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PARALLEL IMPLEMENTATION OF 2D HAAR TRANSFORM

IN NOTHING SHARE ARCHITECTURE

JAUMIN AJDARI

Abstract. Wavelets transform, particularly the Discrete Wavelet Transform

(DWT) is an important problem for many applications. This paper describes
parallel implementation of the simplest wavelet transform, namely the Haar

transform. We have described the mathematical theory of 2D Haar trans-

formation and algorithmic implementation of their computations. From the
mathematical theory we have introduced the Haar transform and 2D Haar

transformation and we have also shown the relations which we use for their

computations. From the algorithmic implementation we have done 2D se-
quential and parallel implementation and for the parallel implementation we

propose several types of parallelization, like the parallelization on mesh and

non mesh architecture. Parallel implementations are done based on the noth-
ing share computer system architecture and the MPI programming paradigm.

We also analyze their complexity and show that the complexity of parallel
implementation depends on the number of processes and on the number of

real processing units used for process mapping.

1. Introduction

The wavelet transform presents an important mathematical tool in many dis-
ciplines such as signal processing ([1], [2], [3], [4], [5], [6], [7]), solving partial
differential equations ([8], [9], [10]), etc. Haar wavelets are a simple example of
wavelets. Haar Transform or Haar wavelet transform also presents the simplest ex-
ample of orthogonal transformation with compact support, being the first known
wavelet proposed from Alfred Haar in 1909. In general, the wavelet transform are
similar to Fourier Transform, the difference lies in that that the Fourier trans-
form localizes only within the frequency domain whereas the wavelet transform
localizes in both, i.e. time and frequency domain. This paper is divided into two
essential parts. The first part provides the mathematical definitions and the math-
ematical aspect of transform computations ([11], [12], [13], [14]), and the second
part provides the algorithmic aspect ([15], [16], [17], [18], [19], [20], [21]), in which
we analyze some possibilities of parallel computations in calculating the 2D Haar
transform. The part dealing with the algorithmic aspect shows the analyses of
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2D transformations. The complexity of estimation is also given for the proposed
algorithm in order to gain an overview of the benefits of parallelization.

2. The math of Haar transform

The wavelet theory gives two functions that have an important role during
wavelet analysis, the scaling function called the father wavelet and the other func-
tion known as mother wavelet (sometimes detail function). The scaling function is
usually denoted with ϕ, (ϕ:R→ R) and the mother wavelet with ψ , (ψ:R→ R).
The simple wavelet analysis is based on the Haar scaling function and Haar wavelet
(detail function) which are defined as follows

ϕ(t) = χ[0,1)(t)

and

ψ(t) = χ[0, 12 )(t)− χ[ 1
2 ,1)

(t). (2.1)

With the scaling function ϕ(t), by using the dyadic dilation and the right transla-
tion by an integer number, so ϕj,k(t) = 2j/2ϕ(2jt−k), is defined the Hilbert space

denoted as Vj . The set {ϕj,k(t) = 2j/2ϕ(2jt − k)|k ∈ Z}} represents the basis of
space Vj . The space Vj is the space of all step functions at level j:

fj(t) = ak,
k

2j
≤ t < k + 1

2j
.

Spaces Vj form a multiresolutional analysis in L2 (R) and Vj ⊂ Vj+1. From Vj ⊂
Vj+1 we define space Wj therefore Vj⊥Wj and Vj+1 = Vj ⊕Wj . It can be shown

that the set of functions {ψj,k(t) = 2j/2ψ(2jt−k)|k ∈ Z}} presents an orthonormal
basis for space Wj . The space Wj is known as wavelets mother space at level j
and complies with Vj+1 = Vj ⊕Wj . Continuing in a recursive way we obtain:

Vj+1 = Vj ⊕Wj = V0 ⊕W0 ⊕W1 ⊕ ...⊕Wj , j ∈ Z. (2.2)

In the two dimensional case, the basis of space V 2
j , (V 2

j = Vj ⊗ Vj), is contracted

as tensor product of all possible basis functions ϕj,k(t) and ψj,k(t). Spaces V 2
j

form the multiresolutinal space in L2
(
R2
)
. Let ϕ be the scaling function and ψ

corresponding detail function (mother wavelet) that generate an orthonormal base
into L2 (R). The set of functions

