η0) + U(x0,−y0; ξ0, η0) + S0 + S1

where

S0 =

∞∑
m=1

[U(x0, 2ml + y0; ξ0, η0) + U(x0,−2ml + y0; ξ0, η0)] ,

S1 =

∞∑
m=1

[U(x0, 2ml − y0; ξ0, η0) + U(x0,−2ml − y0; ξ0, η0)] .

Let’s prove convergence of the series S0. Application of the integral test of convergence
gives

S0 =

∞∫

1

U(x0, 2ml + y0; ξ0, η0)dm +

∞∫

1

U(x0,−2ml + y0; ξ0, η0)dm =

=

∞∫

1

|2ml + y0 − η0|
1
3 f

(
x0 − ξ0

|2ml + y0 − η0| 13

)
dm+

+

∞∫

1

| − 2ml + y0 − η0|
1
3 f

(
x0 − ξ0

| − 2ml + y0 − η0| 13

)
dm =
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= − 3

4l
(x0 − ξ0)

2




0∫

x0−ξ0

|y0+2l−η0|
1
3

t−3f(t)dt−
0∫

x0−ξ0

|y0−2l−η0|
1
3

t−3f(t)dt




=

=
3

4l
(x0 − ξ0)

2

x0−ξ0

|y0+2l−η0|
1
3∫

x0−ξ0

|y0−2l−η0|
1
3

t−3f(t)dt.

Taking into account the estimate f(t), one can easily be convinced that the last
integral converges, as it is a proper integral. This proves convergence of the series S0,
and convergence of the series S1 and the series composed of partial derivatives, is proved
analogously. Hence, the series (4) converges uniformly, therefore the function Z(x, y; ξ, η)

satisfies the equation (1). For the function Z(x, y; ξ, η) the same estimates are valid as
for the function U.

Theorem 2. The function Z(x, y; ξ, η) is periodical with the period 2l with respect to the
argument y, i.e.

Z(x, y + 2l; ξ, η) = Z(x, y; ξ, η).

Proof. Consider Z(x, y + 2l; ξ, η) :

Z(x, y + 2l; ξ, η) = U(x, y + 2l; ξ, η) + U(x,−y + 2l; ξ, η)+

+

∞∑
m=1

[U(x, y + 2lm + 2l; ξ, η) + U(x, y − 2lm + 2l; ξ, η) + U(x,−y + 2lm + 2l; ξ, η)+

+U(x,−y − 2lm + 2l; ξ, η)] = U(x, y; ξ, η) + U(x,−y; ξ, η)+

+

∞∑
m=0

[U(x, 2l(m + 1) + y; ξ, η) + U(x, 2l(m + 1)− y; ξ, η)]+

+

∞∑
m=2

[U(x,−2l(m− 1) + y; ξ, η) + U(x,−2l(m− 1)− y; ξ, η)] =

= U(x, y; ξ, η) + U(x,−y; ξ, η) +

∞∑
m1=1

[U(x, 2lm1 + y; ξ, η) + U(x, 2lm1 − y; ξ, η)]+

+

∞∑
m2=1

[U(x,−2lm2 + y; ξ, η) + U(x,−2lm2 − y; ξ, η)] = U(x, y; ξ, η) + U(x,−y; ξ, η)+

+

∞∑
m=1

[U(x, 2lm + y; ξ, η) + U(x, 2lm− y; ξ, η) + U(x,−2ml + y; ξ, η)+

+U(x,−2ml − y; ξ, η)] = Z(x, y; ξ, η).

Let’s study now properties of the function Z(x, y; ξ, η) and its derivatives on the
bounds of the segment (0, l).

