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TOPOLOGICAL GAMES AND TOPOLOGIES ON GROUPS
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Dedicated to Academician Ǵorǵi Čupona

Abstract. In this paper, using the language and techniques of topological
games, of sieves and of plumages, we give a conditions for a semitopologi-
cal group or a paratopological group to be a topological group. We prove
that a paratopological group with the Baire property and with given point-

wise property is a topological group if and only if it is p-embedded in some
pseudocompact space with respective property. The case of n-ary groups is
examined too. Some new open problems are formulated.

1. Introduction

By a space we understand a regular topological T1-space. We use the terminol-
ogy from [7, 21]. Let ω = {0, 1, 2, ...} and N = {1, 2, ...}. By clXH we denote the
closure of a set H in a space X. A paratopological group is a group endowed with a
topology such that the multiplication is jointly continuous. Recall that a semitopo-
logical group is a group with a topology such that the multiplication is separately
continuous. A semitopological group with a continuous inverse operation x→ x−1

is called a quasitopological group.
In 1936 D. Montgomery [26] has proved the following two theorems:

Theorem 1M. Every completely metrizable separable semitopological group is a
topological group.
Theorem 2M. Every completely metrizable semitopological group is a paratopo-
logical group.

These two results of D.Montgomery have raised the following general problems:
P1. What additional conditions are needed to be sure that a paratopological

group is actually a topological group?
P2. Under what additional conditions does a semitopological group become a

paratopological or a topological group?
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In 1957 R.Ellis [20] had established that every locally compact semitopological
group is a topological group. Further results on semitopological and paratopo-
logical groups were established by Z. Zhelazko [39], N. Brandt [13], L.G. Brown
[14], P. Kenderov, I.S. Kortezov, and W.B. Moors [24], E.A. Reznichenko [32], A.
Bouziad [10, 11, 12] and other authors (see [7, 2, 3, 22, 23, 29, 30, 33, 37]). Some
advances in this direction were made also by the authors in [4].

The problem of A. D. Wallace [36] on the continuity of the inverse in countably
compact topological semigroups was studied by many authors too(see [7, 9, 23]).

Various new classes of spaces over which the theorems of D. Montgomery and R.
Ellis can be extended were defined either by some natural topological properties,
or by requiring that there exists a winning strategy in certain topological games
[7, 2, 3, 10, 11, 24, 34]. In the present paper we continue the research from
[2, 3, 4, 24] and use topological games to establish some results which are related
to the studies in [7, 11, 12, 28]. Some of the results that follow were announced in
[5].

Since there exist examples of Hausdorff countably compact paratopological
groups which are not topological groups ([30, 33]), the requirement of the reg-
ularity of spaces in the main results of the present article is essential.

2. Topological games of Banach-Mazur type

We will consider below several properties P of sequences of open subsets of
a given topological space X. All of these properties will satisfy the following
requirements:

C1. If {Wn : n ∈ N} is a sequence of subsets of the space X with the property
P, then any Wn is an open non-empty set and Wn+1 ⊆Wn for any n ∈ N.

C2. If {Wn : n ∈ N} is a sequence of open subsets and Wn+1 ⊆ Wn for any
n ∈ N and M is an infinite subset of N, then the sequence {Wn : n ∈ N} has the
property P if and only if the subsequence {Wn : n ∈M} has the property P.

Each property P determines on the space X a topological game GP(X) (briefly,
GP) which is similar to the Banach-Mazur game. Two players, α and β play
a game by selecting non-empty open subsets of X. Player β starts the game by
chosing a nonempty open subset U1 of X. Whenever β chooses an open non-empty
subset Un the player α responds by selecting a non-empty open subset Vn such
that Vn ⊆ Un. In turn, player β selects a non-empty open subset Un+1 ⊆ Vn
and the game goes on. Continuing this procedure indefinitely the players α and
β generate a sequence {(Un, Vn) : n ∈ N} of open non-empty subsets with the
properties Un+1 ⊆ Vn ⊆ Un for n ∈ N. The sets Un are the moves of player β
and the sets Vn are the moves of α. Every such sequence will be called a play.
The player α wins the play {(Un, Vn) : n ∈ N} in the GP-game if the sequence
{Vn : n ∈ N} has the property P. Otherwise the player β is declared to be the
winner of this play.

By a strategy t for the player α we mean ”a rule” that specifies each move
of the player α in every possible situation. More precisely, the strategy t is a
sequence of mappings {tn : n ∈ N}. The values of the mapping tn are the moves of
player α at the n-th stage of the game. The domains Domtn of the mappings tn,
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n ∈ N, are defined inductively. Domt1 consists of all non-empty open subsets U1 of
X. Suppose that Domti have already been defined for i < n, where n > 1. Then
Domtn consists of those n-taples (U1, ..., Un) of non-empty open subsets of X such
that, for every i < n, (U1, ..., Ui) ∈ Domti and Ui+1 ⊆ Vi := ti(U1, ..., Ui) ⊆ Ui.

If the play {(Un, Vn) : n ∈ N} has been played according to t (i.e. Vn =
tn(U1, ..., Un) for every n ∈ N), then it is called a t-play. A strategy t for the
player α is called a winning strategy if, player α wins each t-play.

The topological space X is called (α,GP)-favorable if the player α has a winning
strategy in the GP(X)-game.

Similarly, under a strategy t for the player β we mean a ”a rule” that specifies
each move of the player β in every possible situation. A strategy t for player β is
actually a sequence of mappings t = {tn : n ∈ N}, where U1 = t1(X) is a fixed
open non-empty subset of X and the domains and the values of tn for any n ≥ 2
satisfy the requirements:

• Un = tn(V1, ..., Vn−1) is an open non-empty subset of the set Vn−1 and
• Vn ⊆ Un.

In case the player β applies the strategy t, the generated play {(Un, Vn) : n ∈ N}
is called a t-play. A strategy t for the player β is called a winning strategy if β
wins every t-play.

