99

MaTeMaTHYKH BunreH
16 (XLII)
1992 (99-104)
Ckornje, MakepmoHuja

FINDING ALL MINIMUM-HOP PATHS IN NETWORKS

Iskra K. Djonova-Popova, Oliver B. Popov

Abstract. The problem of finding all minimum-hop paths from
one node to another arises in several contexts for adaptive rou-
ting in computer communication networks. This paper presents an
efficient algorithm for determining all paths with minimum num-
ber of links between two nodes in a network. Polynomial bound
are established for the worst case time complexity of the algo-
+ithm. Directions for further research are also proposed.

1. Introduction. The functionality of computer communication
networks vitally depends on routing, i.e. on finding a proper
path between two nodes in a network. Hence, there has been exten~
sive research interest in algorithms for single path routing.
This follows from the fact that routing schemes in now-a-days
networks all turn out to be variants, in one form or another,
of shortest path algorithms that route packets from source to-

destination over a path of least cost, [1].

The development of more sophisticated adaptive routing
techniques, [2], [3], [4], arose the interest for algorithms
that find multiple paths between pairs of nodes in a network.
Multiple disjoint paths can increase the effective bandwith
between pairs of nodes, reduce the congestion in a network and
decrease the probability of dropped packets. However, having in
mind the reliability and the efficiency in transportation, it
is desirable to route packets over minimum-hop paths, namely
paths with a minimum number of links, [3], [4].

A considerable effort has been devoted to the design of
algorithms for finding multipe paths from every node to a des-
tination node in a network. For instance, one solution, [5],
finds multiple paths that are initial-disjoint (i.e. disjoint-
in the first link), another scheme, [6], finds a pair of dis-
joint paths of minimum total cost from every node to a desti-
nation, while the third, [7] obtains multiple disjoint paths.

100

In the paper, a simple extension of Dijkstra’s algorithm
for single source shortest path problem is given, [8], in order
to obtain all minimum-hop paths from a given source to all other
nodes in a network. The paper is organized as follows. In sec-
tion 2 we present the basic design of the algorithm, while sec-
tion 3 deals with the running time of the algorithm. Finally,
in section 4 the conclusion and directions for further research
are put forward.

2. Constructing Minimum-Hop Paths. In this section, an

approach for constructing all minimum-hop paths from source no-
de to every other node in a network is proposed.

2.1. Preliminaires. A network is modeled as a graph, G(V,E),
with a vertex set, Vv={1,2,...,n}, and a link set E. The graph
contains neither paralel links nor loops. There is an arbitrary
and distinguished node, s, in V called the source node. Without
loss of generallity, node 1 is refered to be the source. A link
in E connects a pair of nodes, u and v, in V and is denoted by
(u,v). The lenght associated with each link (u,v),l{u,v) is the
distance between links u and v, 1l(u,v)=é(u,v)=1. If there is no
link between nodes u and v we assume 1l(u,v) is =, some value
much larger than any actual distance. The number of links inci-
dent with a vertex v represents the degree of the vertex and is
denoted d(v).

Unlike Dijkstra’s algorithm that is designed for directed
graphs, the proposed scheme works on both directed and undirec-
ted graphs. A directed graph G’ (V,E’), E’=2E, can be always
associated with the graph G, such that each link (u,v) is pre-
sented with two directed arcs (u,v) and (v,u) each with length
1, 1(u,v)=1l(v,u)=1.

2.2. Algorithm. The algorithm actually performs a breadth-
first search upon a given graph. It works by maintaining a set
S of vertices with minimum number of links in the path from the
source s. Since all links have length 1 we can always find all
nodes that do not belong to S and are by one link away from the

O
@
@
@
3

©
0
@®
®
(10)
()]
(12)
13)
(14)
(15)

(16)

101

procedure Minimum-Hop Paths
{ The procedure computes the distance of the minimum-hop
path from vertex 1 to every vertex of a graph and finds all
minimum-hop paths}
begin
S:={1});
for i:=2 ton do
D(i):=K1,i); {initialize D}
P(ij):=0, j=1....,d(i); {initialize P}

8:=0 {initilize the distance from the source to the most distante
nodes in S}

do while S=V
&:=6+1
find all vertices wj in V-S such that D(w;)=8
add all wjto S
‘for each vertex v in V-S do
for all wjin § for which D(w;j)=8 do
Dj(v):=min[D(v), D(wj)+l(w;j,v)]
do if D;(v)<D(v)
P(v,j):=w;j
end
end
D(V):=ﬂjpin[Dj(V)l

end

end

end

Fig. 1

maximum distant nodes that belong to S. That is, at the k-th
step of the algorithm it discovers all‘vertices that are at
distance k from s. We use an array D to record the length of
the minimum-hop path to each vertex, and a multidimensional
array P to record the predecessors of the vertices in all mi-
nimum-hop paths. An element of P, P(v,3), v=1,...,n, j=1,...,4d(v),
contains the vertices immediately before vertex v in the j-th
minimum~hop path or 0, when the j-th minimum-hop path does not
exist. The number of minimum~hop paths from s to v is determi-

102

ned by the number of the nonzero elements P(v,j) and the number
of minimum~hop paths from s to each predecessor of v. The algo-
rithm itself is given in Fig. 1.

Upon termination of the algorithm the paths to each vertex
can be found by tracing backward the predecessors in the P-array.