For η = 0 we have

Z(x, y; ξ, 0) = 2U(x, y; ξ, 0) + 2

∞∑
m=1

[U(x, 2lm + y; ξ, 0) + U(x, 2lm− y; ξ, 0)]. (6)
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For η = l we obtain

Z(x, y; ξ, l) = 2U(x, y; ξ, l) + U(x,−y; ξ, l) +

∞∑
m=2

U(x, 2lm− y; ξ, l)+

+

∞∑
m=1

[U(x, 2lm− y; ξ, l) + U(x,−2ml + y; ξ, l) + U(x,−2ml − y; ξ, l)]. (7)

Calculating the derivative with respect to y and taking into account the relation

Uy = U∗sgn(y − η),

we have

Zy(x, y; ξ, η) = U∗(x, y; ξ, η)sgn(y − η)− U∗(x,−y; ξ, η)sgn(−y − η)+

+

∞∑
m=1

[U∗(x, 2lm + y; ξ, η)sgn(y + 2lm− η)− U∗(x,−y + 2ml; ξ, η)sgn(−y + 2ml − η)+

+U∗(x, y + 2ml; ξ, η)sgn(y + 2ml − η)− U∗(x,−2ml − y; ξ, η)sgn(−2ml − y − η)]

where

U∗(x, y; ξ, η) =
1

|y − η| 23
f∗

(
x− ξ

|y − η| 23

)
, f∗(t) =

t

3γ
ψ

(
7

6
,
4

3
,

4

27
t3

)
, γ =

3
√

3π

2
1
3

.

For η = 0 we have

Zy(x, y; ξ, 0) = 2U∗(x, y; ξ, 0) + 2

∞∑
m=1

[U∗(x, 2lm + y; ξ, 0)−

−U∗(x, 2ml − y; ξ, 0)] = 2U∗(x, y; ξ, 0) + M(x, y; ξ, 0) (8)

where

M(x, y; ξ, 0) = 2

∞∑
m=1

[U∗(x, 2ml + y; ξ, 0)− U∗(x, 2ml − y; ξ, 0)] .

Then

lim
y→0

Zy(x, y; ξ, 0) = 2 lim
y→0

U∗(x, y; ξ, 0),

i.e.

lim
y→0

M(x, y; ξ, 0) = 0.

For η = l we obtain

Zy(x, y; ξ, l) = −2U∗(x, y; ξ, l) + U∗(x,−y; ξ, l) +

∞∑
m=1

[U∗(x, 2lm + y; ξ, l)−

−U∗(x,−2ml + y; ξ, l) + U∗(x,−2ml − y; ξ, l)]−
∞∑

m=2

U∗(x, 2lm− y; ξ, l) =

= −2U∗(x, y; ξ, l) + N(x, y; ξ, l) (9)

where

N(x, y; ξ, l) = U∗(x,−y; ξ, l)−
∞∑

m=2

U∗(x, 2ml − y; ξ, l)+

+

∞∑
m=1

[U∗(x, 2ml + y; ξ, l)− U∗(x,−2ml + y; ξ, l) + U∗(x,−2ml − y; ξ, l)],
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i.e.

lim
y→l

N(x, y; ξ, l) = 0.

We conclude from here that

lim
y→l

Zy(x, y; ξ, l) = lim
y→l

(−2)U∗(x, y; ξ, l).

For y = l we have

Zy(x, l; ξ, 0) = 2U∗(x, l; ξ, 0) + 2

∞∑
m=1

[U∗(x, 2lm + l; ξ, 0)− U∗(x, 2ml − l; ξ, 0)] = 0,

and for y = 0 we obtain

Zy(x, 0; ξ, l) = 0.

The function

v(x, y) =
1

2

q∫

p

Z(x, y; ξ, 0)ϕ1(ξ)dξ − 1

2

q∫

p

Z(x, y; ξ, l)ϕ2(ξ)dξ (10)

will be the function to be found since it satisfies the equation (1) and the condition (3)
and has the period 2l.