ϕj
k,l(t1, t2) = ϕj,k(t1)ϕj,l(t2), ψ01

j,k,l(t1, t2) = ϕj,k(t1)ψj,l(t2)

ψ10
j,k,l(t1, t2) = ψj,k(t1)ϕj,l(t2), ψ11

j,k,l(t1, t2) = ψj,k(t1)ψj,l(t2)

is an orthonormal basis in space L2(R2) ([9], [10]). According to the hier-
archy of spaces Vj ⊂ Vj+1 and Wj ⊂ Vj+1, we know that there are sequences
{pk}k∈Z, {qk}k∈Z ∈ `2(Z) that satisfy

ϕ(t) =
∑
k

pkϕ(2t− k)

and

ψ(t) =
∑
k

qkϕ(2t− k). (2.3)
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From (2.3) and the definition of ϕ(t) and ψ(t) we have solution p0 = p1 = 1,
q0 = −q1 = 1, pk = qk = 0, k ∈ Z\{0, 1} and the last relations are

ϕ(t) = ϕ(2t) + ϕ(2t− 1)

and

ψ(t) = ϕ(2t)− ϕ(2t− 1). (2.4)

Let fj(t1, t2) ∈ V 2
j is orthogonal projection of function f in V 2

j , there exist {ajk,l}k,l∈Z ∈
`2(Z2) and

fj(t1, t2) =
∑
k,l

ajk,lϕ(2jt1 − k)ϕ(2jt2 − l).

The last expression can be put in the following form:

fj(t1, t2) =
∑
k,l

aj2k,2lϕ(2jt1 − 2k)ϕ(2jt2 − 2l)+

+
∑
k,l

aj2k+1,2lϕ(2jt1 − 2k − 1)ϕ(2jt2 − 2l)+

+
∑
k,l

aj2k,2l+1ϕ(2jt1 − 2k)ϕ(2jt2 − 2l − 1)+

+
∑
k,l

aj2k+1,2l+1ϕ(2jt1 − 2k − 1)ϕ(2jt2 − 2l − 1).

We use (2.4) and after the reordering we obtain

fj(t1, t2) =
∑
k,l

aj−1k,l ϕ(2j−1t1 − k)ϕ(2j−1t2 − l)+

+
∑
k,l

d1,j−1k,l ϕ(2j−1t1 − k)ψ(2j−1t2 − l)+

+
∑
k,l

d2,j−1k,l ψ(2j−1t1 − k)ϕ(2j−1t2 − l)+

+
∑
k,l

d3,j−1k,l ψ(2j−1t1 − k)ψ(2j−1t2 − l)

So, we obtained fj(t1, t2) = fj−1(t1, t2) + g1j−1(t1, t2) + g2j−1(t1, t2) + g3j−1(t1, t2),

where fj−1(t1, t2) ∈ V 2
j−1, g1j−1(t1, t2) ∈W 01

j−1, g2j−1(t1, t2) ∈W 10
j−1 and g3j−1(t1, t2) ∈

W 11
j−1. We mark

aj−1k,l =
1

2

(
aj2k,2l + aj2k,2l+1

2
+
aj2k+1,2l + aj2k+1,2l+1

2

)
,

d1,j−1k,l =
1

2

(
aj2k,2l − a

j
2k,2l+1

2
+
aj2k+1,2l − a

j
2k+1,2l+1

2

)
,

d2,j−1k,l =
1

2

(
aj2k,2l + aj2k,2l+1

2
−
aj2k+1,2l + aj2k+1,2l+1

2

)
,
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d3,j−1k,l =
1

2

(
aj2k,2l − a

j
2k,2l+1

2
−
aj2k+1,2l − a

j
2k+1,2l+1

2

)
. (2.5)

and these relations give us the two dimensional Haar transform. Coefficients aj−1k,l

are the scaling coefficients and the coefficients d1,j−1k,l , d2,j−1k,l and d3,j−1k,l are the
detail coefficients. If the two dimensional function is considered as a matrix, than
after the transformation we have a situation as shown in the illustration on the
left, whereas by recursion the transformation can continue until the sub matrix
aj−1k,l remains with one element only (illustration on the right).

