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ON AN INTEGRAL TRANSFORM
INVOLVING BESSEL FUNCTIONS

Maha Al-Hajri and S. L. Kalla*

Abstract

This paper deals with a new integral transform, involving a
combination of Bessel functions as a kernel. The inversion formula
is established and some properties are given. This transform can be
used to solve some mixed boundary value problems. We consider
here a problem of heat conductions in an infinite and semi-infinite
cylinder (r = a, 7 = b, b > a) with radiation-type boundary condi-
tions.

1. Introduction

Let f(t) be a given function defined on an interval [a, b}, that belongs
to a certain class of functions. An integral transform of f(¢) is a mapping
of the form,

b
T () 5] = F(s) = / K(s,t)f(t)dt,

provided that the integral exists. K(s,t) is a prescribed function, called the
kernel of the transform [2,5,6,11]. Among the well known transforms are
the Laplace, Fourier, Hankel, Stieltjes and Mellin transforms. The most
versatile of these, the Laplace transform has been widely used to solve
differential equations, and particularly problems related to heat transfer
and electrical circuits. On the other hand for problems in which there is an
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axial symmetry, the Hankel transforms are found to be most appropriate.
Mellin transform being closely related to the Fourier transform, has its own
peculiar uses, as for deriving expansion and solving problems with wedge
shape boundaries. In general, the use of an integral transform often reduces
a partial differential equation in n independent variables to (n—1) variables,
that provides a simplification of the problem.

The success of the use of integral transforms to solve boundary value
problems and to exclude a variable with range (0, 00) or (—o0, o) led in-
vestigators to consider finite integral transforms. Doetsch considered finite
Fourier transforms, and Sneddon [11] extended the idea of Bessel function
kernel, called 'Finite Hankel Transforms’. Using the Sturm-Liouville theory
[3,], a number of integral transforms can be implemented, according to the
prescribed boundary conditions.

Recently Khajah [9] has considered a modified Hankel transform in the

form, :
b

TLf(2); 5\ = / P F(2) ] (z8)dz
0

where f(z) satisfies Dirichlet’s conditions on the interval [a,b]. He has
derived the inversion formula, Parseval-type identities, transform of deriva-
tives, as well as transforms of products of the form z* f(z).

Using the Sturm-Liouville theory Kalla and Villalobos [7,8] have de-
fined and studied an integral transform defined as,

b

T[f($)7 a, b, v, Az] = fu(/\z) = /xf(:v)C,,()\,m)dx,

a

where

Co(Miz) = {Yu(hia) + Bo(\ib)} (i)
—{J(Aia) + A, (Ad) }Y, (i)

and .
Ay (Az) = Ju(Az) + hAd, (A\z)

B,(Az) =Y, (Az) + hAY, (Az)

and \; are the positive roots of equation,
J,(Aa)B,(Ab) — Y, (Aa)A,(Ab) =0

This transform has been used to solve a heat conduction problem in
an infinite cylinder bounded by the surface r = a, r = b (b > a).

In this paper we define and study a new integral transform involving
Bessel functions of first and second kind, by invoking the Sturm-Liouville
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theory. Inversion formula is established and some properties are mentioned.
The transform has been used to solve a heat conduction problem in an
infinite and a semi- infinite circular cylinder, bounded by surfaces r = a and
r = b (b > a), with radiation-type boundary conditions on both surfaces.

2. Definition and Inversion Formula:

Consider Bessel’s differential equation
2y +oy + (M2 -1y =0, z € [a, b] (1)
with homogeneous boundary conditions:
y(a) + iy (@) = y(b) + hay () = 0 (2)
The general solution of (1) is given by:
y(z) = a1y (Ax) + Y, (M) (3)

where c; , c3 are arbitrary constants, and J, (), Y, (z) are the Bessel func-
tions of first and second kind respectively. To obtain a solution of (1) that
satisfies conditions (2), we have

¢l [J,,(,\a) + hlAJ;(Aa)] +e [Yu(ha) + hIAYV’(Aa)] -0 (4
e [J,,()\b) + hz)\J,',(/\b)] +e [Y,,(Ab) + ho)Y, ()\b)] =0 (5

from which we dedice

a _ Y,(a)+hdY,(Ma) Y, (Ab) + hoAY, (D)

2 J,Oa)F AT (M) J,(Ab) + haAJ.(Ab) (6)

Let
A,z hy) = J,(Az) + hAd,(Az),  k=1,2

B,(Az,hi) = Y,(Az) + b MY, (Az), k=1,2

Then, the function given by (3) is a solution of equation (1), subject to the
conditions (2), if X is a root of the transcendental equation,