A topological space X is called (β,GP)-unfavorable if player β does not have
a winning strategy.

A strategy t of one of the players is stationary if for any n the function tn
depends only on the last move of the other player. A strategy t of one of the
players is Markov if for any n the function tn depends both on the number n and
on the last move of the other player.

Definition 2.1. We say that a sequence {Hn : n ∈ N} of subsets of a space X
has the property BM if ∩{Hn : n ∈ N} ≠ ∅.

The GBM -game is known under the name Banach-Mazur game. It was studied
by G. Choquet [18] and some ot the modifications of this game are called Choquet
games.

It is known (see [28, 15, 18, 31, 34]) that a space X is a Baire space if, and only
if, the space X is (β,GBM )-unfavorable.

For a sequence {Hn : n ∈ N} of subsets of a space X we put Lim{Hn : n ∈ N}
= ∩{clX(∪{Hm : m > n}) : n ∈ N}, i.e. Lim{Hn : n ∈ N} is the set of all
accumulation points of the sequence {Hn : n ∈ N}. If Hn+1 ⊆ Hn for any n ∈ N,
then Lim{Hn : n ∈ N} = ∩{clXHn : n ∈ N}.

Definition 2.2. We say that a sequence {Hn : n ∈ N} of subsets of the space X
is stable , or has the property Π, if it satisfies the following conditions:

(S1) ∅ ̸= Un+1 ⊆ Un for any n ∈ N and ∩{clXUn : n ∈ N} = ∩{Un : n ∈ N}.
(S2) Every sequence {Vn : n ∈ N} of open sets in X such that Vn ⊆ Un for each

n ∈ N and the set {n ∈ N : Vn ̸= ∅} is infinite, has an accumulation point in X,
i.e. Lim{Vn : n ∈ N} ̸= ∅.
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A subset L of a space X is called bounded if for every locally finite family γ of
open subsets in X the set {U ∈ γ : U ∩ L ̸= ∅} is finite.

A space X is called feebly compact if every locally finite family of open subsets
in X is finite, i.e. X is bounded in X.

A subset L of a Tychonoff space X is bounded if and only if every continuous
function on X is bounded on L (see [7], [21]). For Tychonoff spaces the feeble
compactness is equivalent to the pseudocompactness. Every countably compact
space is feebly compact.

If a sequence {Un : n ∈ N} of open subsets of the space X is stable (i.e. satisfies
the conditions (S1) and (S2)), then H = ∩{clXUn : n ∈ N} = Lim{Un : n ∈ N} is
a bounded non-empty subset of the space X.

The GP(X)-game for P = Π will be denoted by GΠ(X).
Clearly, every (β,GΠ)-unfavorable space is a Baire space.

Definition 2.3. (see [24, 4, 2]). Let Y be a dense subspace of a space X. We say
that a sequence {Hn : n ∈ N} of open subsets of the space X has the property SY

if ∅ ̸= Hn+1 ⊆ Hn for any n ∈ N, any sequence {yn ∈ Y ∩ Hn : n ∈ N} has an
accumulation point in X and ∩{clXHn : n ∈ N} = ∩{Hn : n ∈ N}.

Let S = SX . The GP(X)-game for P = S will be denoted by GS(X).
Every (β,GS)-unfavorable space is a Baire space.
A space X is called a strongly Baire space if, and only if, the space X is

(β,GSY
)-unfavorable for some dense subspace Y of X (see [24, 15]).

Any sequence with the property SY has the property Π.
A sequence {Hn : n ∈ N} of open subsets of a space X has the property S if

and only if it satisfies the following two conditions:
(S3). The set H = ∩{Hn : n ∈ N} is a non-empty, closed and countably

compact subset of X.
(S4) For any open subset U ⊇ H of X there exists n ∈ N such that H ⊆ Hn ⊆ U

(i.e. {Hn : n ∈ N} is a base of neighborhoods of H in X).

Definition 2.4. We say that a sequence {Hn : n ∈ N} of subsets of a space X
has the property k if H = ∩{Hn;n ∈ N} is a non-empty compact subset and
{Hn : n ∈ N} has property (S4).

Each sequence with the property k has the property S. The GP(X)-game for
P = k will be denoted by Gk(X). Obviously, every (β,Gk)-unfavorable space is a
Baire space.

Definition 2.5. We say that a sequence {Hn : n ∈ N} of subsets of the space X
has the property M if the sequence {Hn : n ∈ N} is stable and ∩{Hn : n ∈ N} is
a singleton.

If the sequence {Hn : n ∈ N} has the property M , then it is a base of open
neighborhoods for the point ∩{Hn : n ∈ N}.

The GP(X)-game for P =M will be denoted by GM (X).

Remark 2.6. If P1 and P2 are two properties of sequences of open subsets and
any sequence with the property P1 has the property P2, then we put P1 ≤ P2.
Thus, by definitions, M ≤ k ≤ S ≤ SY ≤ Π ≤ BM .
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3. α-Favorable and β-unfavorable spaces

Oxtoby theorem (see [28, 34]) can be given another formulation which is more
convenient for our considerations.

Theorem 3.1. Let P ≤ BM be a property of sequences of open subsets of a space
X. Suppose the space X does not have the Baire property. Then on X there exists
a Markov winning strategy for the player β in the game GP(X).

Proof. There exist an open non-empty subset U and a sequence {Xn : n ∈ N} of
nowhere dense closed subsets of X such that U ⊆ ∪{Xn : n ∈ N}. Let t1(X) =
U \X1. For any non-empty open subset V of X and each 2 ≤ n ∈ N fix an open
non-empty subset tn(V ) ⊆ V \Xn. By construction, t = {tn : n ∈ N} is a Markov
strategy for the player β which produces plays with empty intersections. Therefore
t is winning for player β in GBM (X) and in GP(X). �

Definition 3.2. Let P be a topological property of sequences of open sets. A
sequence γ = {γn = {Uα : α ∈ An} : n ∈ N} of open families of X is called a
dense-P-sieve on the space X if it has the following properties:

(1ds) The set Xn = ∪{Uα : α ∈ An} is dense in X for all n ∈ N;
(2ds) If {Hn : n ∈ N} is a sequence of open non-empty subsets, ∩{Hn : n ∈

N} ≠ ∅, {αn ∈ An} is a sequence of elements and clXHn+1 ⊆ Hn ⊆ Uαn
for any

n ∈ N, then {Hn : n ∈ N} is a sequence with the property P.