3. The sequential implementation of the discrete Haar transform
(DHT)

Let the two dimensional signal (given function by their coefficients) be {a(k, l), k =
0, 1, ..., 2m − 1, l = 0, 1, ..., 2n − 1, m, n ∈ N}. From (5) and the separability of
the two dimensional Haar basis functions, we notice that the two dimensional
transform can be realized as a combination of two one dimensional transforms. If
the signal is considered as a matrix, than the two dimensional transform will be
carried out in two steps:

(1) 1D transform by rows of the matrix and
(2) 1D transform by columns of the transformed matrix (transformed into step

i)).

For 1D transform we can use any sequential algorithm ([15], [16], [17], [18], [19]),
because all algorithms are similar and have the same complexity which is O(N),
where N is the number of discrete points of function (usually it is the discrete
signal, while N represents the discrete points of the signal).

A calculation of an element consists of one addition and one multiplication,
therefore in the resolution j, j = 0, 1, ..., n− 1, n = log2N (we put equal number
of rows and columns, N=M ) we will have2N · N2j for the transformation of rows

and 2N · N2j for the transformation of columns. The complexity of the algorithm
of the 2D Haar transform is

T (N) =

n−1∑
j=0

4N · N
2j

= O(N2).

4. Parallel implementation of the Discrete Haar Transform

For the parallel implementation of the Haar Transform we will examine the
nothing share architecture, so that each processing element has its processing
unit and working memory. Processing elements will communicate between them
through the communication channels, respectively through a private computer
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network. The communication will be done through sending and receiving data
(messages – data packs) from one to another processing element. From the tech-
nical aspect, the implementation will be done for the cluster platform of the work
stations, and for the realization of the parallelization we use the MPI paradigm.

Regarding parallel implementation of 2D transform we will discuss two cases de-
pending on the process architecture [23]. The first case is the process organization
in mesh architecture and the second in non mesh architecture.

4.1. Parallel implementation in mesh architecture. Let p be the number
of processes and suppose that

√
p is a natural number. We organize the pro-

cesses as a two dimensional matrix with these dimensions
√
px
√
p and we identify

the processes through the coordinates. First, we analyze the situation when the
number of processes is the same with the overall number of values that have to
transform, so, p = N2. We map the values as one value one process, so in the
process P (i, j) we map the value a(i, j) and i represents the rows, while j the
columns, i, j=0,1,. . . ,N-1. One transformation will be carried out through two
steps, i.e. first step 1D transformation by rows and the second step 1D transfor-
mation by columns. The identification of the processes that need to communicate
will be carried out through coordinates (indexes) and j will determine the first
step communications whereas i will determine the second step communications.
The communication will include processes that differ in one bit only (from left)
and other bits on the left have zero. The transformation into one resolution con-
tains one communication and one computation in each step. The computation
will be performed by the processes involved in communication. In the first step of
the resolution, the communication will go through processes in which the index j
differs for one bit (from the left) and other bits on the left are zero. The process

P(i,j) will calculate a(i, j)← a(i,j)+a(i,j+1)
2 if the identifying bit is zero, otherwise

it will calculate a(i, j) ← a(i,j)−a(i,j+1)
2 . In the second step (transformation by

columns), the processes in which i differs for one bit the other bits on the left

are zero and the process P(i,j) will calculate a(i, j) ← a(i,j)+a(i+1,j)
2 if the identi-

fying bit is zero, otherwise it will calculate a(i, j) ← a(i,j)−a(i+1,j)
2 . The overall

transform (transformation in all resolutions) will be done for log2N steps (until
only one value remains). The given explanation will be illustrated for the case
p=N=16. Initially, (after the mapping) we have:

The complete transformation will be done in two steps k = log2N = 2. In the
first transformation (first resolution) we have
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In the first step we communicate the processes P (i, 0)↔ P (i, 1) and P (i, 2)↔
P (i, 3) for i = 0, 1, 2, 3 and each process performs one computation. In the second
step, the processes that communicate are P (0, j)↔ P (1, j) and P (2, j)↔ P (3, j)
for j = 0, 1, 2, 3 and here, each process performs one computation also.

In the second transformation (resolution zero) we have

Now, in the first step the communication will go through P (i, 0) ↔ P (i, 2) for
i = 0, 2 and the processes will perform one computation each. In the second step
the communication will go through P (0, j) ↔ P (2, j) for j=0,2 and each process
will also perform one computation.