B,,(/\a, hl)Au()‘bv h2) - AV()‘aa hl)Bu()‘ba h2) =0 (7)
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Henceforth, we take A; (i = 1,2,...) to be the positive roots of equation
(7). Then, from (4-5), we have

yi(z) = m[.} i) By (Aia, hi) — Ay (Mia, b)Y, (Az)] (8)

B (/\ b h ) [T, (i :I:)B,,(/\ ;b, h2) (/\ib, hz)Y,,()\,;:r)] (9)

If we define
Z; = B,(\ia, hi) + By (Ab, ha), W, = A, (Mia, hq) + A, (Aid, ho)
then the following functions are taken to be solutions of (1-2):
M,(\z) =Z; J,(\z) — W, Y, (\z) (10)

By Sturm-Liouville theory [3], the functions of the system (10) are ortho-
gonal on the interval [a, b] with weight function z, that is

b

/a:M,,()\ix) M, (\jz)dr = { 0 £

M), i=j an

a

where M, (X;) = ||v/ZM, (\iz)||2 — the weighted L? norm. If a function
f(z) and its first derivative are piecewise continuous on the interval [a, b],
then the relation

b

T(f(@) a5, s A = Fo () = / 2 (£) M, (i) de (12)

a

defines a linear integral transform. To derive the inversion formula for this
transform, given the series expansion,

= iaiM,,(/\i.’L‘) (13)
i=1

we multiply (13) by zM, (A;z) and integrate both sides with respect to
to get the coefficients:

b —
= —_M.,l(&) /xf(x)Mu(/\ix) dz = % i=1,2,... (14)

a

a;
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and the inversion formula becomes

— < fV(A’L) M

2 = X 34,7y M) (15)

Using some well known properties of Bessel functions [12] we can easily
derive the following relation:

2 MV()“L) = Zz2 [b2P(Aia b, V) - a2P()‘i’ a, V)]
—2Z;W; [b’Q(Xi, b,v) — a*Q(Ni, a, V)] (16)
+ W2 [b°R(\i, b, v) — a®R(\;, a, )]

in which R
P(Xi, p,v) = Jo(Aap) = Ju—1(Aim) o1 (M)

R(\i, p,v) = Y2(Aipp) = Y1 up)Yog1 (ips)

and
, 1 '
Qi 1, v) = J,(Aip)Y, 1 ()\iu)—EJu—l()\iM)Yu(/\iﬂ)—Ju_1(Ai#)Yu()\iu)

and p stands for a or b. It is not difficult to verify some properties of the
transform from definition (12). For example,

Tlaf(z) + Bo(a), a, b,y A] = af(As) + B3(A) (17)
b )
T{f(pz),a,b,v; ] = / 2 (pe) M, (M) = I%T[f(w), pa, pb, v; \i/p]
) (18)

3. Transform of a Differential Operator:

We derive the transform of the following operator

2 2
Dis)= 45 f@) + 3 o f(0) =~ 57z, a<wzsh  (19)

Let I be the transform of the first two terms of D, that is

I

il

b
/ 2 [/"(@) + = £'@)] M) do
b

b

- [ar@mOu)ds+ [ £(2)M,(\)de

a



10 Maha Al-Hajri and S. L. Kalla

Integration by parts of the first integral leads to,

b
~ / (@) [zhi M., (\iz)+M, (\iz)] d,

a

b

a

b
/:cf"(x)M,,(/\,-:c)dx=:BM,,()\¢a:)f'(m)
4 .

and hence,

, b
I=oM,(0) @), =X [of (@) M (o) do
Integrating by parts once again leads to,
b
I =3 (f (&) M, (\z) = Asf () ML ()]

b
+ / x ! [,\3352 M) (\iz) + MxM,(Aiz)] f(z) do

Since M, satisfies (1)we have

Mg M (Nz) + NzML(z) = (V2 = X222) M, (M)

and
b b )
_ v .
/x 1 [/\fsz,','(/\zw)—}—/\zxM,i()\,m)] f(x) dx=/a: [F‘—)\z‘]f(x)M,,()\ix)da:

Furthermore, it follows from the boundary conditions (2) that

1
AML(Na) = - My(ha),  AML(OB) = hl M, (\b)
1 2

Hence

I= hizM,,uib) [£(5) + ho ' (B)]

— hil M,(xa) [fla) +haif'(a)] = N2F(O) + T {pf (w)]
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and the transform of the operator D in (19) becomes
b
T[Df(=)] =7L';Mu()‘ib) [£(5) + haf'(B)]

- B(‘LIMU(A,-@ [£(a) + haf'(a)] = AT F ()

(20)

Transform of z~
From definition (12) we have

b
Tlz", a,b,v; A} = /:1:"“M,,()\,-x) dz
a

Using a result of [12], namely
[e2,a)a =21 Zp02)
where Z,(x) is any of the Bessel functions, we obtain