Definition 3.3. Let P ≤ BM be a topological property of sequences of open sets.
A sequence γ = {γn = {Uα : α ∈ An} : n ∈ N} of open families of X is called a
complete dense-P-sieve on the space X if it has the following properties:

(1cds) The set Xn = ∪{Uα : α ∈ An} is dense in X for all n ∈ N;
(2cds) If {Hn : n ∈ N} is a sequence of open non-empty subsets, {αn ∈ An} is a

sequence of elements and clXHn+1 ⊆ Hn ⊆ Uαn for any n ∈ N, then {Hn : n ∈ N}
is a sequence with the property P;

(3cds) The set ∪{V ∈ γn : clXV ⊆ Uα} is dense in Uα for all α ∈ An and n ∈ N.

Remark 3.4. If {Fn : n ∈ N} is a sequence of closed nowhere dense subsets of a
space X and X = ∪{Fn : n ∈ N}, then {γn = {Un = X \ Fn : n ∈ An = {n}} :
n ∈ N} is a dense-P-sieve on the space X for any topological property P ≤ BM
of sequences of open sets. If P ≤ BM and a space X has complete dense-P-sieve,
then X is a Baire space.

Remark 3.5. If a space X contains a dense subspace which is a dense Gδ-subset
in some feebly compact space, then the space X has a complete dense-Π-sieve. A
space with a complete dense-k-sieve contains a dense Čech complete paracompact
subspace.

Definition 3.6. A property P of sequences of non-empty open sets is called stable,
if whenever {Hn : n ∈ ω} has property P, then every sequence {Wn : n ∈ ω} of
open non-empty sets such that Wn+1 ⊆ Wn ⊆ Hn, for each n ∈ ω, also has the
property P.
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Clearly, the properties Π, S and k are stable. BM is an example of a property
which is not stable.

The following theorem and its proof is similar to Theorem 4.3 from [4].

Theorem 3.7. Let P be a stable property of sequences of open subsets of a space
X and the space X has a dense-P-sieve. The space X is (β,GP)-unfavorable if
and only if X is a Baire space.

Remark 3.8. Let P be a property of sequences of open subsets of a space X and
γ = {γn = {Uα : α ∈ An} : n ∈ N} be a dense-P-sieve on X. Then there exist a
sequence η = {ηn = {Wβ : β ∈ Bn} : n ∈ N} of disjoint families of open non-empty
subsets of X and a sequence {bn : Bn+1 −→ Bn : n ∈ N} of mappings such that:

- η is a dense-P-sieve on X;
- if γ is a complete dense-P-sieve on X, then η is a complete dense-P-sieve on

X too;
- clXWβ ⊆Wbn(β) for all β ∈ Bn+1 and n ∈ N;
- the family ηn is a refinement of the family γn for any n ∈ N.

The following assertion was proved in [3] (see also [4] Theorem 5.1 and Theorem
6.4).

Theorem 3.9. Let P be a stable property of sequences of open subsets of a space
X. The following assertions are equivalent:

1. The space X is (α,GP)-favorable.
2. For the player α there exists a Markov winning strategy in the GP(X)-game.
3. X is a space with a complete dense-P-sieve.

4. Special embeddings of spaces

Let X be a subspace of the space Z. If γ is a family of subsets of Z and L ⊆ Z,
then St(L, γ) = ∪{H ∈ γ : H ∩ L ̸= ∅} is the star of the set L with respect to γ.
We put St(x, γ) = St({x}, γ) for any point x ∈ Z.

A sequence γ = {γn = {Uα : α ∈ An} : n ∈ N} of families of subsets of the
space Z is called:

- a partial plumage of X in Z if the sets U ∈ ∪{γn : n ∈ N} are open in Z
and for every pair of points x ∈ X and z ∈ Z \ X there exists n ∈ N such that
St(x, γn) ∩ {x, z} = {x};

- a plumage of X in Z if γ is a partial plumage and X ⊆ ∪γn for any n ∈ N;
- a star-separation sequence of X in Z if the sets U ∈ ∪{γn : n ∈ N} are open

in Z and for every pair of points x ∈ X and z ∈ Z \ X there exists n ∈ N such
that either St(x, γn) ∩ {x, z} = {x}, or St(z, γn) ∩ {x, z} = {z}.

Any partial plumage is a star-separation sequence.
A subspace X of a space Z is called:
- p-embedded in Z if X has a plumage in Z;
- p⋆-embedded in Z if X has a partial plumage in Z;
- p⋆⋆-embedded in Z if X has a star-separation sequence in Z.
A space with a plumage in a compact space is called a p-space [1]. A space

with a partial plumage in a compact space is called a p⋆-space. A space with a
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star-separation sequence in a compact space is called a p⋆⋆-space (see [4]). Any
metrizable space is a p-space. A space X is a paracompact p-space if and only if
there exists a perfect mapping of X onto some metrizable space [1].

Remark 4.1. Let X be a p⋆-embedded subspace of the space Z. Then for any
point x ∈ X there exists a Gδ-subset H of Z such that x ∈ H ⊆ X. If Z is
a p⋆-space, then X is a p⋆-space too. In particular, any p⋆-space is a space of
pointwise countable type. A space is of pointwise countable type if each point is
contained in some compact subset of countable character.

Remark 4.2. If X is a p⋆⋆-subspace of a p⋆⋆-space Z, then Z \X is a p⋆⋆-space.

Example 4.3. Let X be the Michael line ([21], Example 5.1.32). Then X is
a p⋆-space and not a p-space. The space X has a σ-disjoint open base and is
hereditarily paracompact.