The order of the transformed elements is not the natural transform order. In
order to achieve the regular order we must move the rows and columns. The
movement will be done same as the movement of the elements in the case of the
computation of the 1D transform, e.g. the case of the two dimensional signal 2x2
the column 0 of the transform will be the column 0 from the result, the column
1 of the transformation will be the column 2 of the result (1 + 5 = (101)2 →
(110)2 → (10)2 = 2), the column 2 of the transformation will be the column 1
of the result and the column 3 of the transformation will be the column 3 of the
result. The rows can be moved in the same way.

As a result, we see that the total transformation will be done for log2
√
p =

log2N steps and each step consists of two sub steps (transformation by rows and



PARALLEL IMPLEMENTATION OF 2D HAAR TRANSFORM 75

transformation by columns). In each sub step we have a communication (value
exchange between two processes) and a calculation consisting of a single addition
and a single multiplication. The complexity of the algorithm is

T (N) = 2(Ccomm + 2Ccomp) log2N

T (N) = C · log2N = O(log2N)

If N2 > p, meaning the number of elements to be transformed are higher
than the number of processes. Let’s suppose that we have p square of a natural
number and N√

p is an even number. We divide the matrix N xN into sub matrixes
N√
p x

N√
p and one of these sub matrixes we map into a process. Initially (after

the mapping) each process will perform the 2D sequential transformation for its
part, so as a result each process will obtain one element which will be put in
the further transformation. The following transformation is carried out by the
algorithm in a case when the number of processes is equal to the number of points
being transformed. We turn the transformed result into a matrix N xN and we
move the columns and rows (according to the above given explanation). The
complexity of this algorithm consists of two parts, the part which complies with

the 2D sequential transformation O
(

N2

p

)
and the part which complies with the

transformation where in one process we have one mapped value O (log2 p). The

complexity is T (N, p) = O
(

N2

p

)
+O (log2 p). Taking into account that p << N2,

the complexity of this algorithm can be noted as:

T (N, p) = O

(
N2

p

)
.

4.2. Parallel implementation in non mesh architecture. Further on, we will
analyse another possibility of the parallelism of 2D Haar Transformations which
will be based on the mapping of rows into processes. Let us suppose that we
have the matrix N xN , N exponent of number 2, of the values needed to be
transformed. We will discuss two situations, the situation when the number of
processes is the same with the number of rows and the situation when the number
of processes is smaller than the number of rows.

The case p=N, we map a row from the matrix into one process. The transfor-
mation in a resolution will be carried out through a number of steps. In the first
step each process will perform a 1D transformation for the values of its own row,
the matrix transpose of values will be performed in the second step, and in the
third step each process will again perform the 1D transformation in its own row.
The result of the transformation will be the transposition of the obtained matrix
after the third step.

For the 1D transformation in the first and third step we will use the sequential
algorithm based on the lifting scheme, which after one transform, the sequence of
the transformed values divides into the scaling coefficient part (the first half of the
sequence) and the part of detail coefficients (the second half), e.g. let {ai}i=0,1,...,n,

i = 0, 1, ..., n2 − 1, ai = a2i+a2i+1

2 and di = ai − a2i+1
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and after the transformation we have {ai}i=0,1,...,n2−1,{di}i=0,1,...,n2−1.
In the second step we use the All-to-all personalize operation (All-to-all MPI

routine) for communication [22], which acts in a way that sends the element j of
the row i as the element i of the row j,

In the third step each process will again perform a 1D transformation for its own
row and in order to attain the transformation we perform an all-to-all operation.

The total transformation will be done for log2N steps, where in each step we
will perform the described sub steps. The complexity of this algorithm will have
two 1D transformations of the N elements per one resolution and two All-to-all
operations. The complexity of one All-to-all operation is O(N2) when each process
has N elements, than the complexity of the algorithm is:

T (N, p) = 2(O(N2) +O(N)) log2N = O(N2 log2N), N = p.

The generalization of the algorithm is the case when the number p of the pro-
cesses is smaller than the number of the rows N, p<N. In one process we map N

p

rows and we suppose that N
p is an even number, therefore in one process we map

an even number of rows. Each process will perform the 2D transformation within
the part of the matrix that it owns (the matrix is taken in dimensions N

p xN)

according to the sequential algorithm. For the transformation conducted through
rows and columns we will use the 1D sequential algorithm based on the lifting
scheme:

ai = a2i+a2i+1

2 and di = ai − a2i+1.

The sequential part will finish in log2
N
p steps, at the end in each process the

sequence of p elements will remain for further transformation. The next trans-
formation follows according to the algorithm where one row is mapped into one
process.