T[z",a,b,v; A = — [b"T! My41(Aib) — 0¥ M, p1(Na)]

1
Ai
Since

M,ii(cz) = é M, (cz) — M (cz)

the transform becomes,

Tiz¥, a,b,v; \] =

bu+1 v al/+1 v

- '—Mu /\,b —M’ 1,b - _— v i —M/ /\7,
o [ 2.00) - M0 - S | M) - M)

Then, from the boundary conditions (2) this reduces to,

vt [v 1 a*t! [v
[ a) woe- 5[5

1

Tz, a,b,v; A\ = n
1

] M,,(/\za)
(21)
In particular, the transform of a constant (where v = 0) is found to be

Tle,a,b, 050 = < [i Mo(Ah) - -
1

)\_? By My ()\ia)] =¢T[1,a,b,0; N (22)
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4. Heat Conduction in An infinite Cylinder:

Consider a long hollow cylinder of inner radius a and outer radius b,
with radiation type boundary conditions in both outer and inner surface,
and a prescriped initial temperature. The differential equation of the phe-

nomena, is:
Lo _oU 1w
K ot or2 ' ror’
where a < 7 < b, t > 0 and U(r,t) denotes the temperature at any radial

position r at time ¢; K is a constant that depends on the material of the
cylinder. The initial and boundary conditions are as follows:

U(r,0)=I(r), a<r<b (24)
ou|
U+h15 = f(t), U+h2§

Taking v = 0, we consider the transform of U with respect to the radial
variable, that is

(23)

o = 9(8), £>0  (25)

r=b

r=a

b
T(hi,t) = / rU(r£) Mo(Ar) dr (26)

Referring to (20) and (23), we obtain

10U b ou
E E B h_2 M()()\zb) [U + h2 E:l o

My(Ma) [U + hlg—ﬂ -\2U

-
hy

From the boundary conditions (25) we have this reduced to

10U b a P
Ko 7y Mo(Asd) g(t) — B Mo(Aia) f(t) — AU
and the following ODE is obtained
ou

— b
o5+ KNT = K | = Mo(\b) g(8) — — Mo(Ma) £(8)]  (27)
ot ha hy
whose solution is given by
U(\;, t) = exp(—KX\%t) x

< [x / exp(K A2s) [Eb; Mo(Ab) 9(5) = - Mo(Aia) £()] ds + C]
0
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Taking the transform of the initial condition (24), namely
_U_(/\i, 0) = T(A,)
leads to C = I();), hence

Us(Aijt) = exp(—=KA}t)

[K /exp(—K)\s[’—lb; My(Aib) g(s) — 7?-1- Mo(Xia) f(s)] ds + T(Ai)] (28)

The solution of (23) follows after applying the inversion formula to the
above, thus
TN, t)

U(r,t) = Mo

with the understanding that the summation is taken over all the positive
roots of the equation:

Bo()\a, hl)Ao()\b, hz) - A()()\a, hl)B()()\b, hz) =0 (30)

Special cases:

(i) Let us consider the previous problem with the following initial and
boundary conditions;

U(r,0)=0, a<r<b (31)

0
U+h1—g

oUu
5 =Up (const.), U+hy—

5 =U; (const.), t>0 (32)

r=b

r=a

Then equation (28) will become

U(Xi;t) = exp(—K A7)

K | exp(K)z) Mo(M\:b)Uy — —Mo( a)Up dx] = (33)
¢ ot {1 sora - £ o

Mo(X:b) — @ Mo()\,a)]

_ 1 —exp(—K)}t) bU1
by hy
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And according to (29) the solution will become

X 1- - 2
U(r,t)=21 exp( K/\,t)><

i=1 )‘EMV()‘l)
o (34)
[%Mf)(}\ b) — 2o Mo()\ a)] Mo(xr),  i=1,2,3,...

where the summation is taken over all positive roots of (30).
(ii) If hy — 0 in (25), that is U |,—, = f(¢), our result (29) reduces to a
result of Kalla and Villalobos [8, p.41, eq.(20)].