Example 4.4. Let βY be the Stone-Čech compactification of an infinite discrete
space Y , c ∈ βY \ Y and X = Y ∪ {c}. The families γ1 = {{x} : x ∈ Y } and
γ2 = {βX \ {c}} form a star-separation sequence of X in βX. Since X is not a
space of pointwise countable type, X is not a p⋆-sace and it is a p⋆⋆-space.

Remark 4.5. The class A of p⋆⋆-embedded subspaces of the space Z has the
following properties:

- if X,Y ∈ A, then X ∩ Y ∈ A, X ∪ Y ∈ A, X \ Y ∈ A:
- the class A contains the open subspaces, the closed subspaces and is closed

under A-operation.

Theorem 4.6. Let f : X −→ Y be a perfect mapping of a p⋆⋆-space X onto a
space Y . Then there exist two subspaces Y ⋆ and Y ◦ of Y with the properties:

1. Y ⋆ = Y \ Y ◦.
2. Y ⋆ is a paracompact p-space with the Baire property.
3. Y ⋆ is a Gδ-subspace of Y and Y ◦ is a sum of a sequence of closed nowhere

dense subsets of Y .

Proof. Obviously, we can assume that the mapping f is irreducible. Let g : βX −→
βY be the continuous extension of the mapping f onto the Stone-Čech compact-
ifications of the spaces X and Y . For any open subset V of βX we put g♯(V ) =
Y \ g(βX \ V ) = {y ∈ βY : g−1(y) ⊆ V }. It is well-known that the mapping g is
irreducible and the set g−1(g♯(V )) is dense in V .

Let Y ′ = ∪{V : V is open and of the first category in Y }. Then the set Y ′

is open and of the first category in Y . Let H = βY \ clβY Y ′. If the set H is
non-empty, then the set Y \H is closed and of the first category in Y and H ∩ Y
is an open subspace of Y with the Baire property.

If Y ′ is dense in Y , then Y = Y ′, H = ∅ and we put Y ◦ = Y , Y ⋆ = ∅.
Assume that Y ′ is not dense in Y . Fix a star-separation sequence γ = {γn =

{Uα : α ∈ An} : n ∈ N} of X in βX.
If the set ∪γn is not dense in βX we put γ′n = γn∪{βX \clβX ∪γn). Obviously,

γ′ = {γ′n : n ∈ N} is a star-separation sequence of X in βX. Therefore, we can
assume that the sets ∪γn are dense in βX.
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There exists a sequence η = {ηn = {Vβ : β ∈ Bn} : n ∈ N} of disjoint families
of open non-empty subsets of βY with the properties:

- for any n ∈ N and each β ∈ Bn+1 there exists a unique b(β) ∈ Bn such that
clβY Vβ ⊆ Vb(β);

- for any n ∈ N and each β ∈ Bn there exists a c(β) ∈ An such that clβY Vβ ⊆
g♯(Uc(β));

- for any n ∈ N the set Wn = ∪{Vβ : β ∈ Bn} is dense in βY ;
- if C = {β ∈ B1 : g−1(Vβ ⊆ H}, then the set H1 = ∪{g−1(Vβ : β ∈ C} is dense

in the set H.
The setW1 = g(H1) is open in βY , Y ∩W1 is a subspace with the Baire property

and Y \W1 is a sum of a sequence of closed nowhere dense subsets of Y .
On Bn we consider the discrete topology and put B = Π{Bn : n ∈ N}. LetW =

∩{Wn : n ∈ N}. For any y ∈ W there exists a unique sequence φ(y) = {βn(y) ∈
Bn : n ∈ N} such that y ∈ ∩{Vβn(y) : n ∈ N}. Obviously, βn(y) = b(βn+1(y)) for
all n ∈ N. Therefore φ : W → Z = φ(W ) ⊆ B is a perfect mapping of the space
W onto the complete metrizable space Z. By construction, φ−1(φ(W ∩ Vβ)) =
W ∩ Vβ . Since the sets Wn are dense and open, Y ⋆ = W ∩ Y is a Baire subspace
of Y and Y ◦ = Y \ Y ⋆ is a sum of a sequence of closed nowhere dense subsets of
Y .

Let y ∈ Y ∩W and w ∈ W \ Y . Fix x ∈ f−1(y) and z ∈ g−1(w). There exists
n ∈ N such that either St(x, γn) ∩ {x, z} = {x}, or St(z, γn) ∩ {x, z} = {z}. In
this case Vβn(y) ∩ {y, w} = {y}. Thus φ(y) ̸= φ(w). Therefore, φ−1(φ(Y )) = Y ,

φ−1(φ(Y ⋆)) = Y and φ−1(φ(Y ◦)) = Y ◦. In particular, ψ = φ|Y ⋆ is a perfect
mapping onto a metric space φ(Y ⋆). �

Corollary 4.7. ([4], Theorem 6.7) Let X be a p⋆⋆-space with the Baire property.
Then:

- X contains a dense Gδ-subspace which is a paracompact p-space with the Baire
property;

- if k ≤ P ≤ BM , then the space X is (β,GP)-unfavorable.

A mapping g : X −→ Y is called quasi-perfect if g is continuous, closed and the
fibers f−1(y), y ∈ Y , are countably compact.

A spaceX is called a (complete)M -space if there exists a quasi-perfect mapping
onto some (complete) metric space Y (see [27, 17, 38]).

The proofs of the next two theorems are similar to the proof of the Theorem
4.6.

Theorem 4.8. Let X be a dense subspace of the space Z. If the space X has the
Baire property and it is p⋆⋆-embedded in Z, then:

1. There exists a dense Gδ-subspace Y of Z such that Y ⊆ X and Y is p-
embedded in the spaces X and Z.

2. There exists a plumage γ = {γn : n ∈ N} of Y in Z such that the families
γn are disjoint.

3. If k ≤ P ≤ BM and the space Z is (β,GP)-unfavorable, then the space X is
(β,GP)-unfavorable too.
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4. If the space Z is (β,GM )-unfavorable, then the space X is (β,GM )-unfavorable
and X contains a metrizable dense Gδ-subspace Y .