After the complete transformation is done the rows will be moved in a way that
in the beginning we take the first rows of each process, then the second rows, the
third and so we continue with the last rows.

The complexity of this algorithm also consists of two parts, the sequential and
the parallel part. In the sequential part each process will calculate log2

N
p reso-

lutions of the part N
p xN of the matrix. Since for one computation we have two

additions and one multiplication, for each row at the step k we have 3 N
2k

oper-

ations for the transformation of the row and 3 N
2kp

for the transformation of the
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column. Therefore

Ts(N, p) =
N

p
· 3 · N

p

log2
N
p∑

k=1

1

2k
= 3

N

p

(
N +

N

p
− p− 1

)
and after p<<N, we have Ts(N, p) = O

(
N2

p

)
. After log2

N
p steps we have a

situation when in each process we have one row from p elements and the further
transformation will be carried out according to the algorithm when in one process
we map one row. The total complexity of the algorithm is:

T (N, p) = Ts(N, p) + Tp(p) = O

(
N2

p

)
+O(p2 log2 p) = O

(
N2

p

)
.

Because of p<<N, for overall complexity we can take T (N, p) = O
(

N2

p

)
.

5. Experimentation

Experimentation of the algorithms is done in the cluster of the PCs (seeuclus-
ter.seeu.edu.mk/ganglia/), composed by eight PCs, set up in Red Hat Enterprise
Linux 4 and clustered through Oscar 4.2.

The methodology of experimentation was as follows: because the described al-
gorithm has intensive communications we decided to analyse two separate time
measurements, general communication time and general computation time. The
total execution time is the sum of those times. Experimentation is done for dif-
ferent number of processes p=4, 16, 64, 256 (the number of processes is taken to
be a power of number two because of mesh architecture) and for each number
of processes p the dimensions of 2D signals 64x64, 128x128, 256x256, 512x512,
1024x1024, 2048x2048, 4096x4096 (real numbers randomly generated). For each
case, the program is executed many times (minimum 10 times) and for the result
is taken the maximum time obtained during the executions. The results are shown
in the following tables

Table 1. Communication time

Table 2. Computation time
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6. Conclusion

The Haar transformation, and more specifically, the two dimensional Haar
transformations are important transformations. According to their computing
nature, the Haar transformations are not transformations of many calculations,
but in the case of the two dimensional transformations the number of the val-
ues needed to be transformed increases and as a result the number of operations
increases as well. In general, the complexity of computing the 2D Haar transfor-
mations is O(N2). We have analysed the possibility of parallelism of the Haar
transformations in a platform where each processing element has its own local
memory and we discussed two cases, the first case when in one process we could
map only by one value and the case when in one process we could map by more
values. And we obtained the results O(log2N) during the mesh architecture and
the mapping of one value in one process, O(p2 log2 p) in the case of mapping one

row in one process, O
(

N2

p

)
in cases of mapping more rows in one process, as well

as the case when one sub matrix is mapped into one process. In all assessments of
the complexity it is notable that the dominant factor is the part of the complexity
that occurs from the local transformations (which are carried out by sequential
algorithms), whereas the communication between processes, almost in all cases,
occurs in some communications with the help of a one value message between the
processes. Therefore, the common conclusion is that the complexity depends from
the number of processes and with the increase of the number of processes (meaning
the increase of the physical number of the processing elements) the time of the
completion of transformations decreases.

Regarding the experimentations we can conclude as follows:

(1) In both cases (mesh implementation and row implementation) by increas-
ing the number of processes we have increase of communications time and
decrease of computations time. This is because by the increase of number
of processes, the data have to distribute to more processes. This affects
the processes to perform more communications. In terms of calculations,
a small quantity of data into process reduces the number of calculations.

(2) In both cases increasing the size (dimensions) of two dimensional signal
(i.e. increase the number of elements for transform) affects to increase
of the communications time and computations time. So, if the numbers
of processes is unchanged and we increase the amount of data than an
increase of communications time is coming as a result of increase of the
amount of data to be transferred.

From both cases we see that the parallel implementations suffer from commu-
nication between processes and intensive communications are a key factor. Re-
garding on the general results (computations + communications) implementation
in mesh architecture shows something better performance.

The general conclusion is that the overall performances of the parallel imple-
mentation depend on the communications performances between processes.
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