5. Heat conduction in a semi-infinite cylinder:

Let us consider the problem of finding the temperature distribution
U(r, z,t) in a hollow semi-infinite cylinder with outer radius a and inner
radius b. This problem is expressed by the differential equation,

laU_82U+16U+82U (35)
K ot 0or2 ror 0822 '
where a < r < b; z, t >0, and the initial/boundary conditions are taken
to be:

U(r,z,0)=I(r,2) (36)
U(r,0,t) = V(r,t), zlirgc U(r,z,t)=0 (37)
au| oUu
U+hi—— = f(z,1), U+ hy—— =g(z,t) (38)
61” r=a Br r=b

Consider the integral transform,
b
U()\i, z, t) = /7‘ U(T‘, zZ, t)M()(}\,"I") dr (39)

and the Fourier sine transform

U, (X, p, t)= U(\;, 2, t) sin(p 2) dz (40)

0\8

Following a similar argument as in the previous section, the transformed
equation of (35) becomes

18U b a o%U

E == EMO()\ b)g(z,t) — e Mo(Xia)f(z,t) — U *t 52
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whose Fourier sine transform is found to be,

1 dU, _ b a . P o+ S
K dt hy MO()\zb)gs(p> t) By MO(/\za)fs(pa t) AUs—p U3+pV()\1,t)
and which is expressed as,

d

g (N2 +p2)U, =

= K| MoAbga(z,8) — - Mo(Nia) ol t)+pV(Az,t)] (41)

Now we have the solution of the above ODE given by
— b
. (h p,8) == KOH8 [ / KO (2 My (b)ga(z,7)

~ i Mo(ha) fu(z7) + BV (hs, )] dr +C]

and from the initial condition, we have C = I,(\;,p), so that

t
To(Miypot) = K(*’ﬂ’“)t K / KO+ ), Mo(Aib)gs(2,7)
5 (42)

- M()()\ a)fs(z, 7') +pV()\1, T)] dr + Ts()‘iap)]

Finally, taking respectlve inverse transforms will lead to the solution:

U(r,z,t)= ZM )

Special cases:
(i) We consider the previous partial differential equation with the follow-
ing conditions

Us(Xi, p, t) sin(pt) dp] Mo(Nir).  (43)

(U+h16U) =0,  2>0,t>0

or ), .—,

(U+h28U) =l, z2>0,t>0
or),., =

U(r,0,t) = Uy, (const.) a<r<bt>0

U(r,z,0)=0 a<r<bz>0

U(r,zt)—0 as Z — 00
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then (42) will become
/ b
[73()\1',1’, t) — e—K()\?-i-pz)t [K / e—K(A?-}—p?)m{_MO(Aib)E
ha 2
0

) [ b Mo(rb) = L Mo(As a)] }dm]

22 Lhg hy
1 — e~ KOF+p7)t prm PU aPUy
Y EY {E[z A2 ]M"(’\ b) - A2hy M"(’\"“)}

and according to (43)

00 —K(\24p?)t

1— i PU, PU,
rzt_y;{/ i?+p2 {}1;2[ A2o]Mo(Ab) “A%l"Mo(Aa)}

M()(AiT‘)
My(N)

(ii) For hy — 0 in (38), that U |,=, = f(z,t) , our result (43) reduces to
one considered in [8, p.43; eq. (36)].

sin(pt)dz} x

6. Conclusions

Here we have introduced a new finite integral transform (Hankel-type)
involving product of Bessel functions as the Kernel. This transform can
be used to solve certain class of mixed boundary value problems. As indi-
cated in previous sections 4 and 5, this transform is suitable to solve heat
conduction problems in hollow cylinders with radiation (mixed) conditions
on both surfaces (r = a and r = b). The Hankel-type finite transforms
considered earlier in [5, 7, 8, 11] were able to solve problems with both sur-
faces of the cylinder kept at prescribed temperature or radiation condition
on only one surface, 7 = b [8].

Numerical treatment of the results obtained here can be done by using
“Mathematica” and [S. L. Kalla and S. Conde: Tables of Bessel Functions
and Roots of Transcendental Equations, Univ. Zulia, Venezuela, 1978|.

-Acknowledgement: The authors are thankful to the referee for some
useful comments and suggestions for a better presentation of this paper.
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3A ETHA NMHTETI'PAJIHA TPAHC2OPMAIINJA KOJA
'l COOPKM BECEJIOBUTE $YHKIVN

Maha Al-Hajri and S. L. Kalla*

Peszuwme

Bo oBaa paboTa ce mpoydyBaaT HOBM HMHTETDAJHU TpPaHCHOpMAa-
M, KOM BKJIy4dyBaaT KoMOusanuja ox BecemoBu ¢pyHKIMM Kako jaapo.
Ilanena e uBep3Ha GOPMyJa ¥ HEKOU Hej3uHM cBojcTBa. OBaa Tpanc-
¢opmanmja MOke Oa ce ynmoTrpebm 3a pemasarme Ha FPaHMYHU OpPo6-
JeMu o] MemaH Tum. Lo pa3srienaBme npoBGJeMOT 3a TOIJIONPOBOX-
HOCT BO Beckoneuen nmiumuznep (r =a, r = b, b > a) co pamujammonen
TUIl HA TPAHUYHU YCJOBH.
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