Theorem 4.9. Let X be a dense subspace of the countably compact space Z. If
the space X has the Baire property and it is p⋆⋆-embedded in Z, then the space X
is (β,GP)-unfavorable and there exists a dense Gδ-subspace Y of Z such that:

1. Y ⊆ X and Y is an M -space.
2. There exists a plumage γ = {γn : n ∈ N} of Y in Z such that the families

γn are disjoint.

Theorem 4.10. Let X be a dense subspace of the feebly compact space Z. If the
space X has the Baire property and it is p⋆⋆-embedded in Z, then the space X is
(β,GΠ)-unfavorable and there exists a dense Gδ-subspace Y of Z for which there
exists a plumage γ = {γn : n ∈ N} of Y in Z such that the families γn are disjoint.

5. Construction of pseudocompact extensions

In this section all spaces are considered to be completely regular and Hausdorff.
Let P be a stable property of sequences of open sets of spaces.
A space X has the property P if the sequence {Un = X : n ∈ N} has the

property P in X.
A space X is pointwise of type P, or briefly P-pointwise, if for each point

x ∈ X there exists a sequence {Un : n ∈ N} with the property P such that
x ∈ ∩{Un : n ∈ N}. The pointwise pseudocompact topological groups have been
studied in [7].

Following E.Michael [25], a point x ∈ X is called a q-point if there exists a
sequence of neighborhoods {Un : n ∈ N} of the point x in X such that if xn ∈ Un,
then the sequence {xn : n ∈ N} has a cluster point in X. If any point of the space
X is a q-point, then the space X is called a q-space or, in our terminology, an
S-pointwise space.

If X is a dense subspace of the space Z, then we say that Z is an extension of
the space X.

The extension Z of a space X is called:
- a P-extension, if Z is a space with the property P;
- a thin extension if any bounded and closed subset of X is closed in Z as well.

Remark 5.1. For any thin extension Z of a space X the space σZX = X ∪ (βZ \
∪{clβZF : F is a bounded subset of X}) is a pseudocompact thin extension of X.
Really, if σZX is not pseudocompact, then there exist a point z ∈ βZ \ σZX and
a continuous function f on βZ such that f(z) = 0 and f(y) > 0 for any y ∈ σZX.
By construction, z ∈ clβZL for some bounded subset L of X. Then the function
g(x) = 1/f(x) is continuous on X and unbounded on L, a contradiction.

We recall that the Gδ-closure ωclXY of a set Y ⊆ X in a space is the set of all
points x ∈ X such that every Gδ-set H containing x intersect Y .

Let A be a topological group. Denote by ρA the Raikov completion of a topo-
logical group A (see [7]).
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Lemma 5.2. Let A be a topological group, L be a closed bounded subset of A and
F = clρAL be a Gδ-subset of the space ρA. Then:

1. The set L is Gδ-dense in F , i.e. F = ωclρAL.
2. L is a pseudocompact subspace of the space A and βL = F .

Proof. Assume that z ∈ F \ ωclρAL. Then there exists a Gδ-subset H of ρA such
that z ∈ H and L ∩H = ∅. Since F is a Gδ-subset, we can suppose that H ⊆ F .
Then A∩H = ∅ and there exists a continuous function f on ρA such that f(z) = 0
and f(y) > 0 for each y ∈ ρA \H. The function g(x) = 1/f(x) is continuous on
A and unbounded on L, a contradiction. The assertion 1 is proved.

A compact Gδ-subset of a topological group is a Dugundji space ([7], Corollary
10.3.9). Any Dugundji space is perfectly k-normal, i.e. the closure of any open set
is a Gδ-subset. Thus the assertion 2 follows from the next lemma. �

Lemma 5.3. Let Y be a Gδ-dense subspace of a compact perfectly k-normal space
X. Then Y is a pseudocompact space and βY = X.

Proof. Follows from ([7], Theorem 6.1.7). �

Let A be a topological group. We put σA = σρAA = A∪(βρA\∪{clβρAF : F is
a bounded subset of A}). There exists a natural continuous mapping εA : βA −→
βρA such that εA(x) = x for any x ∈ A.

Assume that {Un : n ∈ N} is a sequence of open subsets of A with some stable
property P ≤ BM . We can suppose that e ∈ ∩{Un : n ∈ N}, where e is the
identity in A. Obviously, the space A is P-pointwise.

Since A is a dense subgroup of the group ρA, there exists a sequence v = {Vn :
n ∈ N} of open subsets of the space ρA such that:

- e ∈ V 2
n+1 ⊆ Vn = V −1

n for any n ∈ N;
- clρAVn+1 ⊆ Vn for any n ∈ N;
- for any n ∈ N the sets Vn+1 and ρA \ Vn are functionally separated in ρA;
- Wn = A ∩ Vn ⊆ Un for any n ∈ N.
By construction, H = ∩{Vn : n ∈ N} is a closed subgroup of ρA, P = H ∩A =

∩{Wn : n ∈ N} is a closed subgroup of A and w = {Wn : n ∈ N} is a sequence of
open subsets of A with the property P.

Property 5.1. H = clρAP = ωclρAP .

Proof. Let O ⊆ ρA \ P be an open subset of ρA and x0 ∈ O ∩H. There exists a
sequence {On : n ∈ N} of open subsets of ρA such that x0 ∈ clρAOn+1 ⊆ On ⊆
O ∩ Vn for any n ∈ N. Then {Ln = A ∩ On : n ∈ N} is a sequence of open
non-empty subsets of A and clALn+1 ⊆ Ln ⊆ Wn. Since property P is stable
L = ∩{Ln : n ∈ N} ̸= ∅, L ⊆ P and L ⊆ H ∩ O, a contradiction. Lemma 5.2
completes the proof. �

Property 5.2. H is a compact subgroup and for any open in ρA set V ⊇ H
there exists n ∈ N such that H ⊆ Vn ⊆ V .