Let’s prove that (10) is the solution of the subsidiary problem.
Calculating the derivative with respect to y from (10) and taking into account (8) and

(9), we have

v′y(x, y) =
1

2

q∫

p

Zy(x, y; ξ, 0)ϕ1(ξ)dξ − 1

2

q∫

p

Zy(x, y; ξ, l)ϕ2(ξ)dξ =

=
1

2

q∫

p

[2U∗(x, y; ξ, 0) + M(x, y; ξ, 0)] ϕ1(ξ)dξ−

−1

2

q∫

p

[−2U∗(x, y; ξ, l) + N(x, y; ξ, l)] ϕ2(ξ)dξ =

= J1(x, y) + J2(x, y) + J3(x, y) + J4(x, y).

Let’s consider each expression separately

J1(x, y) =

q∫

p

U∗(x, y; ξ, 0)ϕ1(ξ)dξ =

q∫

p

1

y2/3
f∗

(
x− ξ

y2/3

)
ϕ1(ξ)dξ.

Replacing integration variables, we obtain

J1(x, y) = −

x−q

y2/3∫

x−p

y2/3

f∗(t)ϕ1

(
x− ty

2
3

)
dt.

Then

lim
y→0

J1(x, y) = − lim
y→0

x−q

y2/3∫

x−p

y2/3

f∗(t)ϕ1

(
x− ty

2
3

)
dt =
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=

∞∫

−∞

f∗(t)ϕ1(x)dt = ϕ1(x)

∞∫

−∞

f∗(t)dt = ϕ1(x)

since (see [8])
∞∫

−∞

f∗(t)dt = 1.

We have also

lim
y→0

J2(x, y) = 0

since lim
y→0

M(x, y; ξ, 0) = 0 and

lim
y→0

[J3(x, y) + J4(x, y)] = 0

since Zy(x, 0; ξ, l) = 0.
Hence, we have

lim
y→0

v′y(x, y) = ϕ1(x).

For y = l we obtain

lim
y→l

[J1(x, y) + J2(x, y)] = 0

since Zy(x, 0; ξ, l) = 0,

J3(x, y) =

q∫

p

U∗(x, y; ξ, l)ϕ2(ξ)dξ =

q∫

p

1

|y − l|2/3
f∗

(
x− ξ

|y − l|2/3

)
ϕ2(ξ)dξ.

If we replace integration variables, we have

J3(x, y) = −

x−q

|y−l|2/3∫

x−p

|y−l|2/3

f∗(t)ϕ2

(
x− t|y − l|2/3

)
dt,

lim
y→l

J3(x, y) = − lim
y→l

x−q

|y−l|2/3∫

x−p

|y−l|2/3

f∗(t)ϕ2

(
x− t|y − l|2/3

)
dt =

=

∞∫

−∞

f∗(t)ϕ2(x)dt = ϕ2(x)

∞∫

−∞

f∗(t)dt = ϕ2(x),

lim
y→l

J4(x, y) = 0

since lim
y→l

N(x, y; ξ, l) = 0.

Hence, we obtain

lim
y→l

v′y(x, y) = ϕ2(x).

Thus, the function (10) is the solution of the subsidiary problem in fact, i.e. it satisfies
the equation (1), and conditions (2) hold, in addition it has the period 2l with respect
to y.



28 YU.P. APAKOV

One can consider the function Z(x, y; ξ, η) as the Green function of this subsidiary
problem. With the help of the function v(x, y), we can reduce given inhomogeneous
boundary conditions on the straight lines y = 0 and y = l to homogeneous one.

We look up the solution of problem A in the form

W (x, y) = U(x, y)− v(x, y)

where U(x, y) is the solution of the problem A and v(x, y) has the form (10). Then we
obtain the following problem for the function W (x, y) :




Wxxx −Wyy = 0,
Wy(x, 0) = Wy(x, l) = 0,

W (p, y) = ψ1(y), W (q, y) = ψ2(y), Wx(q, y) = ψ3(y).
(11)

This problem can be solved by the method of separation of variables (see [9]–[10]).
Defining the function W (x, y), we find

U(x, y) = W (x, y) + v(x, y).
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