2.3. Example. Let us apply the algorithm to the graph on
Fig. 2. Initially, set S={1}, D(2)=D(4)=1, D(3)=D(5)=D(6)==. In

Fig. 2

the first iteration of the do while loop of lines (5) to (9)
w,=2 and w,=4 are selected as the vertices that have distance

§=1 from the source. Then, we set:

D,(3) = Min[=,141]=2, D, (3) = Min[=,=]==,

D(3) = Min[D2(3),D“(3)] = Min[2,=]=2,

D,(5) = Min{[e,1+1])=2, D, (5) = Min[=,1+1]}=2,

D(5) = Min[D,(5),D,(5)] = Min[2,2])=2

D(6) do not change, because it has no link directly connec

ted neither to 2 nor to 4.
In the second iteration w1=3 and w2=4 are selected as the

vertices that have distance §=2 from the source. Then we set:

D,(6) = Min[=,2+1] = 3, D (6) = Min[e,2+1) = 3
D(6) = Min[D,(6),D,(6)] = Min[3,3] = 3

In the third iteration w1=6 is selected as the vertex that

have distance 6=3 from the source, and the algorithm terminates.

103

The honzero elements of P-array would have the values
P(2,1)=1, P(3,1)=2, P(4,1)=1, P(5,1)=2, P(5,2)=4, P(6,1)=3,
P(6,2)=5. To find all minimum-hop paths from vertex 1 to vertex
6 for example, we would trace the predecessors in reverse order
beginning at vertex 6. From the P-array we determine 3 and 5 as
the predecessors of 6, 2 as the predecessor of 3 and 5 and 4 as
the predecessor of 5, then 1 as the predecessor of 2 and 4. Thus,
there are 3 minimum-hop paths from vertex 1 to vertex 6, all of
equal distance 6=3. They are: 1,2,3,6; 1,2,5,6; 1,4,5,6. The
first and the third path are disjoint because they have no inter-
mediate common node.

3. The running time of the algorithm. The time complexity
of the algorithm can be derived from the following notions:

1. In the case when the graph with n vertices is represen-
ted by an adjacency matrix, the loops of lines (11) till (14)
take O(n) time, and it is executed at most n-1 times for the
total running time of 0(n?).

2. If the graph is sparce,i.e; the number of links, e, is
much less then n?, the use of adjacency list representation is
recomended. For then, the loop of lines (11) till (14) can be
implemented by going down the adjacency list for wj, and it ta-
kes time which is proportional to the degree of wj. When this
quantity is summed over all wj, at most O(e) time is spent in
complete scanning of the adjacency list. Lines (1) to (5) take
O(n) times, as do lines (6) to (9). The result yields the total
time to be O(e+n). This running time is considerably better then
0(n?) if e is very small compared with n2.

4. Conclusions and directions for further research. In thi

paper, basicaly a breadth-first search technique for finding all
minimum~hop paths is described. It is actually an extension of
Dijkstra’s algorithm for single source shortest path problem.
The algorithm might prove to be extremely useful when implemen-
ting adaptive multipath routing that uses minimum-hop paths in
a wide area network. The upper bound of the time complexity of
_the algorithm is polynomial. Practical realization and imple-

104

mentaion upon randomly chosen networks will be the next step
towards the verification of its efficiency. The average running
time is also the.subject to further investigations.

Some of the routing algorithms, [4], use the least-hop and
the least-hop+l paths as the most appropriate paths for routing.
Hence, it is also interesting to find out if the algorithm can
be modified in the way that all minimum-hop paths and all mini-
mum-~-hop+l paths are found.

REFERENCES

[1] schwartz M., Stern T.E.: Routing Techniques Used in Computer
Communication Networks. IEEE Trans. Commun. COM-28:539-552,
1980

[2] Rudin H.: On Routing and "Delta Routing": A taxonomy and Per-
formance Comparision of Techniques for Packet-Switched
Networks. IEEE Trans. Commun. COM-24:43-59, 1976

[3] Thaker G.H., Cain J.B.: Interactions Between Routing and
Flow Control Algorithms. IEEE Trans. Commun, COM-34:269-277,
1986

[4] Nelson D.J, Sayood K., Chang H.: An Extended Least-Hop Dis-
tributed Routing Algorithm. IEEE Trans. Commun. COM-38:
520-528, 1990

[5] Topkis D.M.: A k Shortest Path Algorithm for Adaptive Routing
in Communications Networks. IEEE Trans. Commun., COM=-36:
855-859, 1988

[6] Surballe J.W., Tarjan R.E.: A quick method of finding shortest
pairs of disjoint paths. Networks, 14, 1984

[7] sidhu D.P., Nair R., Abdallah S.: Finding Disjoint Paths in
Networks. ACM Computer Comm. Review., 3:43-51, 1991

[8] Dijkstra E.: A note on two problems in connection with graphs.
Numer. Math. wvol. 1:269-271, 1959

ONPERYBABE HA CHUTE HNATHHTA CO MHHMMAJIEH BPOJ HA JIMHUM BO MPEXH
U. lloHoBa-llonora, O. Nonos
Pe3s3sume

) Bo MpexHTe 3a MPEeHOC Ha MojaToud YyecToraTH ce jaByBa mnpobrie-
MOT Ha oIpenyBalme Ha CHTEe naTHuTa o5 emeH jason OO Ipyr KOH cogp-
XaT MHMHUMaJIeK 6poj JMEMH. BO OBOJ TPpyO € NpeTCTABEH eOHOCTaBeH
anropuTaM 3a OAnpenyBame Ha TaKBHUTe MaTHwTa. OOpeneHa € KOMIUIeKC—
HOCTa Ha aJIPOPMTMOT KOja BO Hajjom cnydvaj e NoJMHOMMjanHa. lpen-
JIOXKEeHM Ce M HaCOKH 3a MOHATaMOWHO HUCTpaXyBame.