Proof. The set P is bounded in A and the closure of a bounded set in a complete
uniform space ρA is compact. Thus H is a compact subgroup. Let V ⊇ H be an
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open subset of ρA and the set Ln = Vn \ clV be non-empty for any n ∈ N. w
has the stable property P and A ∩ Ln ⊆ Wn, the sequence {Ln : n ∈ N} has an
accumulation point in P , a contradiction. The proof is complete. �

Property 5.3. ρA is a paracompact Čech complete group.

Proof. Follows from [16] (see [7], Theorem 4.3.15). �

Let B⋆ = ρA/H, ψ : ρA −→ B⋆ be the natural quotient mapping, φ = ψ|A
and B = ψ(A) = φ(A).

Property 5.4. The space B⋆ is completely metrizable, ψ is an open perfect
mapping and φ is an open continuous mapping onto a metrizable space B.

Proof. Since ρA is is a paracompact Čech complete group and H is a compact
subgroup of countable character, B⋆ is a completely metrizable space and ψ is an
open perfect mapping. From Property 5.1 it follows that φ is an open continuous
mapping onto a metrizable space B. �

Property 5.5. The space σA is Gδ-dense and C-embedded in ρA. In particu-
lar, σA ⊆ ρA ⊆ βσA = βρA.

Proof. From ([7], Theorem 6.9.10) it follows that the spaces A and ρA are Moskow
spaces, i.e. the closure of any open set is a union of Gδ-subsets. By construction,
σA = A ∪ ψ−1(B⋆ \ B). Thus σA is dense in ρA. Any Gδ-dense subspace of a
Moskow space is C-embedded ([7], Theorem 6.1.7).

There exists a direct simple proof of this fact. Let f be a continuous real-valued
function defined on σA. For any z ∈ ρA fix x(z) ∈ (z·H)∩σA. By virtue of Lemma
5.3, z ·H = β((z ·H) ∩ σA). Thus there exists a unique continuous extension of
f onto z · H. This extension we denote by g. We affirm that the function g is
continuous.

Let F be a compact Gδ-subset of the space ρA. Then the set Y = F ∩ σA is
Gδ-dense in F . Since F is Dugundji compact, F = βY and the restriction of the
function on F is continuous. Since ρA is a paracompact p-space and the restriction
of g on compact Gδ-subsets is continuous, the function g is continuous on A. �

Let βψ : βρA −→ βB⋆ be the continuous extension of the mapping ψ on
the Stone-Čech compactifications of the spaces ρA and B⋆. Since ψ is a perfect
mapping ρA = βψ−1(B⋆). Therefore σA = A ∪ (βρA \ βψ−1(B)) and βψ(σA) =
βB⋆.

We put π = βψ|σA and πB = βB⋆.
Property 5.6. The mapping βψ is open and perfect and the mapping π :

σA −→ πB is open.

Proof. Follows from [6]. �

Property 5.7. σA is a pseudocompact thin extension of A.

Proof. Since σA = A ∪ (βρA \ βψ−1(B) and βψ(σA) = βB⋆ the extension σA is
thin. Remark 5.1 completes the proof. �
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Property 5.8. If P ≤ S, then A is an M -space, σA is a countably compact
space and the mappings φ : A −→ B and π : σA −→ πB are quasi-perfect.

Proof. Let U ⊇ P be an open subset of A. Assume that Wn \ U ̸= ∅ for any
n ∈ N. Then the sequence {xn ∈Wn \U : n ∈ N} exists and has an accumulation
point in x0 ∈ A. By construction, x0 ∈ A \ U and x0 ̸∈ Wm for some m ∈ N.
The accumulation points of the sequence {xn ∈ Wn : n ∈ N} are from P , a
contradiction. �

Property 5.9. If P ≤ k, then A is a paracompact p-space.

Proof. In this case φ is a perfect mapping of A onto a metric space B. �
Property 5.10. The space A is p-embedded in σA.

Proof. The mapping π : σA −→ πB is continuous, π−1(B) = A and B, as a
metrizable space, is p-embedded in πB. �

Property 5.11. Let X be a dense subspace of the space A. If X contains a
complete dense-Π-sieve, then A is a Gδ-subspace of the extension σA.

Proof. Let X contains a complete dense-Π-sieve. Since the mapping φ : A −→ B
is open, continuous and the fibers φ−1(y), y ∈ B, are pseudocompact, the space
B contains a dense Čech complete subspace Y . The set Z = φ−1(Y ) is a dense
Gδ-subset of σA and Z ⊆ A. Assume that A ̸= σA. Fix c ∈ σA \ A. The
subspace cZ is dense in σA and has the Baire property as a space homeomorphic
with the space Z. By construction, σA \ Z is of the first category and contains
cZ, a contradiction. Thus σA = A. �

Property 5.12. If A contains a dense Čech complete subspace, then A is
a paracompact Čech complete space. In particular, A is a Gδ-subspace of the
compactification σA = βA.

Proof. Follows from Property 5.11. This fact was proved in [2]. �
For the property S in similar way we obtain.
Property 5.13. If A contains a complete dense-S-sieve, then A is a complete

M -space and a Gδ-subspace of the extension σA.

Remark 5.4. If P ∈ {Π, S, k}, then σA is a P-extension.

6. (β,GP)-unfavorableness of paratopological groups

The main result of this section is the following theorem.

Theorem 6.1. Let A be a paratopological group and P ≤ Π be a stable property of
sequences of open subsets of the subspaces of the space A. The following assertions
are equivalent:

1. The space A is a topological group with the Baire property and A contains a
sequence of open subsets with the property P.

2. The space A contains a sequence of open subsets with the property P and a
dense Baire subspace X which is p-embedded in some pseudocompact extension.
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3. The space A contains a sequence of open subsets with the property P and a
dense Baire subspace X with a dense-Π-sieve.

4. The space A contains a sequence of open subsets with the property P and a
dense subspace X which is (β,GP)-unfavorable.

5. The space A contains a sequence of open subsets with the property P and
a dense subspace X which is (β,GBM )-unfavorable and p⋆⋆-embedded in some
pseudocompact extension.

6. The space A is a topological group with the Baire property, contains a se-
quence of open subsets with the property P and is p-embedded in some pseudocom-
pact extension.

Proof. Let A be a topological group and A contains a sequence of open subsets
with the property P. From Property 5.10 it follows that A is p-embedded in
the pseudocompact extension σA. In particular, A has a dense-Pi-sieve. The
implications 1 → 5 and 1 → 4 are proved. The implications 1 → 6 → 2, 1 → 2
and 1 → 3 are obvious. The implication 5 → 2 is follows from Theorem 4.8. The
other implications are proved in [4]. �

Corollary 6.2. Let A be a paratopological group. The following assertions are
equivalent:

1. The space A is a topological group with the Baire property, A contains a
sequence of open subsets with the property Π and is p-embedded in some pseudo-
compact extension.

2. The space A contains a dense Baire subspace X which is p-embedded in some
pseudocompact extension.

3. The space A contains a dense Baire subspace X with a dense-Π-sieve.
4. The space A contains a dense subspace X which is (β,GΠ)-unfavorable.
5. The space A contains a dense subspace X which is (β,GBM )-unfavorable

and p⋆⋆-embedded in some pseudocompact extension.
6. The space A has the Baire property and is p-embedded in some pseudocompact

extension.

7. (β,GP)-unfavorableness of semitopological groups

The main result of this section is the following theorem.

Theorem 7.1. Let A be a semitopological group and P ≤ S be a stable property of
sequences of open subsets of the subspaces of the space A. The following assertions
are equivalent:

1. The space A is a topological group with the Baire property and A contains a
sequence of open subsets with the property P.

2. The space A is a topological group with the Baire property, contains a se-
quence of open subsets with the property P and the extension σA is countably
compact.

3. The space A contains a sequence of open subsets with the property P and a
dense Baire subspace X which is p-embedded in some countably compact space.
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4. The space A contains a sequence of open subsets with the property P and a
dense Baire subspace X with a dense-Π-sieve.

5. The space A contains a sequence of open subsets with the property P and a
dense subspace X which is (β,GP)-unfavorable.

6. The space A contains a sequence of open subsets with the property P and
a dense subspace X which is (β,GBM )-unfavorable and p⋆⋆-embedded in some
countably compact space.

Proof. The implication 5 → 1 is proved in [24, 4]. Theorem 6.1 completes the
proof. �

Corollary 7.2. Let A be a semitopological group. The following assertions are
equivalent:

1. The space A is a topological group with the Baire property and A contains a
sequence of open subsets with the property S.

2. The space A has the Baire property and is p-embedded in some countably
compact space.

3. The space A contains a sequence of open subsets with the property S and a
dense Baire subspace X which is p-embedded in some countably compact space.

4. The space A contains a sequence of open subsets with the property S and a
dense subspace X which is (β,GS)-unfavorable.

5. The space A contains a sequence of open subsets with the property S a dense
subspace X which is (β,GBM )-unfavorable and p⋆⋆-embedded in some countably
compact space.

Corollary 7.3. Let A be a semitopological group. The following assertions are
equivalent:

1. The space A is a topological group with the Baire property and a paracompact
p-space.

2. The space A is a topological group with the Baire property and σA is a
compactification of A.

3. The space A contains a dense Baire subspace X which is a p⋆⋆-space.
4. The space A contains a dense Baire subspace X with a dense-k-sieve.
5. The space A contains a dense subspace X which is (β,Gk)-unfavorable.
6. The space A contains a dense subspace X which is (β,GBM )-unfavorable

and p⋆⋆-embedded in some compact space.

8. On Hausdorff locally countably compact
spaces

B. Bokalo and I. Guran [9] have established that a Hausdorff sequentially com-
pact cancellative semigroup is a topological group.

Now it is natural to formulate the following questions.

Problem 8.1. Let G be a Hausdorff feebly compact paratopological group of point-
wise countable type. Is it true that G is a topological group?
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Problem 8.2. Let G be a regular semitopological group of pointwise countable
type and G be a dense Gδ-subspace of some feebly compact space. Is it true that
G is a topological group?

Problem 8.3. Let G be a regular semitopological group, G be a dense Gδ-subspace
of some feebly compact space and G be a q-space. Is it true that G is a topological
group?

In [30] O.Ravsky has constructed an MA-example of Hausdorff countably com-
pact paratopological group which is not a topological group.

Lemma 8.4. Let X be a Hausdorff locally countably compact space of pointwise
countable type. Then X is a regular space.

Proof. Let F be a closed subset of X and x ∈ X \ F . There exists a compact set
K of countable character in X such that x ∈ K. Let {Un : n ∈ N} be a sequence
of open subsets of X such that:

- K ⊆ Un+1 ⊆ Un for any n ∈ N;
- for any open set U ⊇ K there exists n ∈ N such that Un ⊆ U .
We put F1 = F ∩K. Since F1 is a compact set and x ∈ X \F1, there exist two

open subsets V1 and W1 of X such that x ∈ V1, F1 ⊆ W1, V1 ∩W1 = ∅ and the
set Y = clXV1 is countably compact.

Let F2 = Y ∩ (F \W1). The set F2 is closed in X. Since X is a Hausdorff
space and K is a compact subset, K = ∩{clXUn : n ∈ N}. Since ∩{F2 ∩ clXUn :
n ∈ N} = ∅ and Y is a countably compact subset, there exists n ∈ N such that
F2 ∩ clXUn = ∅. Now we put V = V1 ∩Un and W =W1 ∪ (X \ clXUn)∪ (X \ Y ).
Then x ∈ V , F ⊆W and V ∩W = ∅. �

From Lemma 8.4 and Corollary 7.2 it follows

Corollary 8.5. Let A be a Hausdorff locally countably compact semitopological
group of pointwise countable type. Then A is a paracompact locally compact topo-
logical group.

9. Semitopological n-groups

Let n ≥ 2. An n-ary group or an n-group is a family (A, {m, l, k}), where A is
a non-empty set and m, l, r : An −→ A are three n-ary operations on A with the
properties:

1mg)m(m(x1, ..., xn), xn+1, ..., x2n−1) =m(x1, ..., xi,m(xi+1, ..., xi+n), xi+n+1, ..., x2n−1)
for all i < 2n− 1 and x1, ..., x2n−1 ∈ A;

2mg) m((x1, ..., xn−1, r(x1, ..., xn)) = xn and m(l(x1, ..., xn), x2, ..., xn) = x1 for
all x1, ..., xn ∈ A.

Definition 9.1. Let n ≥ 2. An n-group (A, {m, l, r}) with a given topology on A
is called:

(TG) a topological n-group if the mappings m, l, r : An −→ A are continuous;
(PTG) a paratopological n-group if:
- for any c = (c1, ..., cn) ∈ An the mapping µc : A2 −→ A, where µc(x, y) =

m(x, c2, ..., cn−1, y) for each (x, y) ∈ A2, is continuous;
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- for any c = (c1, ..., cn) ∈ An the mapping λc : A −→ A, where λc(x) =
m(c1, c2, ..., cn−2, x, cn) for each x ∈ A, is continuous;

(STG) ) a semitopological n-group if:
- for any c = (c1, ..., cn) ∈ An the mapping µc : A2 −→ A, where µc(x, y) =

m(x, c2, ..., cn−1, y) for each (x, y) ∈ A2, is separately continuous;
- for any c = (c1, ..., cn) ∈ An the mapping λc : A −→ A, where λc(x) =

m(c1, c2, ..., cn−2, x, cn) for each x ∈ A, is continuous.

In [19] G.Čupona has initiated the study of topological n-groups and has raised
some questions about their properties. Distinct definitions of topological n-groups
were examined in [35].

Our aim is to prove that the results from the above sections are true for n-
groups.

Let n ≥ 2 and (A, {m, l, r}) be an n-group with a given topology. If n = 2,
then (A, {m, l, r}) is a group.

Assume that n ≥ 3.
By virtue of Hosszu-Gluskin’s theorem [35], there exists c = (c1, ..., cn) ∈ An

such that:
(P1HG). Relatively to the binary operation x · y = m(x, c2, ..., cn−1, y) the pair

(A, ·) is a group.
(P2HG). The mapping λc : A −→ A is an automorphism of the group (A, ·).
(P3HG). If b = m(c1, c1, ..., c1, c1), then λc(b) = b and λ

(n−1)
c (x) · b = b · x for

any x ∈ A.

(P4HG). m(x1, x2, ..., xn−1, xn) = x1 · λc(x2) · ... · λ(n−2)
c (xn−1) · λ(n−1)

c (xn) · b
for all x1, x2, ..., xn−1, xn ∈ A.

These four assertions imply the following properties.
Property 9.1. (A, {m, l, r}) is a topological group if and only if (A, ·) is a

topological group and the automorphism λc is continuous.
Property 9.2. (A, {m, l, r}) is a paratopological group if and only if (A, ·) is

a paratopological group and the automorphism λc is continuous.
Property 9.3. (A, {m, l, r}) is a semitopological group if and only if (A, ·) is

a semitopological group and the automorphism λc is continuous.

Corollary 9.2. The results about groups from the above sections are true for
n-groups.

10. Remarks. Open problems

By virtue of Corollary 2.5 from [8] and Corollaries 7.2 and 7.3 it follows:

Corollary 10.1. Let A be a semitopological group of countable π-character. Then:
1. If A contains a dense subspace with a complete dense-Π-sieve, then A is a

completely metrizable topological group.
2. If A contains a dense Baire subspace with a dense-Π-sieve, then A is a

metrizable group.

Now we mention some open problems.
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Problem 10.2. Let A be a semitopological group, A be a sequential (or Fréchet-
Urysohn, or k-space) space and contain a complete dense-Π-sieve. Is it true that
A is a topological group?

Problem 10.3. Let A be a semitopological group, A be a space of countable tight-
ness and A be a dense Gδ-subspace of some feebly compact space. Is it true that
A is a topological group?

By virtue of Corollary 10.1, in the class of first countable spaces the answers to
Problems 10.2 and 10.3 are positive.

On an arbitrary product of Čech complete spaces there exists a Markov winning
strategy of the player α in the Banach-Mazur game (see [18]). If {Xµ : µ ∈ A}
is a family of infinite spaces and the set {µ ∈ A : Xµ is not pseudocompact} is
an uncountable set, then any strategy of the player β on X = Π{Xµ : µ ∈ A} is
winning in the GΠ-game on X = Π{Xµ : µ ∈ A}.

Problem 10.4. Let A be a paratopological group (or a semitopological group) and
the space A be homeomorphic to Cartesian product of an uncountable family of
Čech complete spaces. Is it true that A is a topological group?

Problem 10.5. Let A be a paratopological group (or a semitopological group) and
the space A be homeomorphic to the Cartesian product of an uncountable family
of Čech complete Lindelöf spaces. Is it true that A is a topological group?

Problem 10.6. Let A be a paratopological group (or a semitopological group) and
the space A be homeomorphic to the Cartesian product of an uncountable family
of infinite discrete spaces. Is it true that A is a topological group?

Problem 10.7. Let A be a paratopological group (or a semitopological group), R
be the space of reals, m be an uncountable cardinal number and the space A be
homeomorphic to the space Rm. Is it true that A is a topological group?

Problem 10.8. Let A be a paratopological group (or a semitopological group),
N be the discrete space of integers, m be an uncountable cardinal number and the
space A be homeomorphic to the space Nm. Is it true that A is a topological group